1
|
Adhikari S, Noh D, Kim M, Ahn D, Jang Y, Oh E, Lee D. Vapor phase detection of explosives by surface enhanced Raman scattering under ambient conditions with metal nanogap structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123996. [PMID: 38350410 DOI: 10.1016/j.saa.2024.123996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/16/2024] [Accepted: 02/03/2024] [Indexed: 02/15/2024]
Abstract
Non-invasive and passive detection of explosives in the vapor phase is advantageous for military, counter-terrorism, and homeland security applications. Detection of explosives using SERS has been an active research topic. However, the vapor pressures of most explosives are low at room temperature, and consequently, the vapor phase detection by SERS is highly challenging without intentionally heating explosive powder to increase the vapor pressure. In this work, we report the rapid and sensitive detection of 2,4,6-trinitrotoluene (TNT) and 2,4-dinitrotoluene (2,4-DNT) in the vapor phase, using a gold nanogap (AuNG) SERS substrate. The AuNG SERS substrate was fabricated with electron beam evaporation, rapid thermal annealing, and wet etching. SERS measurements were carried out with an incident power as low as 0.56 mW at 785 nm. To prevent the condensation effect, the TNT and 2,4-DNT powders inside the cuvette were taken out before inserting the nanogap substrate. Our SERS results demonstrate the feasibility of the non-invasive detection of vapor phase explosives under ambient conditions.
Collapse
Affiliation(s)
- Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daegwon Noh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Daehyun Ahn
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea; Institute of Quantum Systems, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Noh D, Oh E. Estimation of Environmental Effects and Response Time in Gas-Phase Explosives Detection Using Photoluminescence Quenching Method. Polymers (Basel) 2024; 16:908. [PMID: 38611166 PMCID: PMC11013195 DOI: 10.3390/polym16070908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Detecting the presence of explosives is important to protect human lives during military conflicts and peacetime. Gas-phase detection of explosives can make use of the change of material properties, which can be sensitive to environmental conditions such as temperature and humidity. This paper describes a remote-controlled automatic shutter method for the environmental impact assessment of photoluminescence (PL) sensors under near-open conditions. Utilizing the remote-sensing method, we obtained environmental effects without being exposed to sensing vapor molecules and explained how PL intensity was influenced by the temperature, humidity, and exposure time. We also developed a theoretical model including the effect of exciton diffusion for PL quenching, which worked well under limited molecular diffusions. Incomplete recovery of PL intensity or the degradation effect was considered as an additional factor in the model.
Collapse
Affiliation(s)
- Daegwon Noh
- Department of Physics, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Eunsoon Oh
- Department of Physics, Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon 34134, Republic of Korea;
- Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehakro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
3
|
Bhowmick R, Mondal P, Chattopadhyay P. A new fluorescent probe for sensing Al 3+ ions in the solution phase and CH 3COO - in the solid state with aggregation induced emission (AIE) activity. RSC Adv 2023; 13:3394-3401. [PMID: 36756431 PMCID: PMC9871733 DOI: 10.1039/d2ra06978d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/26/2022] [Indexed: 01/25/2023] Open
Abstract
An AIE (aggregation induced emission) active probe DFP-AMQ was designed and synthesized as a hexa-coordinated N2O donor chelator for the selective sensing of Al3+ colorimetrically as well as fluorimetrically with a 27-fold fluorescence enhancement for CH3CN-H2O (9 : 1, v/v, pH 7.2, HEPES buffer). The fluorescence enhancement occurred through the blocking of ESIPT, chelation enhanced fluorescence effect (CHEF) arose, and as a result fluorescence enhancement was observed through 1 : 1 complexation with Al3+ ions. Detailed spectroscopic studies including UV-Vis, FTIR, 1H NMR, and HRMS studies were carried out to characterize the probable structure of DFP-AMQ including the complexation of DFP-AMQ with Al3+ ions. The spectrophotometric and spectrofluorimetric titrations revealed strong binding towards Al3+ and the K d values were obtained from UV-Vis (3.26 × 10-5 M-1) and fluorescence titration (2.02 × 10-5 M-1). The limit of detection of Al3+ by DFP-AMQ was 1.11 μM. The quantum yields of DFP-AMQ and [DFP-AMQ-Al]+ were calculated to be 0.008 and 0.211, respectively. Dynamic light scattering (DLS) studies showed that the sizes of the particles increased with increasing water percentage due to aggregation. SEM (scanning electron microscopy) studies revealed interesting morphological changes in microstructures in which DFP-AMQ demonstrated a rod-like shape, which was converted to a spherical-like shape in the presence of Al3+ and when DFP-AMQ aggregated in H2O it showed aggregated block-like shape. In the solid phase, DFP-AMQ with nitrate has no particular shape, but in the presence of acetate, it converts to stone-like shape. This probe (DFP-AMQ) could be employed for on-site Al3+ ion detection in the solid state.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| | - Payel Mondal
- Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| | - Pabitra Chattopadhyay
- Department of Chemistry, The University of Burdwan Golapbag Burdwan-713104 West Bengal India
| |
Collapse
|
4
|
Wu H, Wang G, Cai Z, Li D, Xiao F, Lei D, Dai Z, Dou X. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4485-4494. [PMID: 36317750 DOI: 10.1039/d2ay01311h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) from analogues are of great importance to global security and are full of challenges in the field of trace sensing. Here, benefitting from the strong electrophilicity of TNT, a sensing strategy is established by synthesizing polyethyleneimine capped copper nanoclusters (PEI-Cu NCs) with abundant -NH2 groups. By carefully controlling the size and structure of PEI-Cu NCs, Förster resonance energy transfer (FRET) from PEI-Cu NCs to the Meisenheimer complex occurs resulting from their spectral overlap when detecting TNT, while, due to the energy level match of TNP with PEI-Cu NCs, as well as the strong affinity between its -OH and -NH2 in PEI-Cu NCs, photo-induced electron transfer (PET) is feasibly expected. As a result, TNT and TNP could be detected from 26 types of analogues and cations with a limit of detection (LOD) of 26.57 and 12.82 nM, respectively. Besides, owing to the brown color of the Meisenheimer complex, the discrimination of TNT and TNP could be additionally realized by colorimetric detection. We expect that the proposed methodology would not only shine light on the detection and discrimination of TNT and TNP that mitigate against public security concerns, but also pave a way for the deep understanding of FRET and PET related fluorescence quenching mechanisms from the aspect of controllable sensing material design and synthesis.
Collapse
Affiliation(s)
- Haotian Wu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Dezhong Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Fan Y, Chen Y, Bai Y, An B, Xu J. A Novel 3D-Morphology Pyrene-Derived Conjugated Fluorescence Polymer for Picric Acid Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4034. [PMID: 36432321 PMCID: PMC9698798 DOI: 10.3390/nano12224034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Aggregation-induced quenching (ACQ) is a hard problem in fluorescence material, leading to a poor utilization rate of fluorophores. In this work, 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) was synthesized and used as a precursor to build two kinds of fluorescence polymer. The TFFPy molecule with D2h symmetry can easily form polymers with C3 symmetry amines through the Schiff base reaction, making the resulting polymer a 3D amorphous material. Thus, ACQ of fluorophore can be reduced to minimum, making the most usage of the fluorescence of pyrene core. Fluorescence titration and DFT calculation can clearly prove this conclusion. The resulting CPs showed a highly sensitivity to picric acid, down to 3.43 ppm in solution, implying its potential in explosive detection.
Collapse
|
6
|
Kayhomayun Z, Ghani K, Zargoosh K. Synthesis of samarium orthoferrite-based perovskite nanoparticles as a turn-on fluorescent probe for trace level detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121627. [PMID: 35853251 DOI: 10.1016/j.saa.2022.121627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Picric acid (2,4,6-trinitrophenol, PA) is a common constituent of many powerful explosives, thus, development of the chemical probes for trace level detection of PA is a crucial current challenge in both public security and environmental protection. In this work, the applicability of the new perovskite-type oxide SmFeO3 nanoparticles as an inorganic fluorescence turn-on probe for the selective and sensitive recognition of PA in organic and aqueous media was investigated. The synthesis of nanoparticles SmFeO3 was carried out using the surfactant-assisted templating approach which proceeds through the sol-gel process based on nonionic surfactant Triton X-100. The synthesized SmFeO3 nanoparticles exhibited strong solvent-dependent emission at 330 nm wavelength with absorption maxima at 225 nm. Among the tested explosives, the probe showed the highest sensitivity and selectivity for detecting PA in water and water/acetonitrile mixture. The response time for detecting PA was less than 5 s. The limits of detection for PA in acetonitrile and water/acetonitrile mixture were 2.1 µM and 1.1 µM, respectively. Furthermore, to investigate the nature of the fluorescence turn-on sensing mechanism, the experimental data of the dynamic light scattering (DLS) technique and zeta-potential were used. Both techniques confirmed the aggregation-induced emission (AIE) mechanism for detection of PA with the synthesized turn-on probe. The results of the present work will have a considerable impact on the development and applications of a new class of inorganic fluorescence turn-on probes for the detection of PA.
Collapse
Affiliation(s)
- Zohreh Kayhomayun
- Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Iran
| | - Kamal Ghani
- Department of Chemistry, Malek-Ashtar University of Technology, Shahin-Shahr, Isfahan, Iran.
| | - Kiomars Zargoosh
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
7
|
Li Q, Guo YM, Gao Y, Li G. Polyethyleneimine-protected silver cluster for label-free and highly selective detection of 2,4,6-trinitrotoluene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121224. [PMID: 35397448 DOI: 10.1016/j.saa.2022.121224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Sensitive and selective detection of 2,4,6-trinitrotoluene (TNT) is critical for environmental protection and public health. In this work, a convenient synthesis strategy for preparation of fluorescent PEI-AgNCs was described and further a facile and label-free sensing strategy for detection of TNT was developed. The hyperbranched polyethyleneimine (PEI) were used as template to one-step synthesize functional PEI-AgNCs with bright fluorescence signal and rich amino groups on their surface. PEI can specifically bind to electron-deficient TNT through donor-receptor interaction to form Meissenheimer complex. Interestingly, the absorption spectra of the Meissenheimer complex overlap with the fluorescence emission peak of PEI-AgNCs, thus quenching fluorescence of PEI-Ag NCs through fluorescence resonance energy transfer (FRET). Furthermore, this bonding process also initiate aggregation of PEI-AgNCs and quench the fluorescence of PEI-AgNCs by the aggregation-induced quenching (AIQ) effect. The novel method demonstrates sensitivity with a detection limit for TNT have been obtained as 17 nM. In addition, the proposed sensing method also has good selectivity over other potential interference and displayed a good potential application value in real water samples with satisfactory recoveries, offering a promising platform for sensing TNT in public safety and security environment protection.
Collapse
Affiliation(s)
- Qing Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yu-Meng Guo
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China
| | - Yue Gao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China
| | - Guangli Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, 412007, China.
| |
Collapse
|
8
|
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors. Adv Colloid Interface Sci 2022; 300:102579. [PMID: 34924169 DOI: 10.1016/j.cis.2021.102579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs), characterized by converting low-energy excitation to high-energy emission, have attracted considerable interest due to their inherent advantages of large anti-Stokes shifts, sharp and narrow multicolor emissions, negligible autofluorescence background interference, and excellent chemical- and photo-stability. These features make them promising luminophores for sensing applications. In this review, we give a comprehensive overview of lanthanide-doped upconversion nanophosphors including the fundamental principle for the construction of UCNPs with efficient upconversion luminescence (UCL), followed by state-of-the-art strategies for the synthesis and surface modification of UCNPs, and finally describing current advances in the sensing application of upconversion-based probes for the quantitative analysis of various analytes including pH, ions, molecules, bacteria, reactive species, temperature, and pressure. In addition, emerging sensing applications like photodetection, velocimetry, electromagnetic field, and voltage sensing are highlighted.
Collapse
Affiliation(s)
- Chunning Sun
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| | - Michael Gradzielski
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, 10623 Berlin, Germany.
| |
Collapse
|
9
|
Harathi J, Thenmozhi K. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. CHEMOSPHERE 2022; 286:131825. [PMID: 34375830 DOI: 10.1016/j.chemosphere.2021.131825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2-H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl- anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M-1 and 2.32 × 106 M-1 and shows a lower detection limit of 159 nM and 282 nM, respectively.
Collapse
Affiliation(s)
- Jonnagaddala Harathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
10
|
Philip S, Kuriakose S, Mathew T. Designing of a
β‐Cyclodextrin
‐based supramolecular fluorescent sensor doped with superparamagnetic
α‐Fe
2
O
3
nanoparticles with improved light fastness, thermal, and photoluminescent properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sherin Philip
- Research and Post‐Graduate Department of Chemistry St. Thomas College, Mahatma Gandhi University Kottayam India
| | - Sunny Kuriakose
- Research and Post‐Graduate Department of Chemistry St. Thomas College, Mahatma Gandhi University Kottayam India
| | - Tessymol Mathew
- Department of Chemistry St. George's College, Aruvithura, Mahatma Gandhi University Kottayam India
| |
Collapse
|
11
|
Zhang X, Liu L, Zhang W, Na L, Hua R. Detection of 2,4,6-trinitrophenol based on f–f transition of Eu2+. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
12
|
Zhang X, Gou Z, Zuo Y, Lin W. Pyrene-based polymer fluorescent materials for the detection of 2,4,6-trinitrophenol and cell imaging. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Su S, Mo Z, Tan G, Wen H, Chen X, Hakeem DA. PAA Modified Upconversion Nanoparticles for Highly Selective and Sensitive Detection of Cu 2+ Ions. Front Chem 2021; 8:619764. [PMID: 33490041 PMCID: PMC7821086 DOI: 10.3389/fchem.2020.619764] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022] Open
Abstract
Detection of the Cu2+ ions is crucial because of its environmental and biological implications. The fluorescent-based organic sensors are not suitable for Cu2+ detection due to their short penetration depth caused by the UV/visible excitation source. Therefore, we have demonstrated a highly sensitive and selective near-infrared (NIR) excitable poly(acrylic acid) (PAA) coated upconversion nanoparticles (UCNPs) based sensor for Cu2+ detection. We construct the PAA modified Na(Yb, Nd)F4@Na(Yb, Gd)F4:Tm@NaGdF4 core-shell-shell structured UCNPs based sensor via a co-precipitation route. The upconversion emission intensity of the PAA-UCNPs decreases linearly with the increase in the Cu2+ concentration from 0.125 to 3.125 μM due to the copper carboxylate complex formation between Cu2+ and PAA-UCNPs. The calculated detection limit of the PAA-UCNPs based sensor is 0.1 μM. The PAA-UCNPs based sensor is very sensitive and selective toward detecting the Cu2+ ions, even when the Cu2+ co-exist with other metal ions. The EDTA addition has significantly reversed the upconversion emission quenching by forming the EDTA-Cu2+ complex based on their greater affinity toward the Cu2+. Therefore, the PAA-UCNPs based sensor can be a promising candidate for Cu2+ detection because of their higher sensitivity and selectivity under 980 nm NIR excitation.
Collapse
Affiliation(s)
- Shaoshan Su
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Zhurong Mo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Guizhen Tan
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| | - Deshmukh A Hakeem
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
14
|
Liu Y, Lv X, Zhang X, Liu L, Xie J, Chen Z. Eu(III)-organic complex as recyclable dual-functional luminescent sensor for simultaneous and quantitative sensing of 2,4,6-trinitrophenol and CrO 42- in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118497. [PMID: 32480273 DOI: 10.1016/j.saa.2020.118497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
A novel metal-organic complex (MOC) {[Eu2(HL)2(H2O)4]·3H2O}n (1) (H4L = 3,3',5,5'-azoxybenzenetetracarboxylic acid) has been successfully constructed, which exhibits a fascinating 2D bilayer network with the 1D open channels and has excellent water, pH and thermal stabilities. Luminescence studies reveal that 1 can detect TNP and CrO42- ions with high selectivity and sensitivity in aqueous solution, even if there are related interfering substances. And the mechanisms of luminescence recognitions are discussed on the basis of experiments and theoretical calculations. Furthermore, 1 shows excellent photostability and can be repeatedly used in the above two detection systems. Most importantly, 1 can detect TNP and CrO42- concentration with a good recovery rate in practical application. Therefore, 1 should be a potential dual-functional luminescent sensor for reliable sensing of TNP and CrO42- in the field.
Collapse
Affiliation(s)
- Yaru Liu
- School of Science, North University of China, Taiyuan, Shanxi 030051, China.
| | - Xinxin Lv
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150080, China
| | - Lan Liu
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Jingwen Xie
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| | - Zhiping Chen
- School of Science, North University of China, Taiyuan, Shanxi 030051, China
| |
Collapse
|
15
|
Kumar D, Arora P, Singh H, Rajput JK. Polyhydroquinoline nanoaggregates: A dual fluorescent probe for detection of 2,4,6-trinitrophenol and chromium (VI). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118087. [PMID: 31986428 DOI: 10.1016/j.saa.2020.118087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
Fluorescent polyhydroquinoline (PHQ) derivative was fabricated utilizing one-pot engineered course. The PHQ derivative indicated aggregation induced emission enhancement (AIEE) with arrangement of nanoaggregates of size 11-13 nm in 95% watery DMF medium. The fluorescence emission of PHQ nanoaggregates was extinguished by including TNP and Cr (VI). They indicated prevalent fluorescence quenching towards both TNP and Cr (VI) over other meddling nitro-compounds and metal particles. In light of results got we presumed that both photo-induced fluorescence quenching of PHQ nanoaggregates by TNP, while Inner Filter Effect (IFE) was in charge of fluorescence quenching of PHQ nanoaggregates by Cr (VI). The PHQ nanoaggregates empowered identification of TNP and Cr (VI) down to 0.66 μM (TNP) and 0.28 μM (Cr (VI)). The use of PHQ nanoaggregates were reached out for location of TNP and Cr (VI) in genuine water tests.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Priya Arora
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | | | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
| |
Collapse
|
16
|
Makkad SK. Amine decorated polystyrene nanobeads incorporating π-conjugated OPV chromophore for picric acid sensing in water. RSC Adv 2020; 10:6497-6502. [PMID: 35496004 PMCID: PMC9049647 DOI: 10.1039/c9ra09852f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 01/16/2023] Open
Abstract
A solution as well as solid state based sensor has been developed for selective detection of picric acid (PA) in water. Oligo (p-phenylenevinylene) (OPV) incorporated polystyrene nanobeads (PS-OPV-NH2) having an average size of 180 nm have been synthesized through miniemulsion polymerization. Amine (–NH2) functionalization was performed on the nanobead surface to enhance the efficiency of the sensor among a library of other nitro-organics and library of cations and anions. A fluorescent sensor has been developed for selective detection of picric acid (PA) in water. Amine (–NH2) functionalization on the nanobead surface enhanced the efficiency of the sensor among a library of nitro-organics, cations and anions.![]()
Collapse
Affiliation(s)
- Sarabjot Kaur Makkad
- Govt. Autonomous NPG College of Science
- Raipur
- India
- CSIR-National Chemical Laboratory
- Pune
| |
Collapse
|
17
|
Goswami R, Seal N, Dash SR, Tyagi A, Neogi S. Devising Chemically Robust and Cationic Ni(II)-MOF with Nitrogen-Rich Micropores for Moisture-Tolerant CO 2 Capture: Highly Regenerative and Ultrafast Colorimetric Sensor for TNP and Multiple Oxo-Anions in Water with Theoretical Revelation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40134-40150. [PMID: 31584789 DOI: 10.1021/acsami.9b15179] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) show distinctive superiority for carbon dioxide (CO2) capture and luminescent sensing of toxic pollutants over other materials, where combination of both of these properties together with improvement of hydrolytic stability and pore functionality is critical to environmental remediation applications. The Ni(II) framework [Ni2(μ2-OH)(azdc)(tpim)](NO3)·6DMA·6MeOH (CSMCRI-3) (tpim = 4,4',4″-(1H-imidazole-2,4,5-triyl)tripyridine, H2azdc = azobenzene-4,4'-dicarboxylic acid, DMA = dimethylacetamide, CSMCRI = Central Salt & Marine Chemicals Research Institute), encompassing cationic [Ni2(μ2-OH)(CO2)2] SBUs, is solvothermally synthesized from nitrogen-rich and highly fluorescent organic struts. The noninterpenetrated structure, containing free nitrogen atom affixed microporous channels, is stable in diverse organic solvents and weakly basic and acidic aqueous solutions. The activated MOF (3a) exhibits strong CO2-framework interaction and extremely selective CO2 adsorption over N2 (292.5) and CH4 (11.7). Importantly, water vapor exposure does not affect the surface area and/or multiple CO2 uptake-release cycles, signifying potential of the porous structure for long-term use under humid conditions. Aqueous-phase sensing studies illustrate extremely specific and ultrafast detection of explosive 2,4,6-trinitrophenol (TNP) via remarkable fluorescence quenching (KSV = 1.3 × 105 M-1), with a 0.25 ppm limit of detection (LOD). Furthermore, 3a serves as unique luminescent probe for highly discriminative and quick responsive detection of three noxious oxo-anions (Cr2O72-, CrO42-, MnO4-) in water via noteworthy turn-off responses and extreme low LODs (Cr2O72- 0.9; CrO42- 0.29; MnO4- 0.25 ppm). It is imperative to stress the outstanding reusability of the MOF toward multicyclic sensing of all four major water contaminants, alongside visible colorimetric changes upon individual analyte detection. Mechanistic insights in light of the electron transfer route together with density functional theory calculations portray the influence of pore functionalization in framework-analyte interactions, including alternation in energy levels, where varying degrees of contribution of energy transfer explicitly authenticates high quenching of the material.
Collapse
Affiliation(s)
- Ranadip Goswami
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
- Inorganic Materials & Catalysis Division , CSIR-CSMCRI , Bhavnagar , Gujarat 364002 , India
| | - Nilanjan Seal
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
- Inorganic Materials & Catalysis Division , CSIR-CSMCRI , Bhavnagar , Gujarat 364002 , India
| | - Soumya Ranjan Dash
- Physical and Material Chemistry Division , CSIR-NCL Pune , Dr. Homi Bhaba Road , Pune 411008 , India
| | - Anshu Tyagi
- Inorganic Materials & Catalysis Division , CSIR-CSMCRI , Bhavnagar , Gujarat 364002 , India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR) , Ghaziabad , Uttar Pradesh 201 002 , India
- Inorganic Materials & Catalysis Division , CSIR-CSMCRI , Bhavnagar , Gujarat 364002 , India
| |
Collapse
|
18
|
Liu L, Hua R, Chen B, Qi X, Zhang W, Zhang X, Liu Z, Ding T, Yang S, Zhang T, Cheng L. Detection of nitroaromatics in aqueous media based on luminescence resonance energy transfer using upconversion nanoparticles as energy donors. NANOTECHNOLOGY 2019; 30:375703. [PMID: 31163404 DOI: 10.1088/1361-6528/ab26dd] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Upconversion nanoparticle (UCNP)-based luminescence resonance energy transfer (LRET) systems are a powerful tool widely used to detect organic molecules or metal ions because of their simplicity and high sensitivity. The sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs, as a highly selective and sensitive aqueous probe for detecting nitroaromatics, has been designed and prepared by a cothermolysis method and modified with polyetherimide to acquire amine groups on the surface of the core/shell UCNPs. The detection principle of nitroaromatics is based on LRET, which forms the Meisnheimer complex between the electron-deficient cyclobenzene of nitroaromatics and the electron-rich amino group on the surface of the sandwich structure UCNPs. As a consequence, nitroaromatics can be brought into close proximity to the sandwich structure UCNPs. With the increase of nitroaromatics (2,4,6-trinitrophenol and 2,4,6-trinitrotoluene) concentrations, the sandwich structure NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs display a dramatic luminescent quenching effect at 407 nm and 540 nm under 980 nm excitation. The luminescent quenching intensity of the sandwich structure UCNPs is linearly correlated to the concentration of the nitroaromatics. The detection limit of 2,4,6-trinitrophenol (TNP) and 2,4,6-trinitrotoluene (TNT) are 0.78 and 0.77 ng ml-1, respectively. Therefore, the sandwich structure of NaYF4:Er3+,Yb3+@NaYF4@NH2 UCNPs can act as a valuable probe to detect nitroaromatics in public safety and security conditions.
Collapse
Affiliation(s)
- Litao Liu
- College of Life Science, Dalian Nationalities University, Dalian, Liaoning 116600, People's Republic of China. Department of Physics, Dalian Maritime University, Dalian, Liaoning 116026, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lu M, Zhang X, Zhou P, Tang Z, Qiao Y, Yang Y, Liu J. Theoretical insights into the sensing mechanism of a series of terpyridine-based chemosensors for TNP. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.03.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
An organometallic ruthenium nanocluster with conjugated aromatic ligand skeleton for explosive sensing. J CHEM SCI 2019. [DOI: 10.1007/s12039-018-1589-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Arshad A, Wang H, Bai X, Jiang R, Xu S, Wang L. Colorimetric paper sensor for sensitive detection of explosive nitroaromatics based on Au@Ag nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:16-22. [PMID: 30077892 DOI: 10.1016/j.saa.2018.07.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/22/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Rapid, reliable, onsite approaches for detection trace level of trinitrotoluene (TNT) is a pressing necessity for both homeland security and environmental protection. To this end, hydrophilic amine(-NH2) protected Au@Ag nanoparticles (NPs) were developed and fabricated as colorimetric paper sensor for delicate detection of TNT. The as-developed nanoprobe selectively reacts with TNT through classic Meisenheimer complex formation by means of charge transfer process from an electron-rich NH2 group of β-cysteamine to an electron-deficient nitro group on TNT. Due to the absence of this particular interaction of other nitroaromatics, the proposed probe is highly selective for TNT detection with a better linear range (0-20 μg/mL) and limit of detection (LOD) of 0.35 μg/mL. The present work provides a novel and facile strategy to fabricate colorimetric paper sensors with rapid and selective recognition ability for label free analysis of TNT.
Collapse
Affiliation(s)
- Anila Arshad
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xilin Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Rui Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
22
|
Modak MD, Damarla G, Maity S, Chaudhary AK, Paik P. Self-assembled pearl-necklace patterned upconverting nanocrystals with highly efficient blue and ultraviolet emission: femtosecond laser based upconversion properties. RSC Adv 2019; 9:38246-38256. [PMID: 35541825 PMCID: PMC9075863 DOI: 10.1039/c9ra06389g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022] Open
Abstract
This work reports new findings on the formation of a pearl-necklace pattern in self-assembled upconverting nanocrystals (UCN-PNs) which exhibit strong upconversion emission under an NIR excitation source of a femtosecond laser (Fs-laser). Each nano-necklace consists of several upconversion nanoparticles (UCNPs) having a size ca. 10 ± 1 nm. UCN-PNs are arranged in a self-organized manner to form necklace type chains with an average length of 140 nm of a single row of nanoparticles. Furthermore, UCN-PNs are comprised of UCNPs with an average interparticle separation of ca. 4 nm in each of the nanonecklace chains. Interestingly, these UCN-PNs exhibit high energy upconversion especially in the UV region on interaction with a 140 Fs-laser pulse duration at 80 MHz repetition rate and intense blue emission at 450 nm on interaction with a 900 nm excitation source is obtained. The preparation of self-assembled UCNPs is easy and they are very stable for a longer period of time. The emission (fluorescence/luminescence) intensity is very high which can make them unique in innumerable industrial and bio-applications such as for disease diagnosis and therapeutic applications by targeting the infected cells with enhanced efficiency. Self-assembled pearl necklace patterned-upconverting nanoparticles and their femtosecond laser based upconversion properties.![]()
Collapse
Affiliation(s)
- Monami Das Modak
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad 500 046
- India
| | - Ganesh Damarla
- Advanced Center of Research in High Energy Materials
- University of Hyderabad
- Hyderabad
- India
| | - Somedutta Maity
- School of Engineering Sciences and Technology
- University of Hyderabad
- Hyderabad 500 046
- India
| | - Anil K. Chaudhary
- Advanced Center of Research in High Energy Materials
- University of Hyderabad
- Hyderabad
- India
| | - Pradip Paik
- School of Biomedical Engineering
- Indian Institute of Technology
- BHU
- Varanasi 221 005
- India
| |
Collapse
|
23
|
Lin Q, Guan XW, Fan YQ, Wang J, Liu L, Liu J, Yao H, Zhang YM, Wei TB. A tripodal supramolecular sensor to successively detect picric acid and CN− through guest competitive controlled AIE. NEW J CHEM 2019. [DOI: 10.1039/c8nj03568g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report a simple and efficient method for the selective and sensitive detection of picric acid (PA) and CN−via a novel guest competitive controlled aggregation-induced emission (AIE) mechanism based on a tris-naphthalimide derivative TG.
Collapse
Affiliation(s)
- Qi Lin
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Xiao-Wen Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Yan-Qing Fan
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jiao Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Lu Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Juan Liu
- College of Chemical Engineering
- Northwest University for Nationalities
- Lanzhou
- China
| | - Hong Yao
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - You-Ming Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Tai-Bao Wei
- Key Laboratory of Eco-Environment-Related Polymer Materials
- Ministry of Education of China
- Key Laboratory of Polymer Materials of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
24
|
Danquah MK, Wang S, Wang Q, Wang B, Wilson LD. A porous β-cyclodextrin-based terpolymer fluorescence sensor for in situ trinitrophenol detection. RSC Adv 2019; 9:8073-8080. [PMID: 35521178 PMCID: PMC9061888 DOI: 10.1039/c8ra06192k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 02/28/2019] [Indexed: 11/21/2022] Open
Abstract
Permanent porosity plays a key role in fluorescent-based polymers with “on–off” emissive properties due to the role of guest adsorption at accessible fluorophore sites of the polymer framework. In particular, we report on the design of a porous fluorescent polymer (FL-PFP) composed of a covalently cross-linked ternary combination of β-cyclodextrin (β-CD), 4,4′-diisocyanato-3,3′-dimethyl biphenyl (DL) and tetrakis(4-hydoxyphenyl)ethene (TPE). The textural properties of FL-PFP were evaluated by the gas uptake properties using N2 and CO2 isotherms. The BET surface area estimates according to N2 uptake ranged from 100–150 m2 g−1, while a lower range of values (20–30 m2 g−1) was estimated for CO2 uptake. Model nitroarenes such as trinitrophenol (TNP) and nitrobenzene (NB) were shown to induce turn-off of the fluorescence emission of the polymer framework at concentrations near 50 nM with ca. 50% fluorescence quenching upon TNP adsorption and detection. The strong donor–acceptor interaction between the nitroarenes and the TPE reporter unit led to fluorescence quenching of FL-PFP upon nitroarene adsorption. The fluorescence lifetime (τ) for FL-PFP (τ = 3.82 ns) was obtained along with a quantum yield estimate of 0.399 relative to quinine sulphate. The β-CD terpolymer reported herein has significant potential for monitoring the rapid and controlled detection of nitroarenes (TNP and NB) in aquatic environments and other complex media. Permanent porosity plays a key role in fluorescent-based polymers with “on–off” emissive properties due to the role of guest adsorption at accessible fluorophore sites of the polymer framework.![]()
Collapse
Affiliation(s)
| | - Shan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Qianyou Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Material
- Key Laboratory of Cluster Science
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Lee D. Wilson
- Department of Chemistry
- University of Saskatchewan
- Saskatoon
- Canada
| |
Collapse
|
25
|
Tan X, Zhang T, Zeng W, He S, Liu X, Tian H, Shi J, Cao T. A Fluorescence Sensing Determination of 2, 4, 6-Trinitrophenol Based on Cationic Water-Soluble Pillar[6]arene Graphene Nanocomposite. SENSORS 2018; 19:s19010091. [PMID: 30597872 PMCID: PMC6338956 DOI: 10.3390/s19010091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 02/02/2023]
Abstract
We describe a selective and sensitive fluorescence platform for the detection of trinitrophenol (TNP) based on competitive host–guest recognition between pyridine-functionalized pillar[6]arene (PCP6) and a probe (acridine orange, AO) that used PCP6-functionalized reduced graphene (PCP6-rGO) as the receptor. TNP is an electron-deficient and negative molecule, which is captured by PCP6 via electrostatic interactions and π–π interactions. Therefore, a selective and sensitive fluorescence probe for TNP detection is developed. It has a low detection limit of 0.0035 μM (S/N = 3) and a wider linear response of 0.01–5.0 and 5.0–125.0 for TNP. The sensing platform is also used to test TNP in two water and soil samples with satisfying results. This suggests that this approach has potential applications for the determination of TNP.
Collapse
Affiliation(s)
- Xiaoping Tan
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Tingying Zhang
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Wenjie Zeng
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Shuhua He
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Xi Liu
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Hexiang Tian
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jianwei Shi
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Tuanwu Cao
- Key Lab of Inorganic Special Functional Materials, Chongqing Municipal Education Commission, School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| |
Collapse
|
26
|
Xiang LJ, Zhu XJ, Zhang HH, Yang L, Deng KX, Liu Y, Ye MS, Hu L, Yang XY, Zhou HP. A water-soluble, upconverting Sr 2Yb 0.3Gd 0.7F 7:Er 3+/Tm 3+@PSI oAm bio-probe for in vivo trimodality imaging. NANOSCALE 2018; 10:14414-14420. [PMID: 29897095 DOI: 10.1039/c8nr03220c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Multi-modality in vivo bioimaging has great renown for offering more comprehensive information in medical diagnosis and research. Incorporating different bioimaging capabilities into one biocompatible nanoprobe requires an elegant structural design. Considering optical and magnetic properties, X-ray absorption ability, and clinical safety, we prepared a water-soluble and upconverting PSIoAm-modified Sr2Yb0.3Gd0.7F7:Er3+/Tm3+ bio-probe that not only had high photostability and excellent cell membrane permeability, but could also distinguish the four types of cancer cells and normal cells tested within the scope of our study. What's more, it could realize the in vivo trimodality imaging of upconversion fluorescence, X-ray computed tomography and magnetic resonance. The histological analysis of visceral sections further demonstrated that the multifunctional bio-probe was highly safe, which could be applied to clinical diagnosis.
Collapse
Affiliation(s)
- Li-Jun Xiang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Hefei, 230601, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lu M, Zhou P, Li Z, Liu J, Yang Y, Han K. New insights into the sensing mechanism of a phosphonate pyrene chemosensor for TNT. Phys Chem Chem Phys 2018; 20:19539-19545. [PMID: 29999071 DOI: 10.1039/c8cp01749b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
As security needs have increased, mechanism investigation has become of high importance in the development of new sensitive and selective chemosensors for chemical explosives. This study details a theoretical investigation of the sensing mechanism of a new phosphonate pyrene chemosensor for trinitrotoluene (TNT), suggesting a different interaction mode between the probe and TNT from the one previously reported. The invalidity of the mechanism of binding TNT through intermolecular hydrogen bonds was proved using the Gibbs free energy profile and 1H NMR analysis. Frontier molecular orbitals (FMOs) analysis was used to show that photo-induced electron transfer (PET) is the underlying mechanism behind the luminescence quenching of the probe upon exposure to TNT, the rationality of which was further confirmed by the recording of a high charge transfer rate. We also found the existence of an energy level crossing between the local excited (LE) state and charge transfer (CT) state of a complex of the probe and TNT, which was confirmed using energy profile calculations along the linearly interpolated internal coordinate (LIIC) pathway.
Collapse
Affiliation(s)
- Meiheng Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | | | | | | | | | | |
Collapse
|
28
|
Microcrystal induced emission enhancement of a small molecule probe and its use for highly efficient detection of 2,4,6-trinitrophenol in water. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9223-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
29
|
Turhan H, Tukenmez E, Karagoz B, Bicak N. Highly fluorescent sensing of nitroaromatic explosives in aqueous media using pyrene-linked PBEMA microspheres. Talanta 2018; 179:107-114. [DOI: 10.1016/j.talanta.2017.10.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/24/2017] [Accepted: 10/28/2017] [Indexed: 02/04/2023]
|
30
|
Peng D, Zhang L, Li FF, Cui WR, Liang RP, Qiu JD. Facile and Green Approach to the Synthesis of Boron Nitride Quantum Dots for 2,4,6-Trinitrophenol Sensing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7315-7323. [PMID: 29405691 DOI: 10.1021/acsami.7b15250] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A facile and green approach has been developed for synthesis of boron nitride quantum dots (BNQDs). The obtained BNQDs exhibit strong fluorescence and excellent stabilities, including high thermostability, good salt tolerance stability, pH-independence ability, and excellent antiphotobleaching capability. The strong inner filter effect between 2,4,6-trinitrophenol (TNP) and BNQDs resulted in fluorescence quenching of BNQDs. Thus, TNP can be selectively and sensitively detected in the concentration range of 0.25-200 μM, with a limit detection of 0.14 μM. The BNQD-based turn-off sensor shows potential prospects for rapidly and selectively detecting TNP in natural water samples without tedious sample pretreatment processes.
Collapse
Affiliation(s)
- Dong Peng
- College of Chemistry, Nanchang University , Nanchang 330031, China
| | - Li Zhang
- College of Chemistry, Nanchang University , Nanchang 330031, China
| | - Fang-Fang Li
- College of Chemistry, Nanchang University , Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University , Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University , Nanchang 330031, China
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University , Nanchang 330031, China
- Department of Materials and Chemical Engineering, Pingxiang University , Pingxiang 337055, China
| |
Collapse
|
31
|
Zhu H, Zhang H, Xia Y. Planar Is Better: Monodisperse Three-Layered MoS 2 Quantum Dots as Fluorescent Reporters for 2,4,6-Trinitrotoluene Sensing in Environmental Water and Luggage Cases. Anal Chem 2018; 90:3942-3949. [PMID: 29429339 DOI: 10.1021/acs.analchem.7b04893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we present a simple but effective fluorescent system for highly sensitive and versatile sensing of 2,4,6-trinitrotoluene (TNT) using few layered planar MoS2 quantum dots (QDs) as reporters. Excitation-independent emitting MoS2 QDs were first fabricated by using the proposed ultrasonic-hydrothermal-based top-down method assisted by carbon-free hydroxylamine hydrochloride. The obtained pristine MoS2 QDs were then modified with cysteine for introducing amino groups as TNT binding sites. The as-prepared MoS2 QDs possess a planar structure, which can more adequately interact with flat aromatic TNT molecules due to π-π attraction and decreased steric effects, compared with traditional spherical/quasi-spherical QDs. As a result, they exhibit extremely high sensitivity for TNT sensing (1 nM and 2 ng for solution and substrate assay, respectively). The common ions containing in environmental water samples do not interfere with the sensing. Furthermore, the QDs-decorated test paper shows an instantaneous (within 1 min) response to trace amounts of deposited TNT, and the fluorescence quenching can even be well-visualized by the naked eye. Because of favorable analytical performances, the proposed MoS2 QDs-based TNT sensing system has potential applications in both environmental water monitoring and security screening.
Collapse
Affiliation(s)
- Hui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Hui Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| | - Yunsheng Xia
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241000 , China
| |
Collapse
|
32
|
Lu M, Zhou P, Ma Y, Tang Z, Yang Y, Han K. Reconsideration of the Detection and Fluorescence Mechanism of a Pyrene-Based Chemosensor for TNT. J Phys Chem A 2018; 122:1400-1405. [DOI: 10.1021/acs.jpca.7b11739] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meiheng Lu
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- College
of Applied Chemistry, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Panwang Zhou
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yinhua Ma
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhe Tang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yanqiang Yang
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of
Fluid Physics, China Academy of Engineering Physics, Chengdu 610200, P. R. China
| | - Keli Han
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
33
|
Xu S, Bai X, Wang L. Exploration of photothermal sensors based on photothermally responsive materials: a brief review. Inorg Chem Front 2018. [DOI: 10.1039/c7qi00767a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photothermal sensors have emerged as a new type of sensor platform in recent decades and this brief review has summarized different types of photothermally responsive materials and their applications in various fields.
Collapse
Affiliation(s)
- Suying Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xilin Bai
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering
- Beijing Key Laboratory of Environmentally Harmful Chemical Analysis
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
34
|
Maity P, Bhatt A, Agrawal B, Jana A. Pt(II)C ∧N ∧N-Based Luminophore-Micelle Adducts for Sensing Nitroaromatic Explosives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4291-4300. [PMID: 28395513 DOI: 10.1021/acs.langmuir.7b00869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two luminescent cyclometalated Pt(II)-complexes, 1•Pt and 2•Pt, respectively, were synthesized by using unsymmetrical C∧N∧N ligands having different alkyl substituents. These π-electron-rich complexes are used for sensing various electron deficient nitroaromatic explosives, e.g., 4-nitrotoluene (NT), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and 2,4,6-trinitrophenol (TNP), in aqueous, nonaqueous, as well as in the solid state as a paper strip with maximum detection limit of ca. 10-9 M. It was demonstrated that the sparingly soluble 2•Pt complex becomes water-soluble in the presence of all kinds of surfactants, viz., cationic (e.g., cetyltrimethylammonium bromide, CTAB), anionic (e.g., sodium dodecyl sulfate, SDS), and neutral (e.g., Triton X-100). This may be due to the incorporation of its long lyophilic tail group (-C12H25) inside the micellar core, exposing planar Pt(II)C∧N∧N headgroup to the aqueous bulk phase. It was also observed that the extent of solubility of these Pt(II)-complexes in micellar media strongly depends on the length of the existing alkyl chain. For instance, the presence of longer dodecyl chain makes 2•Pt complex ca. 1000-fold more soluble than the complex 1•Pt, which contains a shorter propyl chain. Their sensing behavior essentially arises by the quenching of Pt(II)-based intense luminescence due to the supramolecular charge transfer (CT) process originating from Pt(II)C∧N∧N-antenna to the electron deficient nitroaromatic explosives. Our present work shows that the micellar adducts formed by highly luminophoric material and surfactant molecules could effectively detect such explosives in aqueous medium with better sensitivity compared to what were observed in other media.
Collapse
Affiliation(s)
- Prasenjit Maity
- Institute of Research and Development, Gujarat Forensic Sciences University , Gandhinagar 382007, India
| | - Aarti Bhatt
- Institute of Research and Development, Gujarat Forensic Sciences University , Gandhinagar 382007, India
| | - Bhavesh Agrawal
- Institute of Research and Development, Gujarat Forensic Sciences University , Gandhinagar 382007, India
| | - Atanu Jana
- Department of Chemistry, University of Sheffield , Sheffield, S3 7HF, United Kingdom
| |
Collapse
|
35
|
Han Y, Chen Y, Feng J, Liu J, Ma S, Chen X. One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution. Anal Chem 2017; 89:3001-3008. [DOI: 10.1021/acs.analchem.6b04509] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yangxia Han
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yonglei Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Jie Feng
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Juanjuan Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Sudai Ma
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Xingguo Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- Department
of Chemistry, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, China
| |
Collapse
|
36
|
A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives: A new strategy for the mask-free discrimination of TNT and TNP within same sample. Talanta 2017; 166:228-233. [PMID: 28213227 DOI: 10.1016/j.talanta.2017.01.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/06/2017] [Accepted: 01/16/2017] [Indexed: 02/03/2023]
Abstract
A simple naphthalene based fluorescent probe was first time reported as dual sensing of 2,4,6-trinitrotolune (TNT) and 2,4,6-trinitrophenol (TNP) by distinguishable changes in both solution color change and fluorescence within same sample without any mask agent. Upon addition of TNT and TNP, the strong emission quenching at 412nm and a new emission band at 530nm was observed, respectively. In addition, the sensing mechanism was evaluated by DFT calculations by Gaussian 09 software.
Collapse
|
37
|
Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron 2016; 86:109-114. [DOI: 10.1016/j.bios.2016.06.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 06/07/2016] [Indexed: 11/18/2022]
|
38
|
Li H, Chang J, Hou T, Ge L, Li F. A facile, sensitive, and highly specific trinitrophenol assay based on target-induced synergetic effects of acid induction and electron transfer towards DNA-templated copper nanoclusters. Talanta 2016; 160:475-480. [DOI: 10.1016/j.talanta.2016.07.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
|
39
|
Supramolecular self-assembly carbazolyl radicals nanospheres triggered by ultraviolet light for explosives sensing. Talanta 2016; 160:133-137. [DOI: 10.1016/j.talanta.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/30/2016] [Accepted: 07/04/2016] [Indexed: 12/30/2022]
|
40
|
Xu S, Bai X, Ma J, Xu M, Hu G, James TD, Wang L. Ultrasmall Organic Nanoparticles with Aggregation-Induced Emission and Enhanced Quantum Yield for Fluorescence Cell Imaging. Anal Chem 2016; 88:7853-7. [DOI: 10.1021/acs.analchem.6b02032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Suying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Xilin Bai
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jingwen Ma
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Minmin Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Gaofei Hu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Leyu Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
41
|
Xiao SJ, Zhao XJ, Hu PP, Chu ZJ, Huang CZ, Zhang L. Highly Photoluminescent Molybdenum Oxide Quantum Dots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8184-91. [PMID: 26954663 DOI: 10.1021/acsami.5b11316] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As a well-studied transition-metal semiconductor material, MoOx has a wider band gap than molybdenum disulfide (MoS2), and its property varies dramatically for the existence of several different allotropes and suboxide phases of molybdenum oxides (MoOx, x < 3). In this manuscript, a one-pot method possessing the advantages of one pot, easily prepared, rapid, and environmentally friendly, has been developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs), in which commercial molybdenum disulfide (MoS2) powder and hydrogen peroxide (H2O2) are employed as the precursor and oxidant, respectively. The obtained MoOx QDs can be further utilized as an efficient photoluminescent probe, and a new turn-off sensor is developed for 2,4,6-trinitrotoluene (TNT) determination based on the fact that the photoluminescence of MoOx QDs can be quenched by the Meisenheimer complexes formed in the strong alkali solution through the inner filter effect (IFE). Under the optimal conditions, the decreased photoluminescence of MoOx QDs shows a good linear relationship to the concentration of TNT ranging from 0.5 to 240.0 μM, and the limit of detection was 0.12 μM (3σ/k). With the present turn-off sensor, TNT in river water samples can be rapidly and selectively detected without tedious sample pretreatment processes.
Collapse
Affiliation(s)
| | | | - Ping Ping Hu
- Innovative Drug Research Centre, Chongqing University , Chongqing 401331, China
| | | | - Cheng Zhi Huang
- College of Pharmaceutical Sciences, Southwest University , Chongqing 400715, China
| | - Li Zhang
- College of Chemistry, Nanchang University , Nanchang 330031, China
| |
Collapse
|
42
|
Pal TK, Chatterjee N, Bharadwaj PK. Linker-Induced Structural Diversity and Photophysical Property of MOFs for Selective and Sensitive Detection of Nitroaromatics. Inorg Chem 2016; 55:1741-7. [DOI: 10.1021/acs.inorgchem.5b02645] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tapan K. Pal
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| | - Nabanita Chatterjee
- Department of Chemistry, Indian Institute of Technology Kanpur 208016, India
| | | |
Collapse
|
43
|
Zhang Y, Dong C, Su L, Wang H, Gong X, Wang H, Liu J, Chang J. Multifunctional Microspheres Encoded with Upconverting Nanocrystals and Magnetic Nanoparticles for Rapid Separation and Immunoassays. ACS APPLIED MATERIALS & INTERFACES 2016; 8:745-753. [PMID: 26653130 DOI: 10.1021/acsami.5b09913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immunoassays based on the downconversion target materials (organic dyes or quantum dots) lead to fairly strong spectral interference between the coded signal and reporter signal, which seriously affects the detection accuracy and hampers their applications. In this work, a new kind of upconverting nanocrystals encoded magnetic microspheres (UCNMMs) were designed and prepared successfully to solve the problem mentioned above. The UCNMMs were obtained by incorporating magnetic Fe3O4 nanoparticles and upconverting nanocrystals with polystyrene microspheres. Due to that upconverting nanocrystals (UCNs) and reporter signals are excitated by near-infrared and UV/visible light separately, immunoassays based on UCNMMs do not occur optical spectral interferences. Furthermore, these new functionalized UCNMMs have excellent properties in binding biomolecules and fast separating, which would have large potential applications in multiplexed assays.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Chunhong Dong
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Lin Su
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Hanjie Wang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Xiaoqun Gong
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Huiquan Wang
- School of Electronics and Information Engineering, Tianjin Polytechnic University , Tianjin 300387, People's Republic of China
| | - Junqing Liu
- Institute of Nanobiotechnology, School of Materials Science and Engineering, Tianjin University , Tianjin, 300072, People's Republic of China
| | - Jin Chang
- Institute of Nanobiotechnology, School of Life Sciences, Tianjin University , Tianjin, 300072, People's Republic of China
| |
Collapse
|
44
|
Wang S, Wang X, Chen X, Cao X, Cao J, Xiong X, Zeng W. A novel upconversion luminescence turn-on nanosensor for ratiometric detection of organophosphorus pesticides. RSC Adv 2016. [DOI: 10.1039/c6ra05978c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An upconversion luminescence “turn-on” nanosensor for the ratiometric and sensitive detection of organophosphorus pesticides was fabricated.
Collapse
Affiliation(s)
- Shuailiang Wang
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Xiaobo Wang
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Xingxiang Chen
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Xiaozheng Cao
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Jing Cao
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Xiaofeng Xiong
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| | - Wenbin Zeng
- School of Pharmaceutical Sciences
- Central South University
- PR China
- Molecular Imaging Research Center
- Central South University
| |
Collapse
|
45
|
Zhang F, Wang Y, Chu T, Wang Z, Li W, Yang Y. A facile fabrication of electrodeposited luminescent MOF thin films for selective and recyclable sensing of nitroaromatic explosives. Analyst 2016; 141:4502-10. [DOI: 10.1039/c6an00840b] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Wang S, Xu S, Hu G, Bai X, James TD, Wang L. A Fluorescent Chemodosimeter for Live-Cell Monitoring of Aqueous Sulfides. Anal Chem 2015; 88:1434-9. [DOI: 10.1021/acs.analchem.5b04194] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Shiguo Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gaofei Hu
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xilin Bai
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
| | - Leyu Wang
- State
Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory
of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
47
|
Xu X, Wang Z, Lei P, Yu Y, Yao S, Song S, Liu X, Su Y, Dong L, Feng J, Zhang H. α-NaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 UCNPs as "Band-Shape" Luminescent Nanothermometers over a Wide Temperature Range. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20813-20819. [PMID: 26312746 DOI: 10.1021/acsami.5b05876] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Novel flower-like α-NaYb(Mn)F4:Er(3+)/Tm(3+)@NaYF4 upconversion nanoparticles (UCNPs) as luminescent nanothermometers have been developed by combining liquid-solid solution hydrothermal strategy with thermal decomposition strategy. Under 980 nm excitation, they exhibit intense upconversion luminescence and temperature-dependent upconversion luminescence over a wide temperature range. The influence of temperature on "band-shape" upconversion luminescence (UCL) spectra and the intensity of emission bands are analyzed and discussed in detail. We further successfully test and verify that intensity ratios REr of (2)H11/2 → (4)I15/2 and (4)S3/2 → (4)I15/2 and RTm of (1)G4 → (3)H5 and (3)H4 → (3)H6 are sensitive to temperature, and the population of active ions follows Boltzmann-type population distribution very well. These luminescent nanothermometers could be applied over a wide temperature range from 123 to 423 K with high sensitivity, which enable them to be excellent candidates for temperature sensors.
Collapse
Affiliation(s)
- Xia Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhuo Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yingning Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Shuang Yao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Xiuling Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Yue Su
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lile Dong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science , 5625 Renmin Street, Changchun, Jilin 130022, China
| |
Collapse
|
48
|
A Fluorescent 1,3-Diaminonaphthalimide Conjugate of Calix[4]arene for Sensitive and Selective Detection of Trinitrophenol: Spectroscopy, Microscopy, and Computational Studies, and Its Applicability using Cellulose Strips. Chemistry 2015; 21:13364-74. [DOI: 10.1002/chem.201500787] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 06/02/2015] [Indexed: 12/29/2022]
|
49
|
Liu J, Lu L, Li A, Tang J, Wang S, Xu S, Wang L. Simultaneous detection of hydrogen peroxide and glucose in human serum with upconversion luminescence. Biosens Bioelectron 2015; 68:204-209. [DOI: 10.1016/j.bios.2014.12.053] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/30/2014] [Accepted: 12/22/2014] [Indexed: 11/30/2022]
|
50
|
Sandhu S, Kumar R, Singh P, Mahajan A, Kaur M, Kumar S. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10491-500. [PMID: 25915852 DOI: 10.1021/acsami.5b01970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
1-(p-Terphenyl)-benzimidazolium (TRIPOD-TP) molecules undergo self-assembly to form rodlike structures in aqueous medium, as shown by field-emission scanning electron microscopy, transmission electron microscopy, and dynamic light scattering studies. Upon gradual addition of picric acid (PA), these aggregates undergo an aggregation/disaggregation process to complex morphological structures (10(-12)-10(-10) M PA) and spherical aggregates (10(-9)-10(-8) M PA). These spherical aggregates undergo further dissolution to well-dispersed spheres between 10(-7)-10(-6) M PA. During fluorescence studies, these aggregates demonstrate superamplified fluorescence quenching (>97%) in the presence of 10(-5) to 0.2 equiv of the probe concentration, an unprecedented process with PA. The lowest detection limits by solution of TRIPOD-TP are 5 × 10(-13) PA, 50 × 10(-12) M 2,4-dinitrophenol, 200 × 10(-12) M 2,4,6-trinitrotoluene, and 1 nM 1-chloro-2,4-dinitrobenzene. Paper strips dipped in the solution of TRIPOD-TP demonstrate quantitative fluorescence quenching between 10(-17) and 10(-6) M PA using front-surface steady state studies and can measure as low as 2.29 × 10(-20) g/cm(2) PA.
Collapse
|