1
|
Xu J, Hou J, Ding M, Wang Z, Chen T. Riboswitches, from cognition to transformation. Synth Syst Biotechnol 2023; 8:357-370. [PMID: 37325181 PMCID: PMC10265488 DOI: 10.1016/j.synbio.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/17/2023] Open
Abstract
Riboswitches are functional RNA elements that regulate gene expression by directly detecting metabolites. Twenty years have passed since it was first discovered, researches on riboswitches are becoming increasingly standardized and refined, which could significantly promote people's cognition of RNA function as well. Here, we focus on some representative orphan riboswitches, enumerate the structural and functional transformation and artificial design of riboswitches including the coupling with ribozymes, hoping to attain a comprehensive understanding of riboswitch research.
Collapse
Affiliation(s)
- Jingdong Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Junyuan Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Mengnan Ding
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Zhiwen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| | - Tao Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300350, China
| |
Collapse
|
2
|
Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci 2023; 24:ijms24097989. [PMID: 37175695 PMCID: PMC10178329 DOI: 10.3390/ijms24097989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
A whole-cell biosensor based on synthetic biology provides a promising new method for the on-site detection of food contaminants. The basic components of whole-cell biosensors include the sensing elements, such as transcription factors and riboswitches, and reporting elements, such as fluorescence, gas, etc. The sensing and reporting elements are coupled through gene expression regulation to form a simple gene circuit for the detection of target substances. Additionally, a more complex gene circuit can involve other functional elements or modules such as signal amplification, multiple detection, and delay reporting. With the help of synthetic biology, whole-cell biosensors are becoming more versatile and integrated, that is, integrating pre-detection sample processing, detection processes, and post-detection signal calculation and storage processes into cells. Due to the relative stability of the intracellular environment, whole-cell biosensors are highly resistant to interference without the need of complex sample preprocessing. Due to the reproduction of chassis cells, whole-cell biosensors replicate all elements automatically without the need for purification processing. Therefore, whole-cell biosensors are easy to operate and simple to produce. Based on the above advantages, whole-cell biosensors are more suitable for on-site detection than other rapid detection methods. Whole-cell biosensors have been applied in various forms such as test strips and kits, with the latest reported forms being wearable devices such as masks, hand rings, and clothing. This paper examines the composition, construction methods, and types of the fundamental components of synthetic biological whole-cell biosensors. We also introduce the prospect and development trend of whole-cell biosensors in commercial applications.
Collapse
Affiliation(s)
- Shijing Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiaolin Chen
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongfei Su
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Mingzhang Guo
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huilin Liu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
3
|
Cai X, Wang Q, Fang Y, Yao D, Zhan Y, An B, Yan B, Cai J. Attenuator LRR - a regulatory tool for modulating gene expression in Gram-positive bacteria. Microb Biotechnol 2021; 14:2538-2551. [PMID: 33720523 PMCID: PMC8601186 DOI: 10.1111/1751-7915.13797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/28/2022] Open
Abstract
With the rapid development of synthetic biology in recent years, particular attention has been paid to RNA devices, especially riboswitches, because of their significant and diverse regulatory roles in prokaryotic and eukaryotic cells. Due to the limited performance and context-dependence of riboswitches, only a few of them (such as theophylline, tetracycline and ciprofloxacin riboswitches) have been utilized as regulatory tools in biotechnology. In the present study, we demonstrated that a ribosome-dependent ribo-regulator, LRR, discovered in our previous work, exhibits an attractive regulatory performance. Specifically, it offers a 60-fold change in expression in the presence of retapamulin and a low level of leaky expression of about 1-2% without antibiotics. Moreover, LRR can be combined with different promoters and performs well in Bacillus thuringiensis, B. cereus, B. amyloliquefaciens, and B. subtilis. Additionally, LRR also functions in the Gram-negative bacterium Escherichia coli. Furthermore, we demonstrate its ability to control melanin metabolism in B. thuringiensis BMB171. Our results show that LRR can be applied to regulate gene expression, construct genetic circuits and tune metabolic pathways, and has great potential for many applications in synthetic biology.
Collapse
Affiliation(s)
- Xia Cai
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Qian Wang
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yu Fang
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Die Yao
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yunda Zhan
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Baoju An
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Bing Yan
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Jun Cai
- Department of MicrobiologyCollege of Life SciencesNankai UniversityTianjin300071China
- Key Laboratory of Molecular Microbiology and TechnologyMinistry of EducationTianjin300071China
- Tianjin Key Laboratory of Microbial Functional GenomicsTianjin300071China
| |
Collapse
|
4
|
Translational control of enzyme scavenger expression with toxin-induced micro RNA switches. Sci Rep 2021; 11:2462. [PMID: 33510250 PMCID: PMC7844233 DOI: 10.1038/s41598-021-81679-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
Biological computation requires in vivo control of molecular behavior to progress development of autonomous devices. miRNA switches represent excellent, easily engineerable synthetic biology tools to achieve user-defined gene regulation. Here we present the construction of a synthetic network to implement detoxification functionality. We employed a modular design strategy by engineering toxin-induced control of an enzyme scavenger. Our miRNA switch results show moderate synthetic expression control over a biologically active detoxification enzyme molecule, using an established design protocol. However, following a new design approach, we demonstrated an evolutionarily designed miRNA switch to more effectively activate enzyme activity than synthetically designed versions, allowing markedly improved extrinsic user-defined control with a toxin as inducer. Our straightforward new design approach is simple to implement and uses easily accessible web-based databases and prediction tools. The ability to exert control of toxicity demonstrates potential for modular detoxification systems that provide a pathway to new therapeutic and biocomputing applications.
Collapse
|
5
|
Jang S, Jang S, Im DK, Kang TJ, Oh MK, Jung GY. Artificial Caprolactam-Specific Riboswitch as an Intracellular Metabolite Sensor. ACS Synth Biol 2019; 8:1276-1283. [PMID: 31074964 DOI: 10.1021/acssynbio.8b00452] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Caprolactam is a monomer used for the synthesis of nylon-6, and a recombinant microbial strain for biobased production of nylon-6 was recently developed. An intracellular biosensor for caprolactam can facilitate high-throughput metabolic engineering of recombinant microbial strains. Because of the mixed production of caprolactam and valerolactam in the recombinant strain, a caprolactam biosensor should be highly specific for caprolactam. However, a highly specific caprolactam sensor has not been reported. Here, we developed an artificial riboswitch that specifically responds to caprolactam. This riboswitch was prepared using a coupled in vitro- in vivo selection strategy with a heterogeneous pool of RNA aptamers obtained from in vitro selection to construct a riboswitch library used in in vivo selection. The caprolactam riboswitch successfully discriminated caprolactam from valerolactam. Moreover, the riboswitch was activated by 3.36-fold in the presence of 50 mM caprolactam. This riboswitch enabled caprolactam-dependent control of cell growth, which will be useful for improving caprolactam production and is a valuable tool for metabolic engineering.
Collapse
Affiliation(s)
- Sungyeon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sungho Jang
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Dae-Kyun Im
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Taek Jin Kang
- Department of Chemical and Biochemical Engineering, Dongguk University-Seoul, 30 Pildong-Ro 1-Gil, Jung-Gu, Seoul 04620, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
6
|
Dwidar M, Yokobayashi Y. Riboswitch Signal Amplification by Controlling Plasmid Copy Number. ACS Synth Biol 2019; 8:245-250. [PMID: 30682247 DOI: 10.1021/acssynbio.8b00454] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Riboswitches are cis-acting RNA devices in mRNAs that control gene expression in response to chemical inputs. As RNA aptamers that recognize diverse classes of molecules can be isolated by in vitro selection, synthetic riboswitches hold promise for various applications in synthetic biology. One of the major drawbacks of riboswitches, however, is their limited dynamic range. A high level of gene expression in the OFF state (leakage) is also a common problem. To address these challenges, we designed and constructed a dual-riboswitch plasmid in which two genes are controlled by theophylline-activated riboswitches. One riboswitch controls the gene of interest, and another riboswitch controls RepL, a phage-derived replication protein that regulates the plasmid copy number. This single-plasmid system afforded an ON/OFF ratio as high as 3900. Furthermore, we used the system to control CRISPR interference (CRISPRi) targeting endogenous genes, and successfully observed expected phenotypic changes in Escherichia coli.
Collapse
Affiliation(s)
- Mohammed Dwidar
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904 0495, Japan
| |
Collapse
|