1
|
Manimaran P, Tamilalagan E, Chen SM, Govindharaj A. Development of an ultrasensitive sensor for detecting metol in environmental water samples using ruddlesden-popper type layered perovskite (La 2NiO 4) combined with graphene oxide. WATER RESEARCH 2025; 273:122998. [PMID: 39721500 DOI: 10.1016/j.watres.2024.122998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Metol (MTO), a commonly used photographic developer, has become an environmental pollutant due to its extensive use and subsequent release into water sources. The accumulation of MTO poses significant risks, including aquatic toxicity and potential bioaccumulation, leading to adverse effects on ecosystems. To address these environmental challenges, we developed a La₂NiO4 combined with graphene oxide (La₂NiO₄@GO) nanocomposite modified glassy carbon electrode (GCE) for the ultrasensitive detection of MTO. The La₂NiO₄ was synthesized via a hydrothermal method and subsequently integrated with graphene oxide through a sonochemical technique, with comprehensive characterization using Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and High-resolution transmission electron microscopy (HR-TEM). Electrochemical analysis revealed that the La₂NiO₄@GO-modified electrode exhibited a low charge transfer resistance of 20 Ω. Using differential pulse voltammetry (DPV), the electrode demonstrated a limit of detection (LOD) of 6.4 nM for MTO, with a high sensitivity of 10.84 µA µM⁻¹cm⁻² and excellent anti-inference property towards MTO tested along with interfering substances. The sensor was successfully applied to real environmental water samples and human urine samples, showing excellent recovery rates of MTO. This work underscores the potential of La₂NiO₄@GO-modified electrodes in monitoring and mitigating the environmental impact of MTO, contributing to a healthy environment.
Collapse
Affiliation(s)
- Parthasarathi Manimaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Abirami Govindharaj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| |
Collapse
|
2
|
Zhang Q, Dou S, Leng H, Shu Y. A small molecule modified UiO series MOFs for simultaneous detection of Fe 3+ and Zn 2. Talanta 2024; 286:127483. [PMID: 39733522 DOI: 10.1016/j.talanta.2024.127483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Iron and zinc are two metal ions with important roles in biology, industry and the environment, however, the excess or deficiency of both Fe3+ and Zn2+ can have negative effects on organisms and environment. Therefore, the development of efficient method for simultaneous detection of Fe3+ and Zn2+ provides timely information on metal content, simplifies operations and improves efficiency. In this work, a small molecule (COOH-BPEA) of recognizing Zn2+ modified the four metal-organic-framework (MOF) (UiO-66-X(66, OH, NH2 and OH/NH2)) was developed for the simultaneous detection of Fe3+ and Zn2+. The fluorescence signal of the small molecule is enhanced by small molecule chelating Zn2+ to block the photoinduced electron transfer (PET) effect. The fluorescence signals of the UiO series MOFs were quenched through Fe3+ with electron transfer and static quenching effect (SQE). It's worth mentioning that the emission wavelengths of the small molecules and MOFs did not interfere with each other. The UiO-66-NH2@BPEA with optimal performance was selected by fluorescence spectra for the detection of Fe3+ and Zn2+ with detection limit of 0.175 μM and 0.021 μM, respectively. The nanoprobe provides a fast response (less than 1 min) for both Fe3+ and Zn2+. Finally, we applied it to the simultaneous detection of Fe3+ and Zn2+ in environmental water, human serum and cell lysates.
Collapse
Affiliation(s)
- Qikun Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Shuaihua Dou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Han Leng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
3
|
Takhar V, Singh S, Misra SK, Banerjee R. l-cysteine capped MoS 2 QDs for dual-channel imaging and superior Fe 3+ ion sensing in biological systems. NANOSCALE ADVANCES 2024; 6:d4na00505h. [PMID: 39309516 PMCID: PMC11414837 DOI: 10.1039/d4na00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
MoS2 quantum dots (MQDs) with an average size of 1.9 ± 0.7 nm were synthesized using a microwave-assisted method. Absorbance studies confirmed characteristic transitions of MoS2, with absorption humps at 260-280 nm and 300-330 nm, and a band gap of 3.6 ± 0.1 eV. Fluorescence emission studies showed dominant blue and some green emissions under 315 nm excitation, with an absolute quantum yield of ∼9%. The MQDs exhibited fluorescence stability over time after repeated quenching cycles across various pH and media systems. In vitro toxicity tests indicated cytocompatibility, with around 80% cell survival at 1000 mg L-1. Confocal imaging demonstrated significant uptake and vibrant fluorescence in cancerous and non-cancerous cell lines. The MQDs showed strong selectivity towards Fe3+ ions, with a detection limit of 27.61 ± 0.25 nM. Recovery rates for Fe3+ in phosphate buffer saline (PBS) and simulated body fluid (SBF) systems were >97% and >98%, respectively, with a relative standard deviation (RSD) within 3%, indicating precision. These findings suggest that MQDs have high potential for diagnostic applications involving Fe3+ detection due to their fluorescence stability, robustness, enhanced cell viability, and dual-channel imaging properties.
Collapse
Affiliation(s)
- Vishakha Takhar
- Department of Physics, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Simranjit Singh
- Materials Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Superb K Misra
- Materials Engineering, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| | - Rupak Banerjee
- Department of Physics, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
- K C Patel Centre for Sustainable Development, Indian Institute of Technology Gandhinagar Palaj Gandhinagar 382355 India
| |
Collapse
|
4
|
Esfandiari N, Aliofkhazraei M. Advances in the determination of trace amounts of iron cations through electrochemical methods: A comprehensive review of principles and their limits of detection. Talanta 2024; 277:126365. [PMID: 38964047 DOI: 10.1016/j.talanta.2024.126365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024]
Abstract
Quantification of trace amounts of iron is of great importance in various fields. In the industrial sector, it is crucial to monitor the release of iron out of corrosion, pickling treatment, and steel manufacturing to address potential environmental and economic challenges. In biological systems, despite its indispensability, it is essential to maintain iron concentration below a specific threshold. Electrochemical (EC) methods provide significant analytical capabilities due to their simplicity, ease of use, and cost-effectiveness. This review focuses on the fundamental principles of EC methods for iron detection, including potentiometry, amperometry, coulometry, voltammetry, and electrochemical impedance spectroscopy (EIS). It further explains the process of obtaining calibration curves, and subsequently, determining the concentration of unknown ions. Additionally, technical notes are presented on selecting the initial signal value, reducing the duration of tests, excluding non-faradaic signals, and extending the linear region with the lowest detection limit. These notes are supported by key findings from relevant case studies.
Collapse
Affiliation(s)
- Naeemeh Esfandiari
- Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, P.O. Box: 14115-143, Tehran, Iran
| | - Mahmood Aliofkhazraei
- Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
5
|
Ghosh M, Dasgupta U, Nayek S, Saha A, Bhattacharjee RR, Chowdhury AD. PSS functionalized and stabilized carbon nanodots for specific sensing of iron in biological medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122445. [PMID: 36773421 DOI: 10.1016/j.saa.2023.122445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Carbon Quantum Dots (CQDs) are already emerged as an excellent sensing element for its exceptional behavior in fluorescence, biocompatibility, and water dispersibility. However, its poor stability, selectivity and reproducibility in complex medium still be a big problem for its practical application. To overcome this, in the work, we have developed a new type of carbon quantum dot-PSS fluorescent nanocomposites which has been used for specific Fe3+ detection. The polystyrene sulfonate (PSS) polymer not only stabilize the QDs but also produces specific sites for Fe3+ to make a co-ordinate complex via Fe3+-SO3. The detection limit is calculated as low as 1 ppm which is adequate for measuring Fe3+ in blood or water samples. The mechanism of the quenching is very specific towards the Fe3+ ion due to the presence of PSS which makes the sensor selective among other metal ions and possible interferences. The rapid process of sensing, simple instrumentation, and excellent performances in presence of 1 % BSA and serum samples indicates the possible application for diagnostic usage in near future.
Collapse
Affiliation(s)
- Malabika Ghosh
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Uddipan Dasgupta
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Sumanta Nayek
- Amity Institute of Environmental Sciences, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India
| | - Abhijit Saha
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, Plot 8, Block LB, Sector III, Bidhannagar, Kolkata 700 106, India
| | - Rama Ranjan Bhattacharjee
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India.
| | - Ankan Dutta Chowdhury
- Amity Institute of Nanotechnology, Amity University Kolkata, Major Arterial Road, AA II, Newtown, Kolkata, West Bengal 700135, India.
| |
Collapse
|
6
|
Bonciu AF, Andrei F, Palla-Papavlu A. Fabrication of Hybrid Electrodes by Laser-Induced Forward Transfer for the Detection of Cu 2+ Ions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1744. [PMID: 36837372 PMCID: PMC9959881 DOI: 10.3390/ma16041744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Composites based on poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS)-graphene oxide (GO) are increasingly considered for sensing applications. In this work we aim at patterning and prototyping microscale geometries of PEDOT:PSS: GO composites for the modification of commercially available electrochemical sensors. Here, we demonstrate the laser-induced forward transfer of PEDOT:PSS: GO composites, a remarkably simple procedure that allows for the fast and clean transfer of materials with high resolution for a wide range of laser fluences (450-750 mJ/cm2). We show that it is possible to transfer PEDOT:PSS: GO composites at different ratios (i.e., 25:75 %wt and 50:50 %wt) onto flexible screen-printed electrodes. Furthermore, when testing the functionality of the PEDOT:PSS: GO modified electrodes via LIFT, we could see that both the PEDOT:PSS: GO ratio as well as the addition of an intermediate release layer in the LIFT process plays an important role in the electrochemical response. In particular, the ratio of the oxidation peak current to the reduction peak current is almost twice as high for the sensor with a 50:50 %et PEDOT:PSS: GO pixel. This direct transfer methodology provides a path forward for the prototyping and production of polymer: graphene oxide composite based devices.
Collapse
|
7
|
Yu W, Li Q, He L, Zhou R, Liao L, Xue J, Xiao X. Green synthesis of CQDs for determination of iron and isoniazid in pharmaceutical formulations. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:944-950. [PMID: 36723197 DOI: 10.1039/d2ay01793h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Camphor leaves were used as the precursor for the hydrothermal synthesis of carbon quantum dots. The preparation method is simple and rapid, and the raw material is environmentally friendly and easy to obtain. Without additional modification, the carbon quantum dots were used as fluorescent probes for the sensitive and selective detection of Fe3+ and isoniazid at different excitation wavelengths. For Fe3+, at the excitation wavelength of 320 nm, the ratio of fluorescence intensity of CQD solution after adding Fe3+ to CQD solution without Fe3+ addition, F/F0, and Fe3+ concentration showed a good linear relationship in the range of 2.72 × 10-5 to 1.00 × 10-4 mol L-1 (R2 = 0.9912), and the limit of detection was 8.16 μmol L-1. For isoniazid, at the excitation wavelength of 270 nm, the ratio of fluorescence intensity of CQDs solution with isoniazid to CQDs solution without isoniazid, F/F0, and isoniazid concentration showed good linear relationships in the range of 3.81 × 10-6 to 1.00 × 10-5 mol L-1 (R2 = 0.9941) and 1.00 × 10-5 to 2.10 × 10-4 mol L-1 (R2 = 0.9910) respectively, and the limit of detection was 1.14 μmol L-1. A fluorescence method for the determination of Fe and isoniazid content was proposed. The method has been used to detect iron in iron supplement tablets and isoniazid in isoniazid tablets with satisfactory results.
Collapse
Affiliation(s)
- Wenzhan Yu
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| | - Qian Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Liqiong He
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Renlong Zhou
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Lifu Liao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, PR China
| | - Jinhua Xue
- School of Public Health, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xilin Xiao
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, PR China
| |
Collapse
|
8
|
Alessandri I, Torricelli F, Cerea B, Speziani M, Romele P, Kovacs-Vajna ZM, Vassalini I. Why PEDOT:PSS Should Not Be Used for Raman Sensing of Redox States (and How It Could Be). ACS APPLIED MATERIALS & INTERFACES 2022; 14:56363-56373. [PMID: 36475583 PMCID: PMC9782336 DOI: 10.1021/acsami.2c17147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been recently proposed for Raman sensing of redox-active species in solution. Here, we investigated the rationale of this approach through systematic experiments, in which the Raman spectrum of PEDOT:PSS was analyzed in the presence of either nonoxidizing or oxidizing electrolytes. The results demonstrated that Raman spectra precisely reflect the conformation of PEDOT units and their interactions with PSS. Two different responses were observed. In the case of oxidizing electrolytes, the effect of charge transfer is accurately transduced in Raman spectrum changes. On the other hand, reduction induces a progressive separation between the PEDOT and PSS chains, which decreases their mutual interaction. This stimulus determines characteristic variations in the intensity, shape, and position of the Raman spectra. However, we demonstrated that the same effects can be obtained either by increasing the concentration of nonoxidizing electrolytes or by deprotonating PSS chains. This poses severe limitations to the use of PEDOT:PSS for this type of Raman sensing. This study allows us to revise most of the Raman results reported in the literature with a clear model, setting a new basis for investigating the dynamics of mixed electronic/ionic charge transfer in conductive polymers.
Collapse
Affiliation(s)
- Ivano Alessandri
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
- INSTM-National
Consortium for Materials Science and Technology, UdR Brescia, via Branze
38, 25123Brescia, Italy
- CNR-INO,
UdR Brescia, via Branze
38, 25123Brescia, Italy
| | - Fabrizio Torricelli
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
| | - Beatrice Cerea
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
| | - Michele Speziani
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
| | - Paolo Romele
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
| | | | - Irene Vassalini
- Department
of Information Engineering, University of
Brescia, via Branze 38, 25123Brescia, Italy
- INSTM-National
Consortium for Materials Science and Technology, UdR Brescia, via Branze
38, 25123Brescia, Italy
- CNR-INO,
UdR Brescia, via Branze
38, 25123Brescia, Italy
| |
Collapse
|
9
|
Construction of reversible enol-to-keto-to-enol tautomerization covalent organic polymer for sensitive, selective and multi-channel detection of iron (III). Anal Chim Acta 2022; 1232:340458. [DOI: 10.1016/j.aca.2022.340458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022]
|
10
|
Design of bi-pyrene functionalized oxacalixarene probe for ratiometric detection of Fe3+ and PO43- ions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Putra BR, Nisa U, Heryanto R, Khalil M, Khoerunnisa F, Ridhova A, Thaha YN, Marken F, Wahyuni WT. Selective non-enzymatic uric acid sensing in the presence of dopamine: electropolymerized poly-pyrrole modified with a reduced graphene oxide/PEDOT:PSS composite. Analyst 2022; 147:5334-5346. [DOI: 10.1039/d2an01463g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted polymer (MIP) with uric acid cavities increases the selectivity of uric acid measurement in the presence of dopamine as an interferent.
Collapse
Affiliation(s)
- Budi Riza Putra
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Ulfiatun Nisa
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
| | - Rudi Heryanto
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| | - Munawar Khalil
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok 16424, Indonesia
| | - Fitri Khoerunnisa
- Department of Chemistry, Universitas Pendidikan Indonesia, Setiabudi 229, Bandung, 40154, West Java, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Yudi Nugraha Thaha
- Research Center for Metallurgy, National Research and Innovation Agency (BRIN), PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Wulan Tri Wahyuni
- Analytical Chemistry Division, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Kampus IPB Dramaga, Bogor 16680, Indonesia
- Tropical Biopharmaca Research Center, Institute of Research and Community Empowerment, IPB University, Bogor 16680, Indonesia
| |
Collapse
|
12
|
Raja D, Sundaramurthy D. Facile synthesis of fluorescent carbon quantum dots from Betel leafs (Piper betle) for Fe3+sensing. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2020.03.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
13
|
Rana S, Kaur R, Jain R, Prabhakar N. Ionic liquid assisted growth of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide based electrode: An improved electro-catalytic performance for the detection of organophosphorus pesticides in beverages. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
14
|
Zhang YN, Niu Q, Gu X, Yang N, Zhao G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. NANOSCALE 2019; 11:11992-12014. [PMID: 31140537 DOI: 10.1039/c9nr02935d] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid global industrialization and explosive population growth have resulted in an increase in the discharge of harmful and toxic compounds. These toxic inorganic gases, volatile organic compounds, heavy metals, personal care products, endocrine-disrupting chemicals, dyes, and pharmaceuticals are destroying the balance in the Earth and increasing environmental toxicity at an alarming rate. Thus, their detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots, and boron-doped diamond have been extensively utilized and further proven to be ideal candidates for resolving environmental problems, emerging as adsorbents, electrochemical sensors and electrodes. Herein, we review the recent advances, progress and achievements in the design and properties of carbon nanomaterials and their applications for the electrochemical detection and removal of environmental pollutants.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Qiongyan Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Xiaotong Gu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
15
|
Electrochemical Sensor of Double-Thiol Linked PProDOT@Si Composite for Simultaneous Detection of Cd(II), Pb(II), and Hg(II). Polymers (Basel) 2019; 11:polym11050815. [PMID: 31067664 PMCID: PMC6572651 DOI: 10.3390/polym11050815] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 01/28/2023] Open
Abstract
Heavy metal ions in water, cosmetics, and arable land have become a world-wide issue as they cause a variety of diseases and even death to humans and animals when a certain level is exceeded. Therefore, it is necessary to development a new kind of sensor material for the determination of heavy metal ions. In this paper, we present an electrochemical sensor based on composite material (thiol(-SH) grafted poly(3,4-proplenedioxythiophene) (PProDOT(MeSH)2)/ porous silicon spheres (Si) composite, denoted as PProDOT(MeSH)2@Si) from the incorporation of thiol(-SH) grafted poly(3,4-proplenedioxythiophene) (PProDOT(MeSH)2) with porous silicon spheres (Si) for the electrochemical detection of heavy metal ions (Cd(II), Pb(II), and Hg(II)). The PProDOT(MeSH)2@Si composite was synthesized via a chemical oxidative polymerization method. The structure and morphology of PProDOT(MeSH)2@Si composite were characterized by Fourier transform infrared (FT-IR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), scanning electron microscope (SEM), Transmission electron microscope (TEM), and Brunauer-Emmett-Teller (BET). Furthermore, the electrochemical performance of PProDOT(MeSH)2@Si was evaluated by detecting of Cd(II), Pb(II), and Hg(II) ions using the differential pulse voltammetry (DPV) method. The relationship between structural properties and the electrochemical performance was systematically studied. The results showed that the entry of two thiol-based chains to the monomer unit resulted in an increase in electrochemical sensitivity in PProDOT(MeSH)2, which was related to the interaction between thiol group(-SH) and heavy metal ions. And, the combination of PProDOT(MeSH)2 with Si could improve the electrocatalytic efficiency of the electrode material. The PProDOT(MeSH)2@Si/GCE exhibited high selectivity and sensitivity in the rage of 0.04 to 2.8, 0.024 to 2.8, and 0.16 to 3.2 μM with the detection limit of 0.00575, 0.0027, and 0.0017 µM toward Cd(II), Pb(II), and Hg(II), respectively. The interference studies demonstrated that the PProDOT(MeSH)2@Si/GCE possessed a low mutual interference and high selectivity for simultaneous detection of Cd(II), Pb(II), and Hg(II) ions.
Collapse
|
16
|
Cogal S. Electrochemical Determination of Dopamine Using a Poly(3,4-Ethylenedioxythiophene)-Reduced Graphene Oxide-Modified Glassy Carbon Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1387791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sadik Cogal
- Department of Polymer Engineering, Mehmet Akif Ersoy University, Faculty of Engineering and Architecture, Burdur, Turkey
| |
Collapse
|
17
|
Murugan N, Sundramoorthy AK. Green synthesis of fluorescent carbon dots from Borassus flabellifer flowers for label-free highly selective and sensitive detection of Fe3+ ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj01894d] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent carbon dots were derived from Borassus flabellifer flowers by thermal pyrolysis method and used for label-free highly selective and sensitive detection of Fe3+ ions.
Collapse
Affiliation(s)
- N. Murugan
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
- SRM Research Institute
| | - Ashok K. Sundramoorthy
- Department of Chemistry
- SRM Institute of Science and Technology
- Kattankulathur-603 203
- India
- SRM Research Institute
| |
Collapse
|
18
|
Stanković DM, Ognjanović M, Martin F, Švorc Ľ, Mariano JF, Antić B. Design of titanium nitride- and wolfram carbide-doped RGO/GC electrodes for determination of gallic acid. Anal Biochem 2017; 539:104-112. [DOI: 10.1016/j.ab.2017.10.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 12/20/2022]
|
19
|
Valentini F, Bicchieri M, Calcaterra A, Talamo M. Raman, X-Ray Fluorescence Spectroscopies and Graphene Oxide Modified Screen Printed Electrodes to Identify the Pigments and Earth Present in Ancient Leather Samples. ELECTROANAL 2017. [DOI: 10.1002/elan.201700457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Federica Valentini
- Chemistry Department Tor Vergata University; via della Ricerca Scientifica 1 00133 Roma Italy
| | - Marina Bicchieri
- Laboratorio di Chimica, Istituto Centrale per il Restauro e la Conservazione del Patrimonio Archivistico e Librario (ICRCPAL); via Milano Roma Italy
| | | | - Maurizio Talamo
- INUIT; Tor Vergata University; Via dell'Archiginnasio Roma Italy
| |
Collapse
|
20
|
Huang J, Yue G, Yang J, Bai S, Hu Q, Wang L. Design, synthesis and application of carboxylic multi-walled carbon nanotubes/tetrahexahedral platinum nanocrystals nanocomposites biosensor for simultaneous determination of guanine and adenine in DNA. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.07.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Terpyridine functionalized α-cyanostilbene derivative as excellent fluorescence and naked eyes Fe2+ probe in aqueous environment. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0214-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosens Bioelectron 2017; 89:430-436. [DOI: 10.1016/j.bios.2016.04.073] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/30/2022]
|