1
|
Chand Daskhan G, Ton Tran HT, Cairo CW. Convergent synthesis of a hexadecavalent heterobifunctional ABO blood group glycoconjugate. Carbohydr Res 2024; 535:108988. [PMID: 38048747 DOI: 10.1016/j.carres.2023.108988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Naturally occurring glycans are often found in a multivalent presentation. Cell surface receptors that recognize these displays may form clusters, which can lead to signalling or endocytosis. One of the challenges in generating synthetic displays of multivalent carbohydrates is providing high valency as well as access to heterofunctional conjugates to allow attachment of multiple antigens or payloads. We designed a strategy based on a set of bifunctional linkers to generate a heterobifunctional multivalent display of two carbohydrate antigens to bind BCR and CD22 with four and twelve antigen copies, respectively. We confirmed that the conjugates were able to engage both CD22 and BCR on cells by observing receptor clustering. The strategy is modular and would allow for alternative carbohydrate antigens to be attached bearing amine and alkyne groups and should be of interest for the development of immunomodulators and vaccines.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
2
|
Szponarski M, Gademann K. Antibody Recognition of Cancer Cells via Glycan Surface Engineering. Chembiochem 2022; 23:e202200125. [PMID: 35638149 PMCID: PMC9400979 DOI: 10.1002/cbic.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/25/2022] [Indexed: 11/21/2022]
Abstract
Stimulation of the body's immune system toward tumor cells is now well recognized as a promising strategy in cancer therapy. Just behind cell therapy and monoclonal antibodies, small molecule-based strategies are receiving growing attention as alternatives to direct immune response against tumor cells. However, the development of small-molecule approaches to modulate the balance between stimulatory immune factors and suppressive factors in a targeted way remains a challenge. Here, we report the cell surface functionalization of LS174T cancer cells with an abiotic hapten to recruit antibodies to the cell surface. Metabolic glycoengineering followed by covalent reaction with the hapten results in antibody recognition of the target cells. Microscopy and flow cytometry studies provide compelling evidence that metabolic glycoengineering and small molecule stimulators can be combined to direct antibody recognition.
Collapse
Affiliation(s)
| | - Karl Gademann
- Department of ChemistryUniversity of Zurich8057ZurichSwitzerland
| |
Collapse
|
3
|
Zheng N, Wang S, Su X, Han S. Liposome-aided metabolic engineering of tumor surface immunogenicity. Bioorg Med Chem Lett 2018; 28:2550-2554. [PMID: 29941189 DOI: 10.1016/j.bmcl.2018.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 12/27/2022]
Abstract
Approaches to increase tumor immunogenicity are of therapeutic potentials. We herein reported the use of liposomes for covalent incorporation of neoantigen on tumor surfaces with DNP-conjugated sialic acid (DNPSia). Relative to free DNPSia, sugar-encapsulated biotinylated liposomes (DNPSia@LP@biotin) enables effective cell surface expression of DNPSia on biotin receptor (BR)-expressing cells over BR-free cells in vitro, and on tumor cell surfaces with high tumor-to-normal tissue contrast in a mice model. These findings suggest the potentials of targetable liposomes for modulating tumor surface immunity via metabolic oligosaccharide engineering.
Collapse
Affiliation(s)
- Nianfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Siyu Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen 361004, China.
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
4
|
Lin B, Wu X, Zhao H, Tian Y, Han J, Liu J, Han S. Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem Sci 2016; 7:3737-3741. [PMID: 29997860 PMCID: PMC6008587 DOI: 10.1039/c5sc04133c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/23/2016] [Indexed: 12/17/2022] Open
Abstract
Techniques eliciting anti-tumor immunity are of interest for immunotherapy. We herein report the covalent incorporation of a non-self immunogen into the tumor glycocalyx by metabolic oligosaccharide engineering with 2,4-dinitrophenylated sialic acid (DNPSia). This enables marked suppression of pulmonary metastasis and subcutaneous tumor growth of B16F10 melanoma cells in mice preimmunized to produce anti-DNP antibodies. Located on the exterior glycocalyx, DNPSia is well-positioned to recruit antibodies. Given the high levels of natural anti-DNP antibodies in humans and ubiquitous sialylation across many cancers, DNPSia offers a simplified route to redirect immunity against diverse tumors without recourse to preimmunization.
Collapse
Affiliation(s)
- Bijuan Lin
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Xuanjun Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Hu Zhao
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Yunpeng Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Jiahuai Han
- State Key Laboratory of Cellular Stress Biology , Innovation Center for Cell Signaling Network , School of Life Sciences , Xiamen University , Xiamen , 361005 , China
| | - Jian Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| | - Shoufa Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces , Department of Chemical Biology , College of Chemistry and Chemical Engineering , The Key Laboratory for Chemical Biology of Fujian Province , The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network , Xiamen University , Xiamen , 361005 , China . ; Tel: +86-0592-2181728
| |
Collapse
|
5
|
An Y, Bloom JWG, Wheeler SE. Quantifying the π-Stacking Interactions in Nitroarene Binding Sites of Proteins. J Phys Chem B 2015; 119:14441-50. [DOI: 10.1021/acs.jpcb.5b08126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yi An
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Jacob W. G. Bloom
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Steven E. Wheeler
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
6
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4 modified sialosides enhance binding to Siglec-2 (CD22): towards potent Siglec inhibitors for immunoglycotherapy. Angew Chem Int Ed Engl 2013; 52:3616-20. [PMID: 23440868 DOI: 10.1002/anie.201207267] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 11/26/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen, 28334 Bremen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kelm S, Madge P, Islam T, Bennett R, Koliwer-Brandl H, Waespy M, von Itzstein M, Haselhorst T. C-4-Modifikation von Sialosiden verstärkt die Bindung an Siglec-2 (CD22) - auf dem Weg zu potenten Siglec-Inhibitoren für eine Immunglykotherapie. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201207267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
McEnaney PJ, Parker CG, Zhang AX, Spiegel DA. Antibody-recruiting molecules: an emerging paradigm for engaging immune function in treating human disease. ACS Chem Biol 2012; 7:1139-51. [PMID: 22758917 PMCID: PMC3401898 DOI: 10.1021/cb300119g] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Synthetic immunology, the development of synthetic systems capable of modulating and/or manipulating immunological functions, represents an emerging field of research with manifold possibilities. One focus of this area has been to create low molecular weight synthetic species, called antibody-recruiting molecules (ARMs), which are capable of enhancing antibody binding to disease-relevant cells or viruses, thus leading to their immune-mediated clearance. This article provides a thorough discussion of contributions in this area, beginning with the history of small-molecule-based technologies for modulating antibody recognition, followed by a systematic review of the various applications of ARM-based strategies. Thus, we describe ARMs capable of targeting cancer, bacteria, and viral pathogens, along with some of the scientific discoveries that have resulted from their development. Research in this area underscores the many exciting possibilities at the interface of organic chemistry and immunobiology and is positioned to advance both basic and clinical science in the years to come.
Collapse
Affiliation(s)
- Patrick J McEnaney
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | | | |
Collapse
|
9
|
Abstract
Sialic acids are a diverse family of monosaccharides widely expressed on all cell surfaces of vertebrates and so-called "higher" invertebrates, and on certain bacteria that interact with vertebrates. This overview surveys examples of biological roles of sialic acids in immunity, with emphasis on an evolutionary perspective. Given the breadth of the subject, the treatment of individual topics is brief. Subjects discussed include biophysical effects regulation of factor H; modulation of leukocyte trafficking via selectins; Siglecs in immune cell activation; sialic acids as ligands for microbes; impact of microbial and endogenous sialidases on immune cell responses; pathogen molecular mimicry of host sialic acids; Siglec recognition of sialylated pathogens; bacteriophage recognition of microbial sialic acids; polysialic acid modulation of immune cells; sialic acids as pathogen decoys or biological masks; modulation of immunity by sialic acid O-acetylation; sialic acids as antigens and xeno-autoantigens; antisialoglycan antibodies in reproductive incompatibility; and sialic-acid-based blood groups.
Collapse
Affiliation(s)
- Ajit Varki
- Glycobiology Research and Training Center, Department of Medicine, University of California at San Diego, La Jolla, 92093-0687, USA.
| | | |
Collapse
|
10
|
Impact of the nature and size of the polymeric backbone on the ability of heterobifunctional ligands to mediate shiga toxin and serum amyloid p component ternary complex formation. Toxins (Basel) 2011; 3:1065-88. [PMID: 22069757 PMCID: PMC3202879 DOI: 10.3390/toxins3091065] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/16/2011] [Accepted: 08/19/2011] [Indexed: 01/27/2023] Open
Abstract
Inhibition of AB5-type bacterial toxins can be achieved by heterobifunctional ligands (BAITs) that mediate assembly of supramolecular complexes involving the toxin’s pentameric cell membrane-binding subunit and an endogenous protein, serum amyloid P component, of the innate immune system. Effective in vivo protection from Shiga toxin Type 1 (Stx1) is achieved by polymer-bound, heterobifunctional inhibitors-adaptors (PolyBAITs), which exhibit prolonged half-life in circulation and by mediating formation of face-to-face SAP-AB5 complexes, block receptor recognition sites and redirect toxins to the spleen and liver for degradation. Direct correlation between solid-phase activity and protective dose of PolyBAITs both in the cytotoxicity assay and in vivo indicate that the mechanism of protection from intoxication is inhibition of toxin binding to the host cell membrane. The polymeric scaffold influences the activity not only by clustering active binding fragments but also by sterically interfering with the supramolecular complex assembly. Thus, inhibitors based on N-(2-hydroxypropyl) methacrylamide (HPMA) show significantly lower activity than polyacrylamide-based analogs. The detrimental steric effect can partially be alleviated by extending the length of the spacer, which separates pendant ligand from the backbone, as well as extending the spacer, which spans the distance between binding moieties within each heterobifunctional ligand. Herein we report that polymer size and payload of the active ligand had moderate effects on the inhibitor’s activity.
Collapse
|