1
|
Almarghalani DA, Boddu SHS, Ali M, Kondaka A, Ta D, Shah RA, Shah ZA. Small interfering RNAs based therapies for intracerebral hemorrhage: challenges and progress in drug delivery systems. Neural Regen Res 2022; 17:1717-1725. [PMID: 35017419 PMCID: PMC8820693 DOI: 10.4103/1673-5374.332129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke associated with higher rates of mortality. Currently, no effective drug treatment is available for ICH. The molecular pathways following ICH are complicated and diverse. Nucleic acid therapeutics such as gene knockdown by small interfering RNAs (siRNAs) have been developed in recent years to modulate ICH’s destructive pathways and mitigate its outcomes. However, siRNAs delivery to the central nervous system is challenging and faces many roadblocks. Existing barriers to systemic delivery of siRNA limit the use of naked siRNA; therefore, siRNA-vectors developed to protect and deliver these therapies into the specific-target areas of the brain, or cell types seem quite promising. Efficient delivery of siRNA via nanoparticles emerged as a viable and effective alternative therapeutic tool for central nervous system-related diseases. This review discusses the obstacles to siRNA delivery, including the advantages and disadvantages of viral and nonviral vectors. Additionally, we provide a comprehensive overview of recent progress in nanotherapeutics areas, primarily focusing on the delivery system of siRNA for ICH treatment.
Collapse
Affiliation(s)
- Daniyah A Almarghalani
- Department of Pharmacology and Experimental Therapeutics; Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
| | - Mohammad Ali
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Akhila Kondaka
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Devin Ta
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Rayyan A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
2
|
Dastpeyman M, Sharifi R, Amin A, Karas JA, Cuic B, Pan Y, Nicolazzo JA, Turner BJ, Shabanpoor F. Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides. Int J Pharm 2021; 599:120398. [PMID: 33640427 DOI: 10.1016/j.ijpharm.2021.120398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides (ASOs) are an emerging class of gene-specific therapeutics for diseases associated with the central nervous system (CNS). However, ASO delivery across the blood-brain barrier (BBB) to their CNS target cells remains a major challenge. Since ASOs are mainly taken up into the brain capillary endothelial cells interface through endosomal routes, entrapment in the endosomal compartment is a major obstacle for efficient CNS delivery of ASOs. Therefore, we evaluated the effectiveness of a panel of cell-penetrating peptides (CPPs) bearing several endosomal escape domains for the intracellular delivery, endosomal release and antisense activity of FDA-approved Spinraza (Nusinersen), an ASO used to treat spinal muscular atrophy (SMA). We identified a CPP, HA2-ApoE(131-150), which, when conjugated to Nusinersen, showed efficient endosomal escape capability and significantly increased the level of full-length functional mRNA of the survival motor neuron 2 (SMN2) gene in SMA patient-derived fibroblasts. Treatment of SMN2 transgenic adult mice with this CPP-PMO conjugate resulted in a significant increase in the level of full-length SMN2 in the brain and spinal cord. This work provides proof-of-principle that integration of endosomal escape domains with CPPs enables higher cytosolic delivery of ASOs, and more importantly enhances the efficiency of BBB-permeability and CNS activity of systemically administered ASOs.
Collapse
Affiliation(s)
- Mohadeseh Dastpeyman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Ramin Sharifi
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, VIC 3010, Australia; The Bio21 Institute, University of Melbourne, 30 Flemington Rd., VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia; The Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, Western Australia 6150, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
3
|
Tian Y, Mi G, Chen Q, Chaurasiya B, Li Y, Shi D, Zhang Y, Webster TJ, Sun C, Shen Y. Acid-Induced Activated Cell-Penetrating Peptide-Modified Cholesterol-Conjugated Polyoxyethylene Sorbitol Oleate Mixed Micelles for pH-Triggered Drug Release and Efficient Brain Tumor Targeting Based on a Charge Reversal Mechanism. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43411-43428. [PMID: 30508486 DOI: 10.1021/acsami.8b15147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glioblastoma multiforme is the most devastating malignant brain tumor in adults. Even with the standard care of therapy, the prognosis remains dismal due to tumor heterogeneity, tumor infiltration, and, more importantly, the restrictive nature of the blood-brain barrier (BBB). To overcome the challenge of effectively delivering therapeutic cargo into the brain, herein a "smart", multifunctional polymeric micelle was developed using a cholesterol-conjugated polyoxyethylene sorbitol oleate. A cell-penetrating peptide, arginine-glycine repeats (RG)5, was incorporated into the micelles to improve cellular uptake, while a pH-sensitive masking sequence, histidine-glutamic acid repeats (HE)5, was introduced for charge shielding to minimize nonspecific binding and uptake at physiological pH. Results demonstrated that (RG)5- and (HE)5-modified mixed micelles were optimized using this strategy to effectively mask the cationic charges of the activated cell-penetrating peptide (RG)5 at physiological pH, i.e., limiting internalization, and were selectively triggered in response to a mildly acidic microenvironment in vitro based on a charge reversal mechanism. In vivo results further confirmed that such micelles preferentially accumulated in both brain and tumor tissues in both xenograft and orthotropic glioma mouse models. Furthermore, micelles significantly inhibited tumor growth with limited toxicity to peripheral tissues. The combination of BBB penetration, tumor targeting, potent efficacy, and high tolerance of these micelles strongly suggests that they could be a promising candidate for safe and effective drug delivery to the brain.
Collapse
Affiliation(s)
- Yu Tian
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Gujie Mi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Qian Chen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Birendra Chaurasiya
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yanan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Di Shi
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Yong Zhang
- Children's Hospital of Nanjing Medical University , Nanjing 210008 , China
| | - Thomas J Webster
- Department of Chemical Engineering, 313 Snell Engineering Center , Northeastern University , 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
4
|
Hou KK, Pan H, Schlesinger PH, Wickline SA. A role for peptides in overcoming endosomal entrapment in siRNA delivery - A focus on melittin. Biotechnol Adv 2015; 33:931-40. [PMID: 26025036 PMCID: PMC4540690 DOI: 10.1016/j.biotechadv.2015.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/20/2015] [Accepted: 05/23/2015] [Indexed: 12/21/2022]
Abstract
siRNA has the possibility to revolutionize medicine by enabling highly specific and efficient silencing of proteins involved in disease pathogenesis. Despite nearly 20 years of research dedicated to translating siRNA from a research tool into a clinically relevant therapeutic, minimal success has been had to date. Access to RNA interference machinery located in the cytoplasm is often overlooked, but must be considered when designing the next generation of siRNA delivery strategies. Peptide transduction domains (PTDs) have demonstrated moderate siRNA transfection, which is primarily limited by endosomal entrapment. Strategies aimed at overcoming endosomal entrapment associated with peptide vectors are reviewed here, including osmotic methods, lipid conjugation, and fusogenic peptides. As an alternative to traditional PTD, the hemolytic peptide melittin exhibits the native capacity for endosomal disruption but causes cytotoxicity. However, appropriate packaging and protection of melittin with activation and release in the endosomal compartment has allowed melittin-based strategies to demonstrate both in vitro and in vivo safety and efficacy. These data suggest that melittin's membrane disruptive properties can enable safe and effective endosomolysis, building a case for melittin as a key component in a new generation of siRNA therapeutics.
Collapse
Affiliation(s)
- Kirk K Hou
- Computational and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Hua Pan
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Samuel A Wickline
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63108, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
5
|
Di Pisa M, Chassaing G, Swiecicki JM. When cationic cell-penetrating peptides meet hydrocarbons to enhance in-cell cargo delivery. J Pept Sci 2015; 21:356-69. [PMID: 25787823 DOI: 10.1002/psc.2755] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 01/03/2023]
Abstract
Cell-penetrating peptides (CPPs) are short sequences often rich in cationic residues with the remarkable ability to cross cell membranes. In the past 20 years, CPPs have gained wide interest and have found numerous applications in the delivery of bioactive cargoes to the cytosol and even the nucleus of living cells. The covalent or non-covalent addition of hydrocarbon moieties to cationic CPPs alters the hydrophobicity/hydrophilicity balance in their sequence. Such perturbation dramatically influences their interaction with the cell membrane, might induce self-assembling properties and modifies their intracellular trafficking. In particular, the introduction of lipophilic moieties changes the subcellular distribution of CPPs and might result in a dramatically increase of the internalization yield of the co-transported cargoes. Herein, we offer an overview of different aspects of the recent findings concerning the properties of CPPs covalently or non-covalently associated to hydrocarbons. We will focus on the impact of the hydrocarbon moieties on the delivery of various cargoes, either covalently or non-covalently bound to the modified CPPs. We will also provide some key elements to rationalize the influence of the hydrocarbons moieties on the cellular uptake. Furthermore, the recent in vitro and in vivo successful applications of acylated CPPs will be summarized to provide a broad view of the versatility of these modified CPPs as small-molecules and oligonucleotides vectors.
Collapse
Affiliation(s)
- Margherita Di Pisa
- Sorbonne Universités, UPMC Univ Paris 06, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; CNRS, UMR 7203, Laboratoire des Biomolécules, Paris, F-75005, France; Ecole Normale Supérieure (ENS), UMR 7203, Laboratoire des Biomolécules, Département de Chimie, 24 Rue Lhomond, Paris, F-75005, France
| | | | | |
Collapse
|
6
|
Yu Z, Yu B, Kaye JB, Tang C, Chen S, Dong C, Shen B. Perspectives and Challenges of Cell-Penetrating Peptides in Effective siRNA Delivery. ACTA ACUST UNITED AC 2014. [DOI: 10.1142/s1793984414410165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Over the last two decades, hundreds of cell penetrating peptides (CPPs) have been intensively developed as drug and nucleic acid delivery vectors. In many cases, however, the efficient delivery of exogenous bioactive molecules through the plasma membrane to their targets remains a tremendous challenging issue. CPPs have attracted tremendous research interest as efficient cellular delivery vehicles due to their intrinsic ability to enter cells and mediate uptake of a wide range of macromolecular cargos, such as proteins, peptides, nucleic acids, drugs and nanoparticle carriers. This review presents and discusses the current perspectives of CPP-mediated siRNA delivery system. We focus on the CPP-mediated siRNA delivery approaches, and particular emphasis is placed on the strategies for the advantages and disadvantages for each delivery approach. Lastly, the cellular uptake mechanisms of CPPs and the specific challenges associated with each delivery system of siRNAs are discussed.
Collapse
Affiliation(s)
- Zhiqiang Yu
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, P. R. China
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Bin Yu
- School of Pharmaceutical Sciences and New Drug Research & Development Center Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Justin Boy Kaye
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Chenhong Tang
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Shengxi Chen
- Center for BioEnergetics, The Biodesign Institute and Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA
| | - Chenbo Dong
- Department of Chemical Engineering, West Virginia University, Morgantown, WV 26505, USA
| | - Bing Shen
- Department of Physiology, Anhui Medical University, Hefei, Anhui 230032, P. R. China
| |
Collapse
|
7
|
Oligonucleotide-based therapy for neurodegenerative diseases. Brain Res 2014; 1584:116-28. [PMID: 24727531 DOI: 10.1016/j.brainres.2014.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/05/2014] [Indexed: 12/12/2022]
Abstract
Molecular genetics insight into the pathogenesis of several neurodegenerative diseases, such as Alzheimer׳s disease, Parkinson׳s disease, Huntington׳s disease and amyotrophic lateral sclerosis, encourages direct interference with the activity of neurotoxic genes or the molecular activation of neuroprotective pathways. Oligonucleotide-based therapies are recently emerging as an efficient strategy for drug development and these can be employed as new treatments of neurodegenerative states. Here we review advances in this field in recent years which suggest an encouraging assessment that oligonucleotide technologies for targeting of RNAs will enable the development of new therapies and will contribute to preservation of brain integrity.
Collapse
|
8
|
Copolovici DM, Langel K, Eriste E, Langel Ü. Cell-penetrating peptides: design, synthesis, and applications. ACS NANO 2014; 8:1972-94. [PMID: 24559246 DOI: 10.1021/nn4057269] [Citation(s) in RCA: 694] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The intrinsic property of cell-penetrating peptides (CPPs) to deliver therapeutic molecules (nucleic acids, drugs, imaging agents) to cells and tissues in a nontoxic manner has indicated that they may be potential components of future drugs and disease diagnostic agents. These versatile peptides are simple to synthesize, functionalize, and characterize yet are able to deliver covalently or noncovalently conjugated bioactive cargos (from small chemical drugs to large plasmid DNA) inside cells, primarily via endocytosis, in order to obtain high levels of gene expression, gene silencing, or tumor targeting. Typically, CPPs are often passive and nonselective yet must be functionalized or chemically modified to create effective delivery vectors that succeed in targeting specific cells or tissues. Furthermore, the design of clinically effective systemic delivery systems requires the same amount of attention to detail in both design of the delivered cargo and the cell-penetrating peptide used to deliver it.
Collapse
Affiliation(s)
- Dana Maria Copolovici
- Laboratory of Molecular Biotechnology, Institute of Technology, Tartu University , 504 11 Tartu, Estonia
| | | | | | | |
Collapse
|
9
|
Youn P, Chen Y, Furgeson DY. A myristoylated cell-penetrating peptide bearing a transferrin receptor-targeting sequence for neuro-targeted siRNA delivery. Mol Pharm 2014; 11:486-95. [PMID: 24387132 PMCID: PMC3993914 DOI: 10.1021/mp400446v] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many neurodegenerative disorders (NDDs) are characterized by aggregation of aberrant proteins and extensive oxidative stress in brain cells. As a treatment option for NDDs, RNA interference (RNAi) is a promising approach to suppress the activation of abnormal genes and negative regulators of antioxidant genes. Efficient neuro-targeted siRNA delivery requires a delicate optimization of nucleic acid carriers, quite distinct from putative pDNA carriers in regard to stable condensation and serum protection of siRNA, blood-brain barrier (BBB) bypass, effective siRNA delivery to brain cells, and functional release of bioactive siRNA at therapeutic levels. Here, we propose that a myristic acid conjugated, cell-penetrating peptide (transportan; TP), equipped with a transferrin receptor-targeting peptide (myr-TP-Tf), will lead to stable encapsulation of siRNA and targeted delivery of siRNA to brain cells overcoming the BBB. Myr-TP-Tf was successfully prepared by solid-phase peptide synthesis with high purity. Myr-TP-Tf-siRNA complexes formulated at a 20:1 (peptide-siRNA) molar ratio provided prolonged siRNA stability against serum and ribonuclease treatment. Fluorescence images clearly indicated that siRNA uptake was successfully achieved by myr-TP-Tf complexes in both a murine brain endothelioma and a human glioma cell line. The luciferase assay and the human placental alkaline phosphatase (hPAP) reporter assay results demonstrated the functional gene silencing effect of myr-TP-Tf-siRNA complexes in a human glioma cell line as well as in primary murine neurons/astrocytes, supportive of successful release of bioactive siRNA into the cytosol. Finally, the transcytosis assay revealed that favorable siRNA transport via receptor-mediated transcytosis was mediated by myr-TP-Tf complexes. In summary, these data suggest that myr-TP-Tf peptides possess promising properties as a vehicle for neuro-targeted siRNA delivery. We will further study this peptide in vitro and in vivo for transport mechanism kinetics and to validate its capability to deliver siRNA to the brain, respectively.
Collapse
Affiliation(s)
- Pilju Youn
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah , Salt Lake City, Utah 84112, United States
| | | | | |
Collapse
|
10
|
Gherardini L, Bardi G, Gennaro M, Pizzorusso T. Novel siRNA delivery strategy: a new "strand" in CNS translational medicine? Cell Mol Life Sci 2014; 71:1-20. [PMID: 23508806 PMCID: PMC11113879 DOI: 10.1007/s00018-013-1310-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/12/2022]
Abstract
RNA interference has been envisaged as a powerful tool for molecular and clinical investigation with a great potential for clinical applications. In recent years, increased understanding of cancer biology and stem cell biology has dramatically accelerated the development of technology for cell and gene therapy in these areas. This paper is a review of the most recent report of innovative use of siRNA to benefit several central nervous system diseases. Furthermore, a description is made of innovative strategies of delivery into the brain by means of viral and non-viral vectors with high potential for translation into clinical use. Problems are also highlighted that might hamper the transition from bench to bed, analyzing the lack of reliable preclinical models with predictive validity and the lack of effective delivery systems, which are able to overcome biological barriers and specifically reach the brain site of action.
Collapse
Affiliation(s)
| | - Giuseppe Bardi
- Center for MicroBioRobotics @SSSA, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | | | - Tommaso Pizzorusso
- Institute of Neuroscience, CNR, Via Moruzzi, 1 56124 Pisa, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Florence, Italy
| |
Collapse
|
11
|
O'Mahony AM, Godinho BMDC, Cryan JF, O'Driscoll CM. Non-viral nanosystems for gene and small interfering RNA delivery to the central nervous system: formulating the solution. J Pharm Sci 2013; 102:3469-84. [PMID: 23893329 DOI: 10.1002/jps.23672] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 01/06/2023]
Abstract
The application of gene and RNAi-based therapies to the central nervous system (CNS), for neurological and neurodegenerative disease, offers immense potential. The issue of delivery to the target site remains the single greatest barrier to achieving this. There are challenges to gene and siRNA (small interfering RNA) delivery which are specific to the CNS, including the post-mitotic nature of neurons, their resistance to transfection and the blood-brain barrier. Viral vectors are highly efficient and have been used extensively in pre-clinical studies for CNS diseases. However, non-viral delivery offers an exciting alternative. In this review, we will discuss the extracellular and intracellular barriers to gene and siRNA delivery in the CNS. Our focus will be directed towards various non-viral strategies used to overcome these barriers. In this regard, we describe selected non-viral vectors and categorise them according to the barriers that they overcome by their formulation and targeting strategies. Some of the difficulties associated with non-viral vectors such as toxicity, large-scale manufacture and route of administration are discussed. We provide examples of optimised formulation approaches and discuss regulatory hurdles to clinical validation. Finally, we outline the components of an "ideal" formulation, based on a critical analysis of the approaches highlighted throughout the review.
Collapse
Affiliation(s)
- Aoife M O'Mahony
- Pharmacodelivery Group, School of Pharmacy, University College Cork, Ireland
| | | | | | | |
Collapse
|
12
|
Xia H, Gu G, Hu Q, Liu Z, Jiang M, Kang T, Miao D, Song Q, Yao L, Tu Y, Chen H, Gao X, Chen J. Activatable Cell Penetrating Peptide-Conjugated Nanoparticles with Enhanced Permeability for Site-Specific Targeting Delivery of Anticancer Drug. Bioconjug Chem 2013; 24:419-30. [DOI: 10.1021/bc300520t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Huimin Xia
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
- Shanghai Institute for Food and Drug Control (SIFDC), 1500 Zhangheng Road,
Shanghai, 201203, PR China
| | - Guangzhi Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Zhongyang Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Mengyin Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong, 250355, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Deyu Miao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shangdong, 250355, PR China
| | - Qingxiang Song
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Lei Yao
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Yifan Tu
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| | - Hongzhuan Chen
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Xiaoling Gao
- Department of
Pharmacology,
Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai,
200025, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, PR China
| |
Collapse
|
13
|
Godinho BMDC, Ogier JR, Darcy R, O’Driscoll CM, Cryan JF. Self-assembling Modified β-Cyclodextrin Nanoparticles as Neuronal siRNA Delivery Vectors: Focus on Huntington’s Disease. Mol Pharm 2013; 10:640-9. [DOI: 10.1021/mp3003946] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Bruno M. D. C. Godinho
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Cork,
Ireland
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
| | - Julien R. Ogier
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | - Raphael Darcy
- Centre for
Synthesis and Chemical
Biology, University College Dublin, Dublin,
Ireland
| | | | - John F. Cryan
- Department of Anatomy
and Neuroscience, University College Cork, Cork, Ireland
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Cork, Ireland
| |
Collapse
|
14
|
O’Mahony AM, Desgranges S, Ogier J, Quinlan A, Devocelle M, Darcy R, Cryan JF, O’Driscoll CM. In Vitro Investigations of the Efficacy of Cyclodextrin-siRNA Complexes Modified with Lipid-PEG-Octaarginine: Towards a Formulation Strategy for Non-viral Neuronal siRNA Delivery. Pharm Res 2012. [DOI: 10.1007/s11095-012-0945-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
O’Mahony AM, Godinho BMDC, Ogier J, Devocelle M, Darcy R, Cryan JF, O’Driscoll CM. Click-modified cyclodextrins as nonviral vectors for neuronal siRNA delivery. ACS Chem Neurosci 2012; 3:744-52. [PMID: 23077718 DOI: 10.1021/cn3000372] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 08/03/2012] [Indexed: 12/27/2022] Open
Abstract
RNA interference (RNAi) holds great promise as a strategy to further our understanding of gene function in the central nervous system (CNS) and as a therapeutic approach for neurological and neurodegenerative diseases. However, the potential for its use is hampered by the lack of siRNA delivery vectors which are both safe and highly efficient. Cyclodextrins have been shown to be efficient and low toxicity gene delivery vectors in various cell types in vitro. However, to date, they have not been exploited for delivery of oligonucleotides to neurons. To this end, a modified β-cyclodextrin (CD) vector was synthesized, which complexed siRNA to form cationic nanoparticles of less than 200 nm in size. Furthermore, it conferred stability in serum to the siRNA cargo. The in vitro performance of the CD in both immortalized hypothalamic neurons and primary hippocampal neurons was evaluated. The CD facilitated high levels of intracellular delivery of labeled siRNA, while maintaining at least 80% cell viability. Significant gene knockdown was achieved, with a reduction in luciferase expression of up to 68% and a reduction in endogenous glyceraldehyde phosphate dehydrogenase (GAPDH) expression of up to 40%. To our knowledge, this is the first time that a modified CD has been used as a safe and efficacious vector for siRNA delivery into neuronal cells.
Collapse
Affiliation(s)
- A. M. O’Mahony
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| | - B. M. D. C. Godinho
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| | - J. Ogier
- Centre for Synthesis and Chemical
Biology, UCD Conway Institute, University College Dublin, Ireland
| | - M. Devocelle
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - R. Darcy
- Centre for Synthesis and Chemical
Biology, UCD Conway Institute, University College Dublin, Ireland
| | - J. F. Cryan
- Department
of Anatomy and Neuroscience, University College Cork, Ireland
| | - C. M. O’Driscoll
- Pharmacodelivery Group, School
of Pharmacy, University College Cork, Ireland
| |
Collapse
|
16
|
MacEwan SR, Chilkoti A. Harnessing the power of cell-penetrating peptides: activatable carriers for targeting systemic delivery of cancer therapeutics and imaging agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 5:31-48. [PMID: 22977001 DOI: 10.1002/wnan.1197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Targeted delivery of cancer therapeutics and imaging agents aims to enhance the accumulation of these molecules in a solid tumor while avoiding uptake in healthy tissues. Tumor-specific accumulation has been pursued with passive targeting by the enhanced permeability and retention effect, as well as with active targeting strategies. Active targeting is achieved by functionalization of carriers to allow specific interactions between the carrier and the tumor environment. Functionalization of carriers with ligands that specifically interact with overexpressed receptors on cancer cells represents a classic approach to active tumor targeting. Cell-penetrating peptides (CPPs) provide a non-specific and receptor-independent mechanism to enhance cellular uptake that offers an exciting alternative to traditional active targeting approaches. While the non-specificity of CPP-mediated internalization has the intriguing potential to make this approach applicable to a wide range of tumor types, their promiscuity is, however, a significant barrier to their clinical utility for systemically administered applications. Many approaches have been investigated to selectively turn on the function of systemically delivered CPP-functionalized carriers specifically in tumors to achieve targeted delivery of cancer therapeutics and imaging agents.
Collapse
Affiliation(s)
- Sarah R MacEwan
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | |
Collapse
|
17
|
Hoyer J, Neundorf I. Knockdown of a G protein-coupled receptor through efficient peptide-mediated siRNA delivery. J Control Release 2012; 161:826-34. [DOI: 10.1016/j.jconrel.2012.05.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/05/2012] [Accepted: 05/08/2012] [Indexed: 12/18/2022]
|
18
|
Abstract
Over the past two decades, gene therapy has garnered tremendous attention and is heralded by many as the ultimate cure to treat diseases such as cancer, viral infections, and inherited genetic disorders. However, the therapeutic applications of nucleic acids extend beyond the delivery of double-stranded DNA and subsequent expression of deficient gene products in diseased tissue. Other strategies include antisense oligonucleotides and most notably RNA interference (RNAi). Antisense strategies bear great potential for the treatment of diseases that are caused by misspliced mRNA, and RNAi is a universal and extraordinarily efficient tool to knock down the expression of virtually any gene by specific degradation of the desired target mRNA. However, because of the hurdles associated with effective delivery of nucleic acids across a cell membrane, the initial euphoria surrounding siRNA therapy soon subsided. The ability of oligonucleotides to cross the plasma membrane is hampered by their size and highly negative charge. Viral vectors have long been the gold standard to overcome this barrier, but they are associated with severe immunogenic effects and possible tumorigenesis. Cell-penetrating peptides (CPPs), cationic peptides that can translocate through the cell membrane independent of receptors and can transport cargo including proteins, small organic molecules, nanoparticles, and oligonucleotides, represent a promising class of nonviral delivery vectors. This Account focuses on peptide carrier systems for the cellular delivery of various types of therapeutic nucleic acids with a special emphasis on cell-penetrating peptides. We also emphasize the clinical relevance of this research through examples of promising in vivo studies. Although CPPs are often derived from naturally occurring protein transduction domains, they can also be artificially designed. Because CPPs typically include many positively charged amino acids, those electrostatic interactions facilitate the formation of complexes between the carriers and the oligonucleotides. One drawback of CPP-mediated delivery includes entrapment of the cargo in endosomes because uptake tends to be endocytic: coupling of fatty acids or endosome-disruptive peptides to the CPPs can overcome this problem. CPPs can also lack specificity for a single cell type, which can be addressed through the use of targeting moieties, such as peptide ligands that bind to specific receptors. Researchers have also applied these strategies to cationic carrier systems for nonviral oligonucleotide delivery, such as liposomes or polymers, but CPPs tend to be less cytotoxic than other delivery vehicles.
Collapse
Affiliation(s)
- Jan Hoyer
- Translational Centre for Regenerative Medicine, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany
| | - Ines Neundorf
- Translational Centre for Regenerative Medicine, University of Leipzig, Philipp-Rosenthal-Strasse 55, 04103 Leipzig, Germany
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Zülpicher Strasse 47, 50674 Cologne, Germany
| |
Collapse
|
19
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
20
|
Abstract
SiRNA is the trigger of RNA interference, a mechanism discovered in the late 1990s. To release the therapeutic potential of this versatile but large and fragile molecule, excipients are used which either interact by electrostatic interaction, passively encapsulate siRNA or are covalently attached to enable specific and safe delivery of the drug substance. Controlling the delicate balance between protective complexation and release of siRNA at the right point and time is done by understanding excipients–siRNA interactions. These can be lipids, polymers such as PEI, PLGA, Chitosans, Cyclodextrins, as well as aptamers and peptides. This review describes the mechanisms of interaction of the most commonly used siRNA delivery vehicles, and looks at the results of their clinical and preclinical studies.
Collapse
Affiliation(s)
- Katharina Bruno
- Novartis Pharma AG, Technical Research & Development (TRD), Pharmaceutical and Analytical Development (PHAD), CH-4057 Basel, Switzerland.
| |
Collapse
|
21
|
Ivacik D, Ely A, Arbuthnot P. Countering hepatitis B virus infection using RNAi: how far are we from the clinic? Rev Med Virol 2011; 21:383-96. [PMID: 21913277 DOI: 10.1002/rmv.705] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 12/14/2022]
Abstract
Globally, persistent HBV infection is a significant cause of public health problems. Currently available HBV therapies have variable efficacy and there is a need to develop improved treatment to prevent cirrhosis and hepatocellular carcinoma. Although RNA interference (RNAi)-based approaches have shown promise, accomplishing safe and sustained silencing by RNAi activators, as well as their efficient delivery to hepatocytes have hampered clinical translation of this very promising technology. Expressed silencers may be produced in a sustained manner from stable DNA templates, which makes them suited to treatment of chronic HBV infection. DNA expression cassettes can be incorporated into both viral and non-viral vectors, but in vivo delivery of these cassettes with non-viral vectors is currently inefficient. Synthetic short interfering RNAs (siRNAs), which may be chemically modified to improve stability, specificity and efficacy, are more conveniently delivered to their cytoplasmic sites of action with synthetic non-viral vectors. However, the short duration of action of this class of RNAi activator is a drawback for treatment of chronic HBV infection. Despite the impressive progress that has been made in developing highly effective HBV gene silencers, challenges continue to face implementation of RNAi-based HBV therapy. This review will discuss the current status of the topic and consider the developments that are required to advance RNAi-based HBV therapy to clinical application.
Collapse
Affiliation(s)
- Dejana Ivacik
- Antiviral Gene Therapy Research Unit, School of Pathology, Health Sciences Faculty, University of the Witwatersrand, Johannesburg, South Africa
| | | | | |
Collapse
|
22
|
Chung HJ, Hong CA, Lee SH, Jo SD, Park TG. Reducible siRNA Dimeric Conjugates for Efficient Cellular Uptake and Gene Silencing. Bioconjug Chem 2011; 22:299-306. [DOI: 10.1021/bc100438m] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hyun Jung Chung
- Department of Biological Sciences and ‡The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Cheol Am Hong
- Department of Biological Sciences and ‡The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Soo Hyeon Lee
- Department of Biological Sciences and ‡The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Sung Duk Jo
- Department of Biological Sciences and ‡The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| | - Tae Gwan Park
- Department of Biological Sciences and ‡The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 305-701, Republic of Korea
| |
Collapse
|
23
|
Won YW, Jang YL, Kim JS, Jeong JH, Kim YH. Non-viral siRNA Delivery Systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.s.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Youn YS, Lee JH, Jeong SH, Shin BS, Park ES. Pharmaceutical Usefulness of Biopharmaceutics Classification System: Overview and New Trend. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2010. [DOI: 10.4333/kps.2010.40.s.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|