1
|
Rout AK, Gautam S, Kumar Mishra V, Bopardikar M, Dehury B, Singh H. NMR insights into β-Lactamase activity of UVI31+ Protein from Chlamydomonas reinhardtii. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 362:107689. [PMID: 38677224 DOI: 10.1016/j.jmr.2024.107689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
β-Lactamases (EC 3.5.2.6) confer resistance against β-lactam group-containing antibiotics in bacteria and higher eukaryotes, including humans. Pathogenic bacterial resistance against β-lactam antibiotics is a primary concern for potential therapeutic developments and drug targets. Here, we report putative β-lactamase activity, sulbactam binding (a β-lactam analogue) in the low μM affinity range, and site-specific interaction studies of a 14 kDa UV- and dark-inducible protein (abbreviated as UVI31+, a BolA homologue) from Chlamydomonas reinhartii. Intriguingly, the solution NMR structure of UVI31 + bears no resemblance to other known β-lactamases; however, the sulbactam binding is found at two sites rich in positively charged residues, mainly at the L2 loop regions and the N-terminus. Using NMR spectroscopy, ITC and MD simulations, we map the ligand binding sites in UVI31 + providing atomic-level insights into its β-lactamase activity. Current study is the first report on β-lactamase activity of UVI31+, a BolA analogue, from C. reinhartii. Furthermore, our mutation studies reveal that the active site serine-55 is crucial for β-lactamase activity.
Collapse
Affiliation(s)
- Ashok K Rout
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; Institute of Chemistry and Metabolomics, University of Luebeck, 23562 Luebeck, Germany
| | - Saurabh Gautam
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | - Mandar Bopardikar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, 760010 Odisha, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Himanshu Singh
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, 760010 Odisha, India.
| |
Collapse
|
2
|
Penicillanic Acid Sulfones Inactivate the Extended-Spectrum β-Lactamase CTX-M-15 through Formation of a Serine-Lysine Cross-Link: an Alternative Mechanism of β-Lactamase Inhibition. mBio 2022; 13:e0179321. [PMID: 35612361 PMCID: PMC9239225 DOI: 10.1128/mbio.01793-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
β-Lactamases hydrolyze β-lactam antibiotics and are major determinants of antibiotic resistance in Gram-negative pathogens. Enmetazobactam (formerly AAI101) and tazobactam are penicillanic acid sulfone (PAS) β-lactamase inhibitors that differ by an additional methyl group on the triazole ring of enmetazobactam, rendering it zwitterionic. In this study, ultrahigh-resolution X-ray crystal structures and mass spectrometry revealed the mechanism of PAS inhibition of CTX-M-15, an extended-spectrum β-lactamase (ESBL) globally disseminated among Enterobacterales. CTX-M-15 crystals grown in the presence of enmetazobactam or tazobactam revealed loss of the Ser70 hydroxyl group and formation of a lysinoalanine cross-link between Lys73 and Ser70, two residues critical for catalysis. Moreover, the residue at position 70 undergoes epimerization, resulting in formation of a d-amino acid. Cocrystallization of enmetazobactam or tazobactam with CTX-M-15 with a Glu166Gln mutant revealed the same cross-link, indicating that this modification is not dependent on Glu166-catalyzed deacylation of the PAS-acylenzyme. A cocrystal structure of enmetazobactam with CTX-M-15 with a Lys73Ala mutation indicates that epimerization can occur without cross-link formation and positions the Ser70 Cβ closer to Lys73, likely facilitating formation of the Ser70-Lys73 cross-link. A crystal structure of a tazobactam-derived imine intermediate covalently linked to Ser70, obtained after 30 min of exposure of CTX-M-15 crystals to tazobactam, supports formation of an initial acylenzyme by PAS inhibitors on reaction with CTX-M-15. These data rationalize earlier results showing CTX-M-15 deactivation by PAS inhibitors to involve loss of protein mass, and they identify a distinct mechanism of β-lactamase inhibition by these agents.
Collapse
|
3
|
Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem 2020; 208:112829. [DOI: 10.1016/j.ejmech.2020.112829] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 11/27/2022]
|
4
|
Kinetics of Sulbactam Hydrolysis by β-Lactamases, and Kinetics of β-Lactamase Inhibition by Sulbactam. Antimicrob Agents Chemother 2017; 61:AAC.01612-17. [PMID: 28971872 DOI: 10.1128/aac.01612-17] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
Sulbactam is one of four β-lactamase inhibitors in current clinical use to counteract drug resistance caused by degradation of β-lactam antibiotics by these bacterial enzymes. As a β-lactam itself, sulbactam is susceptible to degradation by β-lactamases. I investigated the Michaelis-Menten kinetics of sulbactam hydrolysis by 14 β-lactamases, representing clinically widespread groups within all four Ambler classes, i.e., CTX-M-15, KPC-2, SHV-5, and TEM-1 for class A; IMP-1, NDM-1, and VIM-1 for class B; Acinetobacter baumannii ADC-7, Pseudomonas aeruginosa AmpC, and Enterobacter cloacae P99 for class C; and OXA-10, OXA-23, OXA-24, and OXA-48 for class D. All of the β-lactamases were able to hydrolyze sulbactam, although they varied widely in their kinetic constants for the reaction, even within each class. I also investigated the inactivation kinetics of the inhibition of these enzymes by sulbactam. The class A β-lactamases varied widely in their susceptibility to inhibition, the class C and D enzymes were very weakly inhibited, and the class B enzymes were essentially or completely unaffected. In addition, we measured the sulbactam turnover number, the sulbactam/enzyme molar ratio required for complete inhibition of each enzyme. Class C enzymes had the lowest turnover numbers, class A enzymes varied widely, and class D enzymes had very high turnover numbers. These results are valuable for understanding which β-lactamases ought to be well inhibited by sulbactam. Moreover, since sulbactam has intrinsic antibacterial activity against Acinetobacter species pathogens, these results contribute to understanding β-lactamase-mediated sulbactam resistance in Acinetobacter, especially due to the action of the widespread class D enzymes.
Collapse
|
5
|
Cyclic Boronates Inhibit All Classes of β-Lactamases. Antimicrob Agents Chemother 2017; 61:AAC.02260-16. [PMID: 28115348 PMCID: PMC5365654 DOI: 10.1128/aac.02260-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/17/2017] [Indexed: 01/09/2023] Open
Abstract
β-Lactamase-mediated resistance is a growing threat to the continued use of β-lactam antibiotics. The use of the β-lactam-based serine-β-lactamase (SBL) inhibitors clavulanic acid, sulbactam, and tazobactam and, more recently, the non-β-lactam inhibitor avibactam has extended the utility of β-lactams against bacterial infections demonstrating resistance via these enzymes. These molecules are, however, ineffective against the metallo-β-lactamases (MBLs), which catalyze their hydrolysis. To date, there are no clinically available metallo-β-lactamase inhibitors. Coproduction of MBLs and SBLs in resistant infections is thus of major clinical concern. The development of “dual-action” inhibitors, targeting both SBLs and MBLs, is of interest, but this is considered difficult to achieve due to the structural and mechanistic differences between the two enzyme classes. We recently reported evidence that cyclic boronates can inhibit both serine- and metallo-β-lactamases. Here we report that cyclic boronates are able to inhibit all four classes of β-lactamase, including the class A extended spectrum β-lactamase CTX-M-15, the class C enzyme AmpC from Pseudomonas aeruginosa, and class D OXA enzymes with carbapenem-hydrolyzing capabilities. We demonstrate that cyclic boronates can potentiate the use of β-lactams against Gram-negative clinical isolates expressing a variety of β-lactamases. Comparison of a crystal structure of a CTX-M-15:cyclic boronate complex with structures of cyclic boronates complexed with other β-lactamases reveals remarkable conservation of the small-molecule binding mode, supporting our proposal that these molecules work by mimicking the common tetrahedral anionic intermediate present in both serine- and metallo-β-lactamase catalysis.
Collapse
|
6
|
Heidari-Torkabadi H, Bethel CR, Ding Z, Pusztai-Carey M, Bonnet R, Bonomo RA, Carey PR. “Mind the Gap”: Raman Evidence for Rapid Inactivation of CTX-M-9 β-Lactamase Using Mechanism-Based Inhibitors that Bridge the Active Site. J Am Chem Soc 2015; 137:12760-3. [DOI: 10.1021/jacs.5b10007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christopher R. Bethel
- Research
Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | | | | | - Richard Bonnet
- Clermont Université, UMR 1071 INSERM/Université d’Auvergne, Clermont-Ferrand, France
| | - Robert A. Bonomo
- Research
Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio 44106, United States
| | | |
Collapse
|
7
|
Insight into the effect of inhibitor resistant S130G mutant on physico-chemical properties of SHV type beta-lactamase: a molecular dynamics study. PLoS One 2014; 9:e112456. [PMID: 25479359 PMCID: PMC4257546 DOI: 10.1371/journal.pone.0112456] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022] Open
Abstract
Bacterial resistance is a serious threat to human health. The production of β-lactamase, which inactivates β-lactams is most common cause of resistance to the β-lactam antibiotics. The Class A enzymes are most frequently encountered among the four β-lactamases in the clinic isolates. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. SHV and TEM type are known to be most common class A β-lactamases. In the present study, we have analyzed the effect of inhibitor resistant S130G point mutation of SHV type Class-A β-lactamase using molecular dynamics and other in silico approaches. Our study involved the use of different in silico methods to investigate the affect of S130G point mutation on the major physico-chemical properties of SHV type class A β-lactamase. We have used molecular dynamics approach to compare the dynamic behaviour of native and S130G mutant form of SHV β-lactamase by analyzing different properties like root mean square deviation (RMSD), H-bond, Radius of gyration (Rg) and RMS fluctuation of mutation. The results clearly suggest notable loss in the stability of S130G mutant that may further lead to decrease in substrate specificity of SHV. Molecular docking further indicates that S130G mutation decreases the binding affinity of all the three inhibitors in clinical practice.
Collapse
|
8
|
Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD. β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme. J Am Chem Soc 2013; 135:18358-69. [PMID: 24219313 PMCID: PMC4042847 DOI: 10.1021/ja403598g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - David C. McLeod
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Kerri M. Smith
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yan Xu
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Tao Che
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
- Center for Drug Discovery, Design, and Development, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
9
|
Liang YH, Gao R, Su XD. Structural insights into the broadened substrate profile of the extended-spectrum β-lactamase OXY-1-1 fromKlebsiella oxytoca. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1460-7. [DOI: 10.1107/s090744491203466x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/03/2012] [Indexed: 11/10/2022]
Abstract
Klebsiella oxytocais a pathogen that causes serious infections in hospital patients. It shows resistance to many clinically used β-lactam antibiotics by producing chromosomally encoded OXY-family β-lactamases. Here, the crystal structure of an OXY-family β-lactamase, OXY-1-1, determined at 1.93 Å resolution is reported. The structure shows that the OXY-1-1 β-lactamase has a typical class A β-lactamase fold and exhibits greater similarity to CTX-M-type β-lactamases than to TEM-family or SHV-family β-lactamases. It is also shown that the enzyme provides more space around the active cavity for theR1andR2substituents of β-lactam antibiotics. The half-positive/half-negative distribution of surface electrostatic potential in the substrate-binding pocket indicates the preferred properties of substrates or inhibitors of the enzyme. The results reported here provide a structural basis for the broadened substrate profile of the OXY-family β-lactamases.
Collapse
|
10
|
Rodkey EA, Drawz SM, Sampson JM, Bethel CR, Bonomo RA, van den Akker F. Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase. J Am Chem Soc 2012; 134:16798-804. [PMID: 22974281 DOI: 10.1021/ja3073676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rise of inhibitor-resistant and other β-lactamase variants is generating an interest in developing new β-lactamase inhibitors to complement currently available antibiotics. To gain insight into the chemistry of inhibitor recognition, we determined the crystal structure of the inhibitor preacylation complex of sulbactam, a clinical β-lactamase inhibitor, bound in the active site of the S70C variant of SHV-1 β-lactamase, a resistance enzyme that is normally present in Klebsiella pneumoniae. The S70C mutation was designed to affect the reactivity of that catalytic residue to allow for capture of the preacylation complex. Unexpectedly, the 1.45 Å resolution inhibitor complex structure revealed that residue C70 is involved in a sulfenamide bond with K73. Such a covalent bond is not present in the wild-type SHV-1 or in an apo S70C structure also determined in this study. This bond likely contributed significantly to obtaining the preacylation complex with sulbactam due to further decreased reactivity toward substrates. The intact sulbactam is positioned in the active site such that its carboxyl moiety interacts with R244, S130, and T235 and its carbonyl moiety is situated in the oxyanion hole. To our knowledge, in addition to being the first preacylation inhibitor β-lactamase complex, this is also the first observation of a sulfenamide bond between a cysteine and lysine in an active site. Not only could our results aid, therefore, structure-based inhibitor design efforts in class A β-lactamases, but the sulfenamide-bond forming approach to yield preacylation complexes could also be applied to other classes of β-lactamases and penicillin-binding proteins with the SXXK motif.
Collapse
Affiliation(s)
- Elizabeth A Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
11
|
Ke W, Rodkey EA, Sampson JM, Skalweit MJ, Sheri A, Pagadala SRR, Nottingham MD, Buynak JD, Bonomo RA, van den Akker F. The importance of the trans-enamine intermediate as a β-lactamase inhibition strategy probed in inhibitor-resistant SHV β-lactamase variants. ChemMedChem 2012; 7:1002-8. [PMID: 22438274 DOI: 10.1002/cmdc.201200006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Indexed: 11/07/2022]
Abstract
The ability of bacteria to express inhibitor-resistant (IR) β-lactamases is stimulating the development of novel inhibitors of these enzymes. The 2'β-glutaroxypenicillinate sulfone, SA2-13, was previously designed to enhance the stabilization of the deacylation-refractory, trans-enamine inhibitory intermediate. To test whether this mode of inhibition can overcome different IR mutations, we determined the binding mode of SA2-13 through X-ray crystallography, obtaining co-crystals of the inhibitor-protein complex by soaking crystals of the IR sulfhydryl variable (SHV) β-lactamase variants S130G and M69V with the inhibitor. The 1.45 Å crystal structure of the S130G SHV:SA2-13 complex reveals that SA2-13 is still able to form the stable trans-enamine intermediate similar to the wild-type complex structure, yet with its carboxyl linker shifted deeper into the active site in the space vacated by the S130G mutation. In contrast, data from crystals of the M69V SHV:SA2-13 complex at 1.3 Å did not reveal clear inhibitor density indicating that this IR variant disfavors the trans-enamine conformation, likely due to a subtle shift in A237.
Collapse
Affiliation(s)
- Wei Ke
- Department of Biochemistry, RT500, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Exploring the inhibition of CTX-M-9 by beta-lactamase inhibitors and carbapenems. Antimicrob Agents Chemother 2011; 55:3465-75. [PMID: 21555770 DOI: 10.1128/aac.00089-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently, CTX-M β-lactamases are among the most prevalent and most heterogeneous extended-spectrum β-lactamases (ESBLs). In general, CTX-M enzymes are susceptible to inhibition by β-lactamase inhibitors. However, it is unknown if the pathway to inhibition by β-lactamase inhibitors for CTX-M ESBLs is similar to TEM and SHV β-lactamases and why bacteria possessing only CTX-M ESBLs are so susceptible to carbapenems. Here, we have performed a kinetic analysis and timed electrospray ionization mass spectrometry (ESI-MS) studies to reveal the intermediates of inhibition of CTX-M-9, an ESBL representative of this family of enzymes. CTX-M-9 β-lactamase was inactivated by sulbactam, tazobactam, clavulanate, meropenem, doripenem, ertapenem, and a 6-methylidene penem, penem 1. K(i) values ranged from 1.6 ± 0.3 μM (mean ± standard error) for tazobactam to 0.02 ± 0.01 μM for penem 1. Before and after tryptic digestion of the CTX-M-9 β-lactamase apo-enzyme and CTX-M-9 inactivation by inhibitors (meropenem, clavulanate, sulbactam, tazobactam, and penem 1), ESI-MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) identified different adducts attached to the peptide containing the active site Ser70 (+52, 70, 88, and 156 ± 3 atomic mass units). This study shows that a multistep inhibition pathway results from modification or fragmentation with clavulanate, sulbactam, and tazobactam, while a single acyl enzyme intermediate is detected when meropenem and penem 1 inactivate CTX-M-9 β-lactamase. More generally, we propose that Arg276 in CTX-M-9 plays an essential role in the recognition of the C(3) carboxylate of inhibitors and that the localization of this positive charge to a "region of the active site" rather than a specific residue represents an important evolutionary strategy used by β-lactamases.
Collapse
|
13
|
Paradigm shift in discovering next-generation anti-infective agents: targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med Chem 2010; 2:1005-35. [DOI: 10.4155/fmc.10.185] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Small molecules that can attenuate bacterial toxin production or biofilm formation have the potential to solve the bacteria resistance problem. Although several molecules, which inhibit bacterial cell-to-cell communication (quorum sensing), biofilm formation and toxin production, have been discovered, there is a paucity of US FDA-approved drugs that target these processes. Here, we review the current understanding of quorum sensing in important pathogens such as Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus and provide examples of experimental molecules that can inhibit both known and unknown targets in bacterial virulence factor production and biofilm formation. Structural data for protein targets that are involved in both quorum sensing and cyclic diguanylic acid signaling are needed to aid the development of molecules with drug-like properties in order to target bacterial virulence factors production and biofilm formation.
Collapse
|
14
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
15
|
Kalp M, Buynak JD, Carey PR. Role of E166 in the imine to enamine tautomerization of the clinical beta-lactamase inhibitor sulbactam. Biochemistry 2009; 48:10196-8. [PMID: 19791797 DOI: 10.1021/bi901416t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inhibitors of class A beta-lactamases, such as sulbactam, undergo a complex series of chemical reactions in the enzyme active site. Formation of a trans-enamine acyl-enzyme via a hydrolysis-prone imine is responsible for transient inhibition of the enzyme. Although the imine to enamine tautomerization is crucial to inhibition of the enzyme, there are no experimental data to suggest how this chemical transformation is catalyzed in the active site. In this report, we show that E166 acts as a general base to promote the imine to enamine tautomerization.
Collapse
Affiliation(s)
- Matthew Kalp
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
16
|
Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. Beta-lactams and beta-lactamase-inhibitors in current- or potential-clinical practice: a comprehensive update. Crit Rev Microbiol 2009; 35:81-108. [PMID: 19514910 DOI: 10.1080/10408410902733979] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The use of successive generations of beta-lactams has selected successive generations of beta-lactamases including CTX-M ESBLs, AmpC beta-lactamases, and KPC carbapenamases in Enterobacteriaceae. Moreover, this cephalosporin resistance, along with rising resistance to fluoroquinolones, is now driving the use of carbapenems and unfortunately the carbapenem resistance has emerged markedly, especially in Acinetobacter spp. due to OXA- and metallo-carbapenemases. The industry responded to the challenge of rising resistance and recently developed some novel beta-lactams such as ceftobiprole, ceftaroline etc. and many beta-lactam compounds, including beta-lactamase-inhibitors, such as BMS-247243, S-3578, RWJ-54428, CS-023, SMP-601, NXL 104, BAL 30376, LK 157, and so on are under trials. This review provides the comprehensive accounts of the developments in penicillins, cephalosporins, carbapenems, and beta-lactamase-inhibitors, and the insight about medicinal chemistry, mechanism(s) of action and resistance, potential strategies to overcome resistance due to beta-lactamases, and also the recent advancements in the development of newer beta-lactam compounds; some of which are still under trials and yet to be classified. This review will fill the gap since previously published reviews and will serve as a comprehensive update on the current topic.
Collapse
Affiliation(s)
- M Shahid
- Section of Antimicrobial Resistance Researches and Molecular Biology, Department of Microbiology, Jawaharlal Nehru Medical College & Hospital, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India.
| | | | | | | | | | | | | |
Collapse
|
17
|
Tioni MF, Llarrull LI, Poeylaut-Palena AA, Martí MA, Saggu M, Periyannan GR, Mata EG, Bennett B, Murgida DH, Vila AJ. Trapping and characterization of a reaction intermediate in carbapenem hydrolysis by B. cereus metallo-beta-lactamase. J Am Chem Soc 2009; 130:15852-63. [PMID: 18980308 DOI: 10.1021/ja801169j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metallo-beta-lactamases hydrolyze most beta-lactam antibiotics. The lack of a successful inhibitor for them is related to the previous failure to characterize a reaction intermediate with a clinically useful substrate. Stopped-flow experiments together with rapid freeze-quench EPR and Raman spectroscopies were used to characterize the reaction of Co(II)-BcII with imipenem. These studies show that Co(II)-BcII is able to hydrolyze imipenem in both the mono- and dinuclear forms. In contrast to the situation met for penicillin, the species that accumulates during turnover is an enzyme-intermediate adduct in which the beta-lactam bond has already been cleaved. This intermediate is a metal-bound anionic species with a novel resonant structure that is stabilized by the metal ion at the DCH or Zn2 site. This species has been characterized based on its spectroscopic features. This represents a novel, previously unforeseen intermediate that is related to the chemical nature of carbapenems, as confirmed by the finding of a similar intermediate for meropenem. Since carbapenems are the only substrates cleaved by B1, B2, and B3 lactamases, identification of this intermediate could be exploited as a first step toward the design of transition-state-based inhibitors for all three classes of metallo-beta-lactamases.
Collapse
Affiliation(s)
- Mariana F Tioni
- Instituto de Biologia Molecular y Celular de Rosario and Biophysics Section, Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Theoretical study of the reaction from 7-alkylidenecephalosporin sulfone to bicyclic intermediates in inhibiting β-lactamase. Struct Chem 2008. [DOI: 10.1007/s11224-008-9311-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Miani A, Raugei S, Carloni P, Helfand MS. Structure and Raman Spectrum of Clavulanic Acid in Aqueous Solution. J Phys Chem B 2007; 111:2621-30. [PMID: 17302447 DOI: 10.1021/jp066135u] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The calculation of the vibrational Raman spectrum of enzyme-bound beta-lactamase inhibitors may be of help to understand the mechanisms responsible for bacterial drug resistance. Here, we present a study of the solvation structure and the vibrational properties of clavulanate, an important beta-lactamase inhibitor, in aqueous solution as obtained from full quantum and hybrid empirical/quantum molecular dynamics simulations at ambient conditions. The analysis of the vibrational density of states indicates that hybrid empirical/quantum mechanical simulations are able to properly describe the vibrational levels of clavulanate in solution. In addition, we propose a computationally efficient protocol to calculate the vibrational Raman effect for large solute molecules in water, which is able to faithfully reproduce the experimentally recorded clavulanate Raman spectrum and discloses the possibility to employ hybrid simulations to assign the experimental Raman spectra of inhibitors bound to beta-lactamases.
Collapse
Affiliation(s)
- Andrea Miani
- SISSA/ISAS and INFM-DEMOCRITOS, Modeling Center for Research in Atomistic Simulation, via Beirut 2, I-34014, Trieste, Italy
| | | | | | | |
Collapse
|
20
|
Mulchande J, Martins L, Moreira R, Archer M, Oliveira TF, Iley J. The efficiency of C-4 substituents in activating the β-lactam scaffold towards serine proteases and hydroxide ion. Org Biomol Chem 2007; 5:2617-26. [DOI: 10.1039/b706622h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Buynak JD. Understanding the longevity of the beta-lactam antibiotics and of antibiotic/beta-lactamase inhibitor combinations. Biochem Pharmacol 2005; 71:930-40. [PMID: 16359643 DOI: 10.1016/j.bcp.2005.11.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 11/02/2005] [Accepted: 11/10/2005] [Indexed: 10/25/2022]
Abstract
Microbial resistance necessitates the search for new targets and new antibiotics. However, it is likely that resistance problems will eventually threaten these new products and it may, therefore, be instructive to review the successful employment of beta-lactam antibiotic/beta-lactamase inhibitor combinations to combat penicillin resistance. These combination drugs have proven successful for more than two decades, with inhibitor resistance still being relatively rare. The beta-lactamase inhibitors are mechanism-based irreversible inactivators. The ability of the inhibitors to avoid resistance may be due to the structural similarities between the substrate and inhibitor.
Collapse
Affiliation(s)
- John D Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| |
Collapse
|
22
|
Padayatti PS, Helfand MS, Totir MA, Carey MP, Carey PR, Bonomo RA, van den Akker F. High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 {beta}-lactamase. J Biol Chem 2005; 280:34900-7. [PMID: 16055923 DOI: 10.1074/jbc.m505333200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibiotic resistance mediated by constantly evolving beta-lactamases is a serious threat to human health. The mechanism of inhibition of these enzymes by therapeutic beta-lactamase inhibitors is probed using a novel approach involving Raman microscopy and x-ray crystallography. We have presented here the high resolution crystal structures of the beta-lactamase inhibitors sulbactam and clavulanic acid bound to the deacylation-deficient E166A variant of SHV-1 beta-lactamase. Our previous Raman measurements have identified the trans-enamine species for both inhibitors and were used to guide the soaking time and concentration to achieve full occupancy of the active sites. The two inhibitor-bound x-ray structures revealed a linear trans-enamine intermediate covalently attached to the active site Ser-70 residue. This intermediate was thought to play a key role in the transient inhibition of class A beta-lactamases. Both the Raman and x-ray data indicated that the clavulanic acid intermediate is decarboxylated. When compared with our previously determined tazobactam-bound inhibitor structure, our new inhibitor-bound structures revealed an increased disorder in the tail region of the inhibitors as well as in the enamine skeleton. The x-ray crystallographic observations correlated with the broadening of the O-C=C-N (enamine) symmetric stretch Raman band near 1595 cm(-1). Band broadening in the sulbactam and clavulanic acid inter-mediates reflected a heterogeneous conformational population that results from variations of torsional angles in the O-(C=O)-C=C=NH-C skeleton. These observations led us to conclude that the conformational stability of the trans-enamine form is critical for their transient inhibitory efficacy.
Collapse
Affiliation(s)
- Pius S Padayatti
- Department of Biochemistry, Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen Y, Delmas J, Sirot J, Shoichet B, Bonnet R. Atomic resolution structures of CTX-M beta-lactamases: extended spectrum activities from increased mobility and decreased stability. J Mol Biol 2005; 348:349-62. [PMID: 15811373 DOI: 10.1016/j.jmb.2005.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 01/28/2005] [Accepted: 02/02/2005] [Indexed: 11/30/2022]
Abstract
Extended spectrum beta-lactamases (ESBLs) confer bacterial resistance to third-generation cephalosporins, such as cefotaxime and ceftazidime, increasing hospital mortality rates. Whereas these antibiotics are almost impervious to classic beta-lactamases, such as TEM-1, ESBLs have one to four orders greater activity against them. The origins of this activity have been widely studied for the TEM and SHV-type ESBLs, but have received less attention for the CTX-M beta-lactamases, an emerging family that is now the dominant ESBL in several regions. To understand how CTX-M beta-lactamases achieve their remarkable activity, biophysical and structural studies were undertaken. Using reversible, two-state thermal denaturation, it was found that as these enzymes evolve a broader substrate range, they sacrifice stability. Thus, the mutant enzyme CTX-M-16 is eightfold more active against ceftazidime than the pseudo-wild-type CTX-M-14 but is 1.9 kcal/mol less stable. This is consistent with a "stability-activity tradeoff," similar to that observed in the evolution of other resistance enzymes. To investigate the structural basis of enzyme activity and stability, the structures of four CTX-M enzymes were determined by X-ray crystallography. The structures of CTX-M-14, CTX-M-27, CTX-M-9 and CTX-M-16 were determined to 1.10 Angstroms, 1.20 Angstroms, 0.98 Angstroms and 1.74 Angstroms resolution, respectively. The enzyme active sites resemble those of the narrow-spectrum TEM-1 and SHV-1, and not the enlarged sites typical of ESBL mutants such as TEM-52 and TEM-64. Instead, point substitutions leading to specific interactions may be responsible for the improved activity against ceftazidime and cefotaxime, consistent with observations first made for the related Toho-1 enzyme. The broadened substrate range of CTX-M-16 may result from coupled defects in the enzyme's B3 strand, which lines the active site. Substitutions Val231-->Ala and Asp240-->Gly, which convert CTX-M-14 into CTX-M-16, occur at either end of this strand. These defects appear to increase the mobility of B3 based on anisotropic B-factor analyses at ultrahigh resolution, consistent with stability loss and activity gain. The unusually high resolution of these structures that makes such analyses possible also makes them good templates for inhibitor discovery.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, Genentech Hall, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | | | | | |
Collapse
|
24
|
Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev 2005; 105:395-424. [PMID: 15700950 DOI: 10.1021/cr030102i] [Citation(s) in RCA: 692] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | |
Collapse
|
25
|
Pagan-Rodriguez D, Zhou X, Simmons R, Bethel CR, Hujer AM, Helfand MS, Jin Z, Guo B, Anderson VE, Ng LM, Bonomo RA. Tazobactam Inactivation of SHV-1 and the Inhibitor-resistant Ser130 → Gly SHV-1 β-Lactamase. J Biol Chem 2004; 279:19494-501. [PMID: 14757767 DOI: 10.1074/jbc.m311669200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The increasing number of bacteria resistant to combinations of beta-lactam and beta-lactamase inhibitors is creating great difficulties in the treatment of serious hospital-acquired infections. Understanding the mechanisms and structural basis for the inactivation of these inhibitor-resistant beta-lactamases provides a rationale for the design of novel compounds. In the present work, SHV-1 and the Ser(130) --> Gly inhibitor-resistant variant of SHV-1 beta-lactamase were inactivated with tazobactam, a potent class A beta-lactamase inhibitor. Apoenzymes and inhibited beta-lactamases were analyzed by liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), digested with trypsin, and the products resolved using LC-ESI/MS and matrix-assisted laser desorption ionization-time of flight mass spectrometry. The mass increases observed for SHV-1 and Ser(130) --> Gly (+ Delta 88 Da and + Delta 70 Da, respectively) suggest that fragmentation of tazobactam readily occurs in the inhibitor-resistant variant to yield an inactive beta-lactamase. These two mass increments are consistent with the formation of an aldehyde (+ Delta 70 Da) and a hydrated aldehyde (+ Delta 88 Da) as stable products of inhibition. Our results reveal that the Ser --> Gly substitution at amino acid position 130 is not essential for enzyme inactivation. By examining the inhibitor-resistant Ser(130) --> Gly beta-lactamase, our data are the first to show that tazobactam undergoes fragmentation while still attached to the active site Ser(70) in this enzyme. After acylation of tazobactam by Ser(130) --> Gly, inactivation proceeds independent of any additional covalent interactions.
Collapse
Affiliation(s)
- Doritza Pagan-Rodriguez
- Department of Chemistry, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Helfand MS, Bethel CR, Hujer AM, Hujer KM, Anderson VE, Bonomo RA. Understanding resistance to beta-lactams and beta-lactamase inhibitors in the SHV beta-lactamase: lessons from the mutagenesis of SER-130. J Biol Chem 2003; 278:52724-9. [PMID: 14534312 DOI: 10.1074/jbc.m306059200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial resistance to beta-lactam/beta-lactamase inhibitor combinations by single amino acid mutations in class A beta-lactamases threatens our most potent clinical antibiotics. In TEM-1 and SHV-1, the common class A beta-lactamases, alterations at Ser-130 confer resistance to inactivation by the beta-lactamase inhibitors, clavulanic acid, and tazobactam. By using site-saturation mutagenesis, we sought to determine the amino acid substitutions at Ser-130 in SHV-1 beta-lactamase that result in resistance to these inhibitors. Antibiotic susceptibility testing revealed that ampicillin and ampicillin/clavulanic acid resistance was observed only for the S130G beta-lactamase expressed in Escherichia coli. Kinetic analysis of the S130G beta-lactamase demonstrated a significant elevation in apparent Km and a reduction in kcat/Km for ampicillin. Marked increases in the dissociation constant for the preacylation complex, KI, of clavulanic acid (SHV-1, 0.14 microm; S130G, 46.5 microm) and tazobactam (SHV-1, 0.07 microm; S130G, 4.2 microm) were observed. In contrast, the k(inact)s of S130G and SHV-1 differed by only 17% for clavulanic acid and 40% for tazobactam. Progressive inactivation studies showed that the inhibitor to enzyme ratios required to inactivate SHV-1 and S130G were similar. Our observations demonstrate that enzymatic activity is preserved despite amino acid substitutions that significantly alter the apparent affinity of the active site for beta-lactams and beta-lactamase inhibitors. These results underscore the mechanistic versatility of class A beta-lactamases and have implications for the design of novel beta-lactamase inhibitors.
Collapse
Affiliation(s)
- Marion S Helfand
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
27
|
Peimbert M, Segovia L. Evolutionary engineering of a beta-Lactamase activity on a D-Ala D-Ala transpeptidase fold. Protein Eng Des Sel 2003; 16:27-35. [PMID: 12646690 DOI: 10.1093/proeng/gzg008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The beta-Lactamase hydrolytic activity has arisen several times from DD-transpeptidases. We have been able to replicate the evolutionary process of beta-Lactamase activity emergence on a PBP2X DD-transpeptidase. Some of the most interesting changes, like modifying the catalytic properties of an enzyme, may require several mutations in concert; therefore it is essential to explore efficiently sequence space by generating the right diversity. We designed a biased combinatorial library in which biochemical and structural information were incorporated by site directed mutagenesis on relevant residues and then subjected to random mutagenesis to allow for mutations in unforeseen positions. We isolated mutants from this library conferring 10-fold higher cefotaxime resistance levels than the background wild-type through mutations exclusively in the coding sequence. We demonstrate that only three substitutions in the DD-transpeptidase active site, two produced by the directed and one by the random mutagenesis, are sufficient to acquire this activity. The purified product of one mutant (MutE) had a 10(5)-fold increase in cefotaxime deacylation rate allowing it to hydrolyze beta-Lactams yet it has apparently conserved DD-peptidase activity. This work is the first to show a possible evolutionary intermediate between a beta-Lactamase and a DD-transpeptidase necessary for the development of antibiotic resistance.
Collapse
Affiliation(s)
- Mariana Peimbert
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62250 México.
| | | |
Collapse
|
28
|
Amstutz P, Pelletier JN, Guggisberg A, Jermutus L, Cesaro-Tadic S, Zahnd C, Plückthun A. In vitro selection for catalytic activity with ribosome display. J Am Chem Soc 2002; 124:9396-403. [PMID: 12167034 DOI: 10.1021/ja025870q] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report what is, to our knowledge, the first in vitro selection for catalytic activity based on catalytic turnover by using ribosome display, a method which does not involve living cells at any step. RTEM-beta-lactamase was functionally displayed on ribosomes as a complex with its encoding mRNA. We designed and synthesized a mechanism-based inhibitor of beta-lactamase, biotinylated ampicillin sulfone, appropriate for selection of catalytic activity of the ribosome-displayed beta-lactamase. This derivative of ampicillin inactivated beta-lactamase in a specific and irreversible manner. Under appropriate selection conditions, active RTEM-beta-lactamase was enriched relative to an inactive point mutant over 100-fold per ribosome display selection cycle. Selection for binding, carried out with beta-lactamase inhibitory protein (BLIP), gave results similar to selection with the suicide inhibitor, indicating that ribosome display is similarly efficient in catalytic activity and affinity selections. In the future, the capacity to select directly for enzymatic activity using an entirely in vitro process may allow for a significant increase in the explorable sequence space relative to existing strategies.
Collapse
Affiliation(s)
- Patrick Amstutz
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, Switzerland
| | | | | | | | | | | | | |
Collapse
|
29
|
Meroueh SO, Roblin P, Golemi D, Maveyraud L, Vakulenko SB, Zhang Y, Samama JP, Mobashery S. Molecular dynamics at the root of expansion of function in the M69L inhibitor-resistant TEM beta-lactamase from Escherichia coli. J Am Chem Soc 2002; 124:9422-30. [PMID: 12167037 DOI: 10.1021/ja026547q] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Clavulanate, an inhibitor for beta-lactamases, was the very first inhibitor for an antibiotic resistance enzyme that found clinical utility in 1985. The clinical use of clavulanate and that of sulbactam and tazobactam, which were introduced to the clinic subsequently, has facilitated evolution of a set of beta-lactamases that not only retain their original function as resistance enzymes but also are refractory to inhibition by the inhibitors. This article characterizes the properties of the clinically identified M69L mutant variant of the TEM-1 beta-lactamase from Escherichia coli, an inhibitor-resistant beta-lactamase, and compares it to the wild-type enzyme. The enzyme is as active as the wild-type in turnover of typical beta-lactam antibiotics. Furthermore, many of the parameters for interactions of the inhibitors with the mutant enzyme are largely unaffected. The significant effect of the inhibitor-resistant trait was a relatively modest elevation of the dissociation constant for the formation of the pre-acylation complex. The high-resolution X-ray crystal structure for the M69L mutant variant revealed essentially no alteration of the three-dimensional structure, both for the protein backbone and for the positions of the side chains of the amino acids. It was surmised that the difference in the two enzymes must reside with the dynamic motions of the two proteins. Molecular dynamics simulations of the mutant and wild-type proteins were carried out for 2 ns each. Dynamic cross-correlated maps revealed the collective motions of the two proteins to be very similar, yet the two proteins did not behave identically. Differences in behavior of the two proteins existed in the regions between residues 145-179 and 155-162. Additional calculations revealed that kinetic effects measured experimentally for the dissociation constant for the pre-acylation complex could be mostly attributed to the electrostatic and van der Waals components of the binding free energy. The effects of the mutation on the behavior of the beta-lactamase were subtle, including the differences in the measured dissociation constants that account for the inhibitor-resistant trait. It would appear that nature has selected for incorporation of the most benign alteration in the structure of the wild-type TEM-1 beta-lactamase that is sufficient to give the inhibitor-resistant trait.
Collapse
Affiliation(s)
- Samy O Meroueh
- Contribution from the Groupe de Cristallographie Biologique, Institut de Pharmacologie et de Biologie Structurale du CNRS, 205 route de Narbonne, 31077 Toulouse Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Bonomo RA. Multiple antibiotic-resistant bacteria in long-term-care facilities: An emerging problem in the practice of infectious diseases. Clin Infect Dis 2000; 31:1414-22. [PMID: 11096012 DOI: 10.1086/317489] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2000] [Revised: 08/25/2000] [Indexed: 11/03/2022] Open
Abstract
Long-term-care facilities (LTCFs) are becoming a major component of the health care delivery system. The management of infections with antibiotic-resistant bacteria in elderly patients in LTCFs is presenting new challenges to our current therapeutic armamentarium. Among the enteric bacilli, resistance to ceftazidime, beta-lactam/beta-lactamase-inhibitor combinations, and trimethoprim-sulfamethoxazole present the foremost problems. Quinolone-resistant gram-negative and gram-positive bacteria are increasing in frequency because of the widespread use of these agents in empirical treatment. Among the resistant gram-positive organisms, methicillin-resistant Staphylococcus aureus, penicillin-resistant pneumococci, and vancomycin-resistant enterococci are the most feared pathogens. Education, antibiotic control measures, and fundamental epidemiological and scientific research are advocated as important preventive measures.
Collapse
Affiliation(s)
- R A Bonomo
- Geriatric Care Center, University Hospitals of Cleveland, OH, USA.
| |
Collapse
|
31
|
Yang Y, Janota K, Tabei K, Huang N, Siegel MM, Lin YI, Rasmussen BA, Shlaes DM. Mechanism of Inhibition of the Class A β-Lactamases PC1 and TEM-1 by Tazobactam. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61429-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
32
|
Buynak JD, Doppalapudi VR, Rao AS, Nidamarthy SD, Adam G. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000; 10:847-51. [PMID: 10853645 DOI: 10.1016/s0960-894x(00)00094-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of 2-substituted-7-(alkylidene)cephalosporin sulfones were prepared and evaluated as beta-lactamase inhibitors. Compound 11c showed excellent activity as an inhibitor of the class C beta-lactamase derived from Enterobacter cloacae, strain P99.
Collapse
Affiliation(s)
- J D Buynak
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The use of beta-lactamase inhibitors in combination with a beta-lactamase-susceptible antibiotic is a useful strategy to rescue otherwise good antibiotics from failure. However, recent years have seen a rise in the numbers of beta-lactamases that are insensitive to the available beta-lactamase inhibitors. This review summarizes of the mechanisms of action of the principal types of inhibitors and the ways in which beta-lactamase are thought to develop resistance towards them. Ten general classes of inhibitors are reviewed, especially those of therapeutic importance (clavulanic acid, penam sulfones and carbapenems). Copyright 2000 Harcourt Publishers Ltd.
Collapse
Affiliation(s)
- Malcolm G. P. Page
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, Basel, CH-4070, Switzerland
| |
Collapse
|
34
|
Therrien C, Kotra LP, Sanschagrin F, Mobashery S, Levesque RC. Evaluation of inhibition of the carbenicillin-hydrolyzing beta-lactamase PSE-4 by the clinically used mechanism-based inhibitors. FEBS Lett 2000; 470:285-92. [PMID: 10745083 DOI: 10.1016/s0014-5793(00)01342-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Characterization of the biochemical steps in the inactivation chemistry of clavulanic acid, sulbactam and tazobactam with the carbenicillin-hydrolyzing beta-lactamase PSE-4 from Pseudomonas aeruginosa is described. Although tazobactam showed the highest affinity to the enzyme, all three inactivators were excellent inhibitors for this enzyme. Transient inhibition was observed for the three inactivators before the onset of irreversible inactivation of the enzyme. Partition ratios (k(cat)/k(inact)) of 11, 41 and 131 were obtained with clavulanic acid, tazobactam and sulbactam, respectively. Furthermore, these values were found to be 14-fold, 3-fold and 80-fold lower, respectively, than the values obtained for the clinically important TEM-1 beta-lactamase. The kinetic findings were put in perspective by determining the computational models for the pre-acylation complexes and the immediate acyl-enzyme intermediates for all three inactivators. A discussion of the pertinent structural factors is presented, with PSE-4 showing subtle differences in interactions with the three inhibitors compared to the TEM-1 enzyme.
Collapse
Affiliation(s)
- C Therrien
- Microbiologie moléculaire et génie des protéines, Sciences de la vie et de la santé, Faculté de médecine, pavillon Charles-Eugène-Marchand, Université Laval, Ste-Foy, Que., Canada
| | | | | | | | | |
Collapse
|
35
|
Yang Y, Rasmussen BA, Shlaes DM. Class A beta-lactamases--enzyme-inhibitor interactions and resistance. Pharmacol Ther 1999; 83:141-51. [PMID: 10511459 DOI: 10.1016/s0163-7258(99)00027-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Beta-Lactamases of Ambler's Class A are the most commonly encountered mechanism of bacterial resistance to beta-lactam antibiotics. In the face of selective pressure arising from use of either newer cephalosporins or beta-lactam/beta-lactamase inhibitor combinations, mutations arose among Class A beta-lactamase genes, leading to resistance. Clavulanic acid, a naturally occurring clavam, and the penicillanic acid sulfones sulbactam and tazobactam are the inhibitors in clinical use. This review focuses on the mechanism of inhibition by these currently marketed beta-lactamase inhibitors and on the mechanism by which specific amino acid substitutions might lead to resistance. The key amino acid positions important for inhibitor-resistance include Met69, Ser130, Arg244, Arg275, and Asn276. Ser130 is vital to the chemical mechanism of inhibition. Arg244 appears to be coordinated to Arg275 and Asp276 by hydrogen bonds. Arg244 is involved in positioning beta-lactams, especially penicillins and beta-lactamase inhibitors, via their carboxyl groups. Site-directed mutagenesis studies confirm the role of Arg244 and its coordinating partners in beta-lactam turnover and in the reactions leading to enzyme inactivation. This mechanism is dependent on the donation of a proton via a water coordinated to Arg244 and Val216 to clavulanic acid to allow formation of a favorable leaving group. This proton donation is probably not required for formation of a favorable leaving group for the sulfone inhibitors sulbactam and tazobactam. Therefore, some amino acid substitutions have differing effects on inhibition by clavulanic acid compared with the penicillanic acid sulfones. Met69 may play a more structural role in beta-lactam positioning within the oxyanion hole.
Collapse
Affiliation(s)
- Y Yang
- Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | |
Collapse
|
36
|
Bermudes H, Jude F, Chaibi EB, Arpin C, Bebear C, Labia R, Quentin C. Molecular characterization of TEM-59 (IRT-17), a novel inhibitor-resistant TEM-derived beta-lactamase in a clinical isolate of Klebsiella oxytoca. Antimicrob Agents Chemother 1999; 43:1657-61. [PMID: 10390218 PMCID: PMC89339 DOI: 10.1128/aac.43.7.1657] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A clinical isolate of Klebsiella oxytoca (Kox 443) was found to have a low-level resistance to broad-spectrum penicillins (MICs of amoxicillin and ticarcillin, 256 and 32 microg/ml, respectively), without substantial potentiation by 2 microg of clavulanic acid per ml (amoxicillin- and ticarcillin-clavulanate, 128 and 8 microg/ml, respectively), while being fully susceptible to cephalosporins and other beta-lactam antibiotics. These resistances were carried by a ca. 50-kb conjugative plasmid that encodes a single beta-lactamase with a pI of 5.6. Compared to TEM-2, this enzyme exhibited a 3- to 30-fold higher Km and a decreased maximal hydrolysis rate for beta-lactams; higher concentrations of suicide inactivators (5- to 500-fold higher concentrations giving a 50% reduction in hydrolysis) were required for inhibition. Nucleotide sequence analysis revealed identity between the blaTEM gene of Kox 443 and the blaTEM-2 gene, except for a single A-to-G change at position 590, leading to the amino acid change from Ser-130 Gly. This mutation has not been reported previously in the TEM type beta-lactamases produced by clinical strains, and the novel enzyme was called TEM-59 (alternative name IRT-17). This is the first description of an inhibitor-resistant TEM-derived enzyme in the species K. oxytoca.
Collapse
Affiliation(s)
- H Bermudes
- Laboratoire de Microbiologie, UFR des Sciences Pharmaceutiques, Université de Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Lin S, Thomas M, Mark S, Anderson V, Bonomo RA. OHIO-1 beta-lactamase mutants: the Arg244Ser mutant and resistance to beta-lactams and beta-lactamase inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1432:125-36. [PMID: 10366735 DOI: 10.1016/s0167-4838(99)00025-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations at residue 244 (Ambler numbering system) in the class A TEM beta-lactamase confer resistance to inactivation by beta-lactamase inhibitors and result in diminished turnover of beta-lactam substrates. The Arg244Ser mutant of the OHIO-1 beta-lactamase, an SHV family enzyme, demonstrates variable susceptibilities to beta-lactamase inhibitors and has significantly reduced catalytic efficiency. The minimum inhibitory concentrations (MICs) for Escherichia coli DH5alpha expressing the Arg244Ser beta-lactamase were reduced when compared to the strain bearing the OHIO-1 beta-lactamase: ampicillin, 512 vs. 8192 micrograms ml-1; cephaloridine, 4 vs. 32 micrograms ml-1, respectively. The MICs for the beta-lactam beta-lactamase inhibitor combinations demonstrated resistance only to ampicillin-clavulanate, 16/8 vs. 8/4 micrograms ml-1 respectively. In contrast, there was increased susceptibility to ampicillin-sulbactam, ampicillin-tazobactam, and piperacillin-tazobactam. When compared to the OHIO-1 beta-lactamase homogenous preparations of the Arg244Ser beta-lactamase enzyme demonstrated increased Km and decreased kcat values for benzylpenicillin (Km=17 vs. 50 microM, kcat=345 vs. 234 s-1) and cephaloridine (Km=97 vs. 202 microM, kcat=1023 vs. 202 s-1). Although the Ki and IC50 values were increased for each inhibitor when compared to OHIO-1 beta-lactamase, the turnover numbers (tn) required for inactivation were increased only for clavulanate. For the Arg244Ser mutant enzyme of OHIO-1, the increased Ki, decreased tn for the sulfones, and different partition ratio (kcat/kinact) support the notion that not all class A enzymes are inactivated in the same manner, and that certain class A beta-lactamase enzymes may react differently with identical substitutions in structurally conserved amino acids. The resistance phenotype of a specific mutations can vary depending on the enzyme.
Collapse
Affiliation(s)
- S Lin
- Research Service, Department of Veterans Affairs Medical Center, Department of Medicine, Case Western Reserve University, 10701 East Blvd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
38
|
Bitha P, Li Z, Francisco GD, Rasmussen BA, Lin YI. 6-(1-Hydroxyalkyl)penam sulfone derivatives as inhibitors of class A and class C beta-lactamases I. Bioorg Med Chem Lett 1999; 9:991-6. [PMID: 10230626 DOI: 10.1016/s0960-894x(99)00106-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Five 6-(1-hydroxyalkyl)penam sulfone derivatives and two 6-(hydroxymethyl)penams were synthesized for beta-lactamase inhibitor screens. The substituent effects and stereochemical requirements of 6alpha- and 6beta-(1-hydroxyalkyl) groups for the biological activity of penam sulfone derivatives were investigated. Of these substituents, only the 6beta-hydroxymethyl group of 15 improved the activity of sulbactam against both TEM-1 and AmpC beta-lactamases. The sulfone moiety is required for the enhancement of the beta-lactamase inhibitory activity. 6Beta-hydroxymethylsulbactam (15) was able to restore the activity of piperacillin in vitro and in vivo against various beta-lactamase producing microorganisms.
Collapse
Affiliation(s)
- P Bitha
- Chemical Sciences and Infectious Diseases, Wyeth-Ayerst Research, Pearl River, NY 10965, USA
| | | | | | | | | |
Collapse
|
39
|
Chaïbi EB, Sirot D, Paul G, Labia R. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 1999; 43:447-58. [PMID: 10350372 DOI: 10.1093/jac/43.4.447] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beta-lactamases represent the main mechanism of bacterial resistance to beta-lactam antibiotics. The recent emergence of bacterial strains producing inhibitor-resistant TEM (IRT) enzymes could be related to the frequent use of beta-lactamase inhibitors such as clavulanic acid, sulbactam and tazobactam in hospitals and in general practice. The IRT beta-lactamases differ from the parental enzymes TEM-1 or TEM-2 by one, two or three amino acid substitutions at different locations. This paper reviews the phenotypic, genetic and biochemical characteristics of IRT beta-lactamases in an attempt to shed light on the pressures that have contributed to their emergence.
Collapse
|
40
|
Trépanier S, Knox JR, Clairoux N, Sanschagrin F, Levesque RC, Huletsky A. Structure-function studies of Ser-289 in the class C beta-lactamase from Enterobacter cloacae P99. Antimicrob Agents Chemother 1999; 43:543-8. [PMID: 10049265 PMCID: PMC89158 DOI: 10.1128/aac.43.3.543] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Site-directed mutagenesis of Ser-289 of the class C beta-lactamase from Enterobacter cloacae P99 was performed to investigate the role of this residue in beta-lactam hydrolysis. This amino acid lies near the active site of the enzyme, where it can interact with the C-3 substituent of cephalosporins. Kinetic analysis of six mutant beta-lactamases with five cephalosporins showed that Ser-289 can be substituted by amino acids with nonpolar or polar uncharged side chains without altering the catalytic efficiency of the enzyme. These data suggest that Ser-289 is not essential in the binding or hydrolytic mechanism of AmpC beta-lactamase. However, replacement by Lys or Arg decreased by two- to threefold the kcat of four of the five beta-lactams tested, particularly cefoperazone, cephaloridine, and cephalothin. Three-dimensional models of the mutant beta-lactamases revealed that the length and positive charge of the side chain of Lys and Arg could create an electrostatic linkage to the C-4 carboxylic acid group of the dihydrothiazine ring of the acyl intermediate which could slow the deacylation step or hinder release of the product.
Collapse
Affiliation(s)
- S Trépanier
- Département de Biologie Médicale, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sabbagh Y, Thériault E, Sanschagrin F, Voyer N, Palzkill T, Levesque RC. Characterization of a PSE-4 mutant with different properties in relation to penicillanic acid sulfones: importance of residues 216 to 218 in class A beta-lactamases. Antimicrob Agents Chemother 1998; 42:2319-25. [PMID: 9736556 PMCID: PMC105826 DOI: 10.1128/aac.42.9.2319] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Class A beta-lactamases are inactivated by the suicide inactivators sulbactam, clavulanic acid, and tazobactam. An examination of multiple alignments indicated that amino acids 216 to 218 differed among class A enzymes. By random replacement mutagenesis of codons 216 to 218 in PSE-4, a complete library consisting of 40,864 mutants was created. The library of mutants with mutations at positions 216 to 218 in PSE-4 was screened on carbenicillin and ampicillin with the inactivator sulbactam; a collection of 14 mutants was selected, and their bla genes were completely sequenced. Purified wild-type and mutant PSE-4 beta-lactamases were used to measure kinetic parameters. One enzyme, V216S:T217A:G218R, was examined for its peculiar pattern of inhibition. There was an increase in the Km from 68 microM for the wild type to 271 microM for the mutant for carbenicillin and 33 to 216 microM for ampicillin. Relative to the wild-type PSE-4 enzyme, 37- and 30-fold increases in Ki values were observed for the mutant enzyme for sulbactam and tazobactam, respectively. The results that were obtained suggested that positions 216 to 218 are important for interactions with penicillanic acid sulfone inhibitors. In contrast, V216 and A217 in the TEM-1 class A beta-lactamase do not tolerate amino acid residue substitutions. However, for the PSE-4 beta-lactamase, 11 of 14 mutants from the library of mutants with mutations at positions 216 to 218 whose sequences were determined had substitutions at position 216 (G, R, A, S) and position 217 (A, S). The data showed the importance of residues 216 to 218 in their atomic interactions with inactivators in the PSE-4 beta-lactamase structure.
Collapse
Affiliation(s)
- Y Sabbagh
- Microbiologie Moléculaire et Génie des Protéines, Sciences de la Vie et de la Santé, Faculté de Médecine, Université Laval, Ste-Foy, Québec, Canada G1K 7P4
| | | | | | | | | | | |
Collapse
|
42
|
Lin S, Thomas M, Shlaes DM, Rudin SD, Knox JR, Anderson V, Bonomo RA. Kinetic analysis of an inhibitor-resistant variant of the OHIO-1 beta-lactamase, an SHV-family class A enzyme. Biochem J 1998; 333 ( Pt 2):395-400. [PMID: 9735103 PMCID: PMC1219605 DOI: 10.1042/bj3330395] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Met69-->Ile mutant of the OHIO-1 beta-lactamase, an SHV-family enzyme, is resistant to inactivation by beta-lactamase inhibitors. Analysis of purified Met69-->Ile enzyme reveals that its isoelectric point (pI 7.0) and CD spectrum are identical with those of the OHIO-1 enzyme. Levels of beta-lactamase expression in Escherichia coli as determined by immunoblotting are similar for OHIO-1 and Met69-->Ile beta-lactamase. The kinetic constants of the Met69-->Ile enzyme compared with OHIO-1 are smaller for benzylpenicillin (Km = 6 microM compared with 17 microM; kcat = 234 s-1 compared with 345 s-1 respectively) and carbenicillin (Km = 3 microM compared with 17 microM; kcat = 131 s-1 compared with 320 s-1 respectively). For the cephalosporins cephaloridine and 7-(thienyl- 2-acetamido)-3-[2-(4-N,N- dimethylaminophenylazo)pyridinium-methyl]-3-cephem-4-carboxylic acid (PADAC), a similar pattern is also seen (Km=38 microM compared with 96 microM and 6 microM compared with 75 microM respectively; kcat = 235 s-1 compared with 1023 s-1 and 9 s-1 compared with 50 s-1 respectively). Consistent with minimum inhibitory concentrations that show resistance to beta-lactam beta-lactamase inhibitors, the apparent Ki values, turnover numbers and partition ratios (kcat/kinact) for the mechanism-based inactivators clavulanate, sulbactam and tazobactam are increased. The inactivation rate constants (kinact) are decreased. The difference in activation energy, a measurement of altered affinity for the wild-type and mutant enzymes leading to acylation of the active site, reveals small energy differences of less than 8.4 kJ/mol. In total, these results suggest that the Met-->Ile substitution at position 69 in the OHIO-1 beta-lactamase alters the active site, primarily affecting the interactions with beta-lactamase inhibitors.
Collapse
Affiliation(s)
- S Lin
- Research Service, Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, OH 44105, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Vakulenko SB, Geryk B, Kotra LP, Mobashery S, Lerner SA. Selection and characterization of beta-lactam-beta-lactamase inactivator-resistant mutants following PCR mutagenesis of the TEM-1 beta-lactamase gene. Antimicrob Agents Chemother 1998; 42:1542-8. [PMID: 9660980 PMCID: PMC105642 DOI: 10.1128/aac.42.7.1542] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/1997] [Accepted: 04/16/1998] [Indexed: 02/08/2023] Open
Abstract
Mechanism-based inactivators of beta-lactamases are used to overcome the resistance of clinical pathogens to beta-lactam antibiotics. This strategy can itself be overcome by mutations of the beta-lactamase that compromise the effectiveness of their inactivation. We used PCR mutagenesis of the TEM-1 beta-lactamase gene and sequenced the genes of 20 mutants that grew in the presence of ampicillin-clavulanate. Eleven different mutant genes from these strains contained from 1 to 10 mutations. Each had a replacement of one of the four residues, Met69, Ser130, Arg244, and Asn276, whose substitutions by themselves had been shown to result in inhibitor resistance. None of the mutant enzymes with multiple amino acid substitutions generated in this study conferred higher levels of resistance to ampicillin alone or ampicillin with beta-lactamase inactivators (clavulanate, sulbactam, or tazobactam) than the levels of resistance conferred by the corresponding single-mutant enzymes. Of the four enzymes with just a single mutation (Ser130Gly, Arg244Cys, Arg244Ser, or Asn276Asp), the Asn276Asp beta-lactamase conferred a wild-type level of ampicillin resistance and the highest levels of resistance to ampicillin in the presence of inhibitors. Site-directed random mutagenesis of the Ser130 codon yielded no other mutant with replacement of Ser130 besides Ser130Gly that produced ampicillin-clavulanate resistance. Thus, despite PCR mutagenesis we found no new mutant TEM beta-lactamase that conferred a level of resistance to ampicillin plus inactivators greater than that produced by the single-mutation enzymes that have already been reported in clinical isolates. Although this is reassuring, one must caution that other combinations of multiple mutations might still produce unexpected resistance.
Collapse
Affiliation(s)
- S B Vakulenko
- Department of Medicine, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
44
|
|
45
|
Caniça MM, Caroff N, Barthélémy M, Labia R, Krishnamoorthy R, Paul G, Dupret JM. Phenotypic study of resistance of beta-lactamase-inhibitor-resistant TEM enzymes which differ by naturally occurring variations and by site-directed substitution at Asp276. Antimicrob Agents Chemother 1998; 42:1323-8. [PMID: 9624468 PMCID: PMC105596 DOI: 10.1128/aac.42.6.1323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
At this time an amino acid substitution at position 276 in the TEM-1 enzyme is associated with an additional substitution at position 69 in natural beta-lactamase-inhibitor-resistant (IRT) beta-lactamases. The effect of the Asn276-->Asp substitution on resistance was assessed with the Asn276Asp variant, generated by site-directed mutagenesis. The mutant was resistant to beta-lactamase inhibitors, but the MICs of amoxicillin combined with clavulanic acid or tazobactam were strikingly different for E. coli strains producing the Asn276Asp variant and those producing naturally occurring IRTs with single or double substitutions. The inhibitory effects of clavulanic acid and tazobactam were the same in IRTs with substitutions at position 69 (IRT-5 and IRT-6). The effect of clavulanic acid on the MICs of amoxicillin for the Asn276Asp variant was greater than that of tazobactam. In IRTs with double substitutions, at positions 69 plus 276 (IRT-4, IRT-7, and IRT-8) or 69 plus 275 (IRT-14), tazobactam was a more potent inhibitor than clavulanic acid. The effect of the Asn276-->Asp substitution on the values of the kinetic constants and the concentration required to inhibit by 50% the hydrolysis of benzylpenicillin confirms that this single mutation is responsible for resistance to beta-lactamase inhibitors. Molecular modeling of the Asn276Asp mutant shows that Asp276 can form two salt bonds with Arg244 close to the penicillin-binding cavity. The addition of the Asp276 mutation to that preexisting at position 69 confers a higher selective advantage to bacteria, as shown by the reduction in beta-lactamase inhibitor efficiencies of the double variants. Therefore, the emergence of multiple mutations in TEM beta-lactamases by virtue of the use of beta-lactamase inhibitors increases selection pressure resulting in the convergent evolution of resistant strains.
Collapse
Affiliation(s)
- M M Caniça
- Laboratoire de Recherche en Microbiologie, UFR Cochin-Port-Royal, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS. Substitution of Arg-244 by Cys or Ser in SHV-1 and SHV-5 beta-lactamases confers resistance to mechanism-based inhibitors and reduces catalytic efficiency of the enzymes. FEMS Microbiol Lett 1998; 160:49-54. [PMID: 9495011 DOI: 10.1111/j.1574-6968.1998.tb12889.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The conserved residue Arg-244 was substituted by the smaller uncharged amino acids Cys and Ser in SHV-1 and SHV-5 beta-lactamases by a PCR-based site-specific mutagenesis procedure. The mutant beta-lactamases displayed decreased susceptibility to clavulanate and, to a lesser extent, to tazobactam and sulbactam. As shown in comparative MIC determinations, R244C and R244S enzymes retained a residual penicillinase activity while their activity towards cephalosporins was drastically diminished. The respective SHV-5 mutants were unable to hydrolyze oxyimino-beta-lactams except aztreonam. The impaired catalytic activity of the mutant beta-lactamases was mainly due to the lowering of affinity for beta-lactam substrates. The above alterations were more pronounced in the R244C mutants. These results provide information on the mode of involvement of Arg-244 in (a) inactivation by beta-lactamase inhibitors and (b) the proper positioning of beta-lactams in the active site of SHV enzymes.
Collapse
Affiliation(s)
- P Giakkoupi
- Department of Bacteriology, Hellenic Pasteur Institute, Athens, Greece
| | | | | | | |
Collapse
|
47
|
Matagne A, Lamotte-Brasseur J, Frère JM. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J 1998; 330 ( Pt 2):581-98. [PMID: 9480862 PMCID: PMC1219177 DOI: 10.1042/bj3300581] [Citation(s) in RCA: 277] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.
Collapse
Affiliation(s)
- A Matagne
- Centre for Protein Engineering and Laboratoire d'Enzymologie, Université de Liège, Institut de Chimie B6, 4000 Liège (Sart Tilman), Belgium
| | | | | |
Collapse
|
48
|
Chaibi EB, Péduzzi J, Farzaneh S, Barthélémy M, Sirot D, Labia R. Clinical inhibitor-resistant mutants of the beta-lactamase TEM-1 at amino-acid position 69. Kinetic analysis and molecular modelling. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1382:38-46. [PMID: 9507060 DOI: 10.1016/s0167-4838(97)00127-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The kinetic parameters of three IRT (Inhibitor-Resistant-TEM-derived-) beta-lactamases (IRT-5, IRT-6 and IRT-I69) were determined for substrates and the beta-lactamase inhibitors: clavulanic acid, sulbactam and tazobactam, and compared with those of TEM-1 beta-lactamase. The catalytic behaviour of the beta-lactamases towards substrates and inhibitors was correlated with the properties of the amino acid at position ABL69. The three IRT beta-lactamases contain at that position a residue Ile, Leu and Val, amino acids whose side-chain are branched. Molecular modelling shows that the methyl groups of Ile-69 (C gamma 2) and Val-69 (C gamma 1) produced steric constraints with the side chain of Asn-170 as well as the main chain nitrogen of Ser-70, a residue contributing to the oxyanion hole. We suggest that hydrophobicity could be the main factor responsible for the kinetic properties of Met69Leu (IRT-5), as no steric effects could be detected by molecular modelling. Hydrophobicity and steric constraints are combined in Met69Ile and Met69Val, IRT-I69 and IRT-6, respectively.
Collapse
Affiliation(s)
- E B Chaibi
- Museum National d'Histoire Naturelle, CNRS URA 401, Paris, France
| | | | | | | | | | | |
Collapse
|
49
|
Bush K, Mobashery S. How β-Lactamases Have Driven Pharmaceutical Drug Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998. [DOI: 10.1007/978-1-4615-4897-3_5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
50
|
Trépanier S, Prince A, Huletsky A. Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator. Antimicrob Agents Chemother 1997; 41:2399-405. [PMID: 9371340 PMCID: PMC164135 DOI: 10.1128/aac.41.11.2399] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Burkholderia cepacia is recognized as an important pathogen in the lung infections of patients with cystic fibrosis. An inducible beta-lactamase activity has been associated with increased resistance to beta-lactam antibiotics in clinical isolates of B. cepacia. In this study, we report the revised sequence of the penA gene, which encodes the inducible penicillinase of B. cepacia, and show that it belongs to the molecular class A beta-lactamases and exhibits a high degree of similarity to the chromosomal beta-lactamase of Klebsiella oxytoca. Analysis of the nucleotide sequence of the DNA region directly upstream of the penA coding sequence revealed an open reading frame (penR), the transcription of which was oriented opposite to that of penA and whose initiation was 130 bp away from that of penA. Two potential ribosome-binding sites and two overlapping -10 and -35 promoter sequences were identified in the intercistronic region. The predicted translation product of penR was a polypeptide of 301 amino acids with an estimated molecular size of 33.2 kDa. The deduced polypeptide of penR showed a high degree of similarity with AmpR-like transcriptional activators of class A and C beta-lactamases, with identities of 59 and 58.7% with Pseudomonas aeruginosa PAO1 AmpR and Proteus vulgaris B317 CumR, respectively. The N-terminal portion of B. cepacia PenR was predicted to include a helix-turn-helix motif, which may bind the LysR motif identified in the intercistronic region. Induction of PenA by imipenem was shown to be dependent upon the presence of PenR. Expression of the cloned B. cepacia penA and penR genes in Escherichia coli SNO302 (ampD) resulted in a high basal and hyperinducible PenA activity. These results suggest that the regulation of the PenA penicillinase of B. cepacia 249 is similar to that observed in other class A and class C beta-lactamases that are under the control of a divergently transcribed AmpR-like regulator.
Collapse
Affiliation(s)
- S Trépanier
- Département de Microbiologie, Pavillon Marchand, Université Laval, Ste-Foy, Québec, Canada
| | | | | |
Collapse
|