1
|
Abstract
Nucleotide analogs are the cornerstone of direct acting antivirals used to control infection by RNA viruses. Here we review what is known about existing nucleotide/nucleoside analogs and the kinetics and mechanisms of RNA and DNA replication, with emphasis on the SARS-CoV-2 RNA dependent RNA polymerase (RdRp) in comparison to HIV reverse transcriptase and Hepatitis C RdRp. We demonstrate how accurate kinetic analysis reveals surprising results to explain the effectiveness of antiviral nucleoside analogs providing guidelines for the design of new inhibitors.
Collapse
|
2
|
Post-Catalytic Complexes with Emtricitabine or Stavudine and HIV-1 Reverse Transcriptase Reveal New Mechanistic Insights for Nucleotide Incorporation and Drug Resistance. Molecules 2020; 25:molecules25204868. [PMID: 33096918 PMCID: PMC7587939 DOI: 10.3390/molecules25204868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) infection is a global health issue since neither a cure nor a vaccine is available. However, the highly active antiretroviral therapy (HAART) has improved the life expectancy for patients with acquired immunodeficiency syndrome (AIDS). Nucleoside reverse transcriptase inhibitors (NRTIs) are in almost all HAART and target reverse transcriptase (RT), an essential enzyme for the virus. Even though NRTIs are highly effective, they have limitations caused by RT resistance. The main mechanisms of RT resistance to NRTIs are discrimination and excision. Understanding the molecular mechanisms for discrimination and excision are essential to develop more potent and selective NRTIs. Using protein X-ray crystallography, we determined the first crystal structure of RT in its post-catalytic state in complex with emtricitabine, (-)FTC or stavudine (d4T). Our structural studies provide the framework for understanding how RT discriminates between NRTIs and natural nucleotides, and for understanding the requirement of (-)FTC to undergo a conformation change for successful incorporation by RT. The crystal structure of RT in post-catalytic complex with d4T provides a "snapshot" for considering the possible mechanism of how RT develops resistance for d4T via excision. The findings reported herein will contribute to the development of next generation NRTIs.
Collapse
|
3
|
Villalba B, Li J, Johnson KA. Resistance to excision determines efficiency of hepatitis C virus RNA-dependent RNA polymerase inhibition by nucleotide analogs. J Biol Chem 2020; 295:10112-10124. [PMID: 32457046 DOI: 10.1074/jbc.ra120.013422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
NS5B is the RNA-dependent RNA polymerase that catalyzes the replication of the hepatitis C virus genome. It is a major target for antiviral drugs including nucleoside analogs, such as the prodrugs mericitabine and sofosbuvir, which get metabolized to 2'-fluoro-2'C-methylcytidine-5'-triphosphate and 2'-fluoro-2'C-methyluridine-5'-triphosphate, respectively. These analogs act as chain terminators after they are incorporated during RNA synthesis. Recently, it has been shown that NS5B can efficiently remove chain terminators by a nucleotide-mediated excision reaction that rescues RNA synthesis. In this study, we use transient-state kinetics to understand the efficiency of inhibition for five nucleoside analogs. We show that CTP analogs are readily incorporated into a growing primer by NS5B but are also efficiently excised. In contrast, although UMP analogs are more slowly incorporated, the excision of UMP is slow and inefficient, and modifications to the 2'-carbon of the UTP ribose ring further decreased rates of excision to an undetectable level. Taken together, these data suggest that the clinical effectiveness of sofosbuvir is largely a function of being intractable to nucleotide-mediated excision compared with similar nucleoside analogs.
Collapse
Affiliation(s)
- Brian Villalba
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Jiawen Li
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| | - Kenneth A Johnson
- Department of Molecular Biosciences, University of Texas, Austin, Texas, USA
| |
Collapse
|
4
|
Yanvarev DV, Korovina AN, Usanov NN, Khomich OA, Vepsäläinen J, Puljula E, Kukhanova MK, Kochetkov SN. Methylene bisphosphonates as the inhibitors of HIV RT phosphorolytic activity. Biochimie 2016; 127:153-62. [PMID: 27230835 DOI: 10.1016/j.biochi.2016.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 05/18/2016] [Indexed: 11/29/2022]
Abstract
The structure-function analysis of 36 methylenebisphosphonates (BPs) as inhibitors of the phosphorolytic activity of native and drug-resistant forms of HIV-1 reverse transcriptase (RT) was performed. It was shown that with the increase of the inhibitory potential of BPs towards the phosphorolytic activity raises their ability to inhibit the RT-catalyzed DNA elongation. Herein, we report the impact of the thymidine analog mutations (TAM) on the activity of bisphosphonates, as well as some structural features of the BPs, allowing them to maintain the inhibitory activity on the enzyme resistant to nucleoside analog therapy. We estimated the Mg(2+)-coordinating group structure, the linker and the aromatic pharmacophore influence on the inhibitory potential of the BPs. Based on the 31 BPs SAR, several BPs with improved inhibitory properties were designed and synthesized.
Collapse
Affiliation(s)
- D V Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia.
| | - A N Korovina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - N N Usanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - O A Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - J Vepsäläinen
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - E Puljula
- School of Pharmacy, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - M K Kukhanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| | - S N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova st.-32, Moscow, Russia
| |
Collapse
|
5
|
Analysis of the Zidovudine Resistance Mutations T215Y, M41L, and L210W in HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2015; 59:7184-96. [PMID: 26324274 DOI: 10.1128/aac.05069-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 08/23/2015] [Indexed: 01/01/2023] Open
Abstract
Although anti-human immunodeficiency virus type 1 (HIV-1) therapies have become more sophisticated and more effective, drug resistance continues to be a major problem. Zidovudine (azidothymidine; AZT) was the first nucleoside reverse transcriptase (RT) inhibitor (NRTI) approved for the treatment of HIV-1 infections and is still being used, particularly in the developing world. This drug targets the conversion of single-stranded RNA to double-stranded DNA by HIV-1 RT. However, resistance to the drug quickly appeared both in viruses replicating in cells in culture and in patients undergoing AZT monotherapy. The primary resistance pathway selects for mutations of T215 that change the threonine to either a tyrosine or a phenylalanine (T215Y/F); this resistance pathway involves an ATP-dependent excision mechanism. The pseudo-sugar ring of AZT lacks a 3' OH; RT incorporates AZT monophosphate (AZTMP), which blocks the end of the viral DNA primer. AZT-resistant forms of HIV-1 RT use ATP in an excision reaction to unblock the 3' end of the primer strand, allowing its extension by RT. The T215Y AZT resistance mutation is often accompanied by two other mutations, M41L and L210W. In this study, the roles of these mutations, in combination with T215Y, were examined to determine whether they affect polymerization and excision by HIV-1 RT. The M41L mutation appears to help restore the DNA polymerization activity of RT containing the T215Y mutation and also enhances AZTMP excision. The L210W mutation plays a similar role, but it enhances excision by RTs that carry the T215Y mutation when ATP is present at a low concentration.
Collapse
|
6
|
Novel high-throughput screen identifies an HIV-1 reverse transcriptase inhibitor with a unique mechanism of action. Biochem J 2014; 462:425-32. [PMID: 24969820 DOI: 10.1042/bj20140365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HIV-1 resistance to zidovudine [AZT (azidothymidine)] is associated with selection of the mutations M41L, D67N, K70R, L210W, T215F/Y and K219Q/E in RT (reverse transcriptase). These mutations decrease HIV-1 susceptibility to AZT by augmenting RT's ability to excise the chain-terminating AZT-MP (AZT-monophosphate) moiety from the chain-terminated DNA primer. Although AZT-MP excision occurs at the enzyme's polymerase active site, it is mechanistically distinct from the DNA polymerase reaction. Consequently, this activity represents a novel target for drug discovery, and inhibitors that target this activity may increase the efficacy of nucleoside/nucleotide analogues, and may help to delay the onset of drug resistance. In the present study, we have developed a FRET (Förster resonance energy transfer)-based high-throughput screening assay for the AZT-MP excision activity of RT. This assay is sensitive and robust, and demonstrates a signal-to-noise ratio of 3.3 and a Z' factor of 0.69. We screened three chemical libraries (7265 compounds) using this assay, and identified APEX57219 {3,3'-[(3-carboxy-4-oxo-2,5-cyclohexadien-1-ylidene)methylene]bis[6-hydroxybenzoic acid]} as the most promising hit. APEX57219 displays a unique activity profile against wild-type and drug-resistant HIV-1 RT, and was found to inhibit virus replication at the level of reverse transcription. Mechanistic analyses revealed that APEX57219 blocked the interaction between RT and the nucleic acid substrate.
Collapse
|
7
|
Iyidogan P, Anderson KS. Current perspectives on HIV-1 antiretroviral drug resistance. Viruses 2014; 6:4095-139. [PMID: 25341668 PMCID: PMC4213579 DOI: 10.3390/v6104095] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 11/18/2022] Open
Abstract
Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis as an alternative therapy. The development of resistance to the different classes of approved drugs and the importance of monitoring antiretroviral drug resistance are also summarized briefly.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| | - Karen S Anderson
- Department of Pharmacology, School of Medicine, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Nucleoside Analogue Inhibitors of Human Immunodeficiency Virus Reverse Transcriptase. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Mislak AC, Frey KM, Bollini M, Jorgensen WL, Anderson KS. A mechanistic and structural investigation of modified derivatives of the diaryltriazine class of NNRTIs targeting HIV-1 reverse transcriptase. Biochim Biophys Acta Gen Subj 2014; 1840:2203-11. [PMID: 24726448 DOI: 10.1016/j.bbagen.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are vital in treating HIV-1 infection by inhibiting reverse transcriptase (RT). Drug toxicity and resistance drive the need for effective new inhibitors with improved physiochemical properties and potent antiviral activity. Computer-aided and structure-based drug design have guided the addition of solubilizing substituents to the diaryltriazine scaffold. These derivatives have markedly improved solubility and maintain low nanomolar antiviral activity against RT. The molecular and structural basis of inhibition for this series was determined to facilitate future inhibitor development with improved pharmacological profiles. METHODS The molecular mechanism of inhibition was investigated using transient-state kinetic analysis. Crystal structures of RT in complex with each inhibitor were obtained to investigate the structural basis of inhibition. RESULTS The diaryltriazine and its morpholine derivative have RT inhibition constants of 9±2nM and 14±4nM, respectively. They adopt differential binding modes within the non-nucleoside inhibitor binding pocket to distort the catalytic site geometry and primer grip regions. The novel morpholinopropoxy substituent extends into the RT/solvent interface of the NNIBP. CONCLUSIONS Kinetic and structural analyses show that these inhibitors behave as conventional NNRTIs and inhibit the polymerization step. This study confirms that appending solubilizing substituents on the azine ring of diaryltriazine class of NNRTIs that extend into the RT/solvent interface effectively maintains low nanomolar potency and improves physiochemical properties. GENERAL SIGNIFICANCE The modification of NNRTI scaffolds with solubilizing substituents, which extend into the RT/solvent interface, yields potent antivirals and is an effective strategy for developing novel inhibitors with improved pharmacological properties.
Collapse
Affiliation(s)
- Andrea C Mislak
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Kathleen M Frey
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | - Mariela Bollini
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Karen S Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA.
| |
Collapse
|
10
|
Michailidis E, Ryan EM, Hachiya A, Kirby KA, Marchand B, Leslie MD, Huber AD, Ong YT, Jackson JC, Singh K, Kodama EN, Mitsuya H, Parniak MA, Sarafianos SG. Hypersusceptibility mechanism of Tenofovir-resistant HIV to EFdA. Retrovirology 2013; 10:65. [PMID: 23800377 PMCID: PMC3695782 DOI: 10.1186/1742-4690-10-65] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/13/2013] [Indexed: 11/28/2022] Open
Abstract
Background The K65R substitution in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) is the major resistance mutation selected in patients treated with first-line antiretroviral tenofovir disoproxil fumarate (TDF). 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), is the most potent nucleoside analog RT inhibitor (NRTI) that unlike all approved NRTIs retains a 3'-hydroxyl group and has remarkable potency against wild-type (WT) and drug-resistant HIVs. EFdA acts primarily as a chain terminator by blocking translocation following its incorporation into the nascent DNA chain. EFdA is in preclinical development and its effect on clinically relevant drug resistant HIV strains is critically important for the design of optimal regimens prior to initiation of clinical trials. Results Here we report that the K65R RT mutation causes hypersusceptibility to EFdA. Specifically, in single replication cycle experiments we found that EFdA blocks WT HIV ten times more efficiently than TDF. Under the same conditions K65R HIV was inhibited over 70 times more efficiently by EFdA than TDF. We determined the molecular mechanism of this hypersensitivity using enzymatic studies with WT and K65R RT. This substitution causes minor changes in the efficiency of EFdA incorporation with respect to the natural dATP substrate and also in the efficiency of RT translocation following incorporation of the inhibitor into the nascent DNA. However, a significant decrease in the excision efficiency of EFdA-MP from the 3’ primer terminus appears to be the primary cause of increased susceptibility to the inhibitor. Notably, the effects of the mutation are DNA-sequence dependent. Conclusion We have elucidated the mechanism of K65R HIV hypersusceptibility to EFdA. Our findings highlight the potential of EFdA to improve combination strategies against TDF-resistant HIV-1 strains.
Collapse
Affiliation(s)
- Eleftherios Michailidis
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ehteshami M, Nijhuis M, Bernatchez JA, Ablenas CJ, McCormick S, de Jong D, Jochmans D, Götte M. Formation of a quaternary complex of HIV-1 reverse transcriptase with a nucleotide-competing inhibitor and its ATP enhancer. J Biol Chem 2013; 288:17336-46. [PMID: 23598281 DOI: 10.1074/jbc.m112.433441] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide-competing reverse transcriptase inhibitors were shown to bind reversibly to the nucleotide-binding site of the reverse transcriptase (RT) enzyme of human immunodeficiency virus type 1 (HIV-1). Here, we show that the presence of ATP can enhance the inhibitory effects of the prototype compound INDOPY-1. We employed a combination of cell-free and cell-based assays to shed light on the underlying molecular mechanism. Binding studies and site-specific footprinting experiments demonstrate the existence of a stable quaternary complex with HIV-1 RT, its nucleic acid substrate, INDOPY-1, and ATP. The complex is frozen in the post-translocational state that usually accommodates the incoming nucleotide substrate. Structure-activity relationship studies show that both the base and the phosphate moieties of ATP are elements that play important roles in enhancing the inhibitory effects of INDOPY-1. In vitro susceptibility measurements with mutant viruses containing amino acid substitutions K70G, V75T, L228R, and K219R in the putative ATP binding pocket revealed unexpectedly a hypersusceptible phenotype with respect to INDOPY-1. The same mutational cluster was previously shown to reduce susceptibility to the pyrophosphate analog phosphonoformic acid. However, in the absence of INDOPY-1, ATP can bind and act as a pyrophosphate donor under conditions that favor formation of the pre-translocated RT complex. We therefore conclude that the mutant enzyme facilitates simultaneous binding of INDOPY-1 and ATP to the post-translocated complex. Based on these data, we propose a model in which the bound ATP traps the inhibitor, which, in turn, compromises its dissociation.
Collapse
Affiliation(s)
- Maryam Ehteshami
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Ducloux C, Mougel M, Goldschmidt V, Didierlaurent L, Marquet R, Isel C. A pyrophosphatase activity associated with purified HIV-1 particles. Biochimie 2012; 94:2498-507. [PMID: 22766015 DOI: 10.1016/j.biochi.2012.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 06/22/2012] [Indexed: 01/17/2023]
Abstract
Treatment of HIV-1 with nucleoside reverse transcription inhibitors leads to the emergence of resistance mutations in the reverse transcriptase (RT) gene. Resistance to 3'-azido-3'-deoxythymidine (AZT) and to a lesser extent to 2'-3'-didehydro-2'-3'-dideoxythymidine is mediated by phosphorolytic excision of the chain terminator. Wild-type RT excises AZT by pyrophosphorolysis, while thymidine-associated resistance mutations in RT (TAMs) favour ATP as the donor substrate. However, in vitro, resistant RT still uses pyrophosphate more efficiently than ATP. We performed in vitro (-) strong-stop DNA synthesis experiments, with wild-type and AZT-resistant HIV-1 RTs, in the presence of physiologically relevant pyrophosphate and/or ATP concentrations and found that in the presence of pyrophosphate, ATP and AZTTP, TAMs do not enhance in vitro (-) strong-stop DNA synthesis. We hypothesized that utilisation of ATP in vivo is driven by intrinsic low pyrophosphate concentrations within the reverse transcription complex, which could be explained by the packaging of a cellular pyrophosphatase. We showed that over-expressed flagged-pyrophosphatase was associated with HIV-1 viral-like particles. In addition, we demonstrated that when HIV-1 particles were purified in order to avoid cellular microvesicle contamination, a pyrophosphatase activity was specifically associated to them. The presence of a pyrophosphatase activity in close proximity to the reverse transcription complex is most likely advantageous to the virus, even in the absence of any drug pressure.
Collapse
Affiliation(s)
- Céline Ducloux
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, IBMC, 15 Rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
13
|
Iyidogan P, Anderson KS. Understanding the molecular mechanism of sequence dependent tenofovir removal by HIV-1 reverse transcriptase: differences in primer binding site versus polypurine tract. Antiviral Res 2012; 95:93-103. [PMID: 22664235 DOI: 10.1016/j.antiviral.2012.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/31/2022]
Abstract
Tenofovir (TFV) is a nucleotide reverse transcriptase inhibitor (NtRTI) that is often administered as first-line therapy against human immunodeficiency virus type-1 (HIV-1) infection and acts as a chain terminator when incorporated into viral DNA. However, HIV-1 reverse transcriptase (RT) excises TFV in the presence of either ATP or pyrophosphate, which is an important drug resistance mechanism that would interfere with the effective treatment. Previous studies have shown conflicting results on excision efficiencies for TFV-terminated primer-templates derived from either primer binding site (PBS) or polypurine tract (PPT) sequences. To provide mechanistic insight into the variation in TFV removal from both sequences that are vital for the HIV-1 life cycle, we compared the efficiencies of removal reaction in response to sequence dependence via utilizing blocked PBS and PPT primer-templates. We found an enhanced TFV excision with PPT sequence over PBS sequence through ATP-mediated removal and a subsequent incorporation of ATP into the unblocked primers. Furthermore, the rate of pyrophosphorolytic excision of TFV from PPT sequence was 21-fold higher than that for the PBS sequence. However, the addition of efavirenz, nonnucleoside reverse transcriptase inhibitor (NNRTI), to the removal reaction effectively inhibits the TFV excision from both primers by forming a stable complex that would leave TFV inaccessible for excision. These results illuminate the degree of primer-template sequence contribution on TFV removal as well as increase our understanding of the molecular mechanism for the beneficial effects of widely used combinations of antiretroviral regimens in the context of synergistic antiviral activity and drug resistance.
Collapse
Affiliation(s)
- Pinar Iyidogan
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
14
|
von Kleist M, Metzner P, Marquet R, Schütte C. HIV-1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance selection. PLoS Comput Biol 2012; 8:e1002359. [PMID: 22275860 PMCID: PMC3261923 DOI: 10.1371/journal.pcbi.1002359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment. Nucleoside analogs (NAs) represent an important drug class for the treatment of viral infections and cancer. They inhibit DNA/RNA polymerization after being incorporated into nascent DNA/RNA, which prevents primer extension. Viruses are particularly versatile and frequently develop mutations enabling them to avert the effects of NAs. The mechanisms of resistance development are, however, still poorly understood. Through mathematical modeling, we assess the mechanisms by which HIV-1 can develop resistance against nucleoside analog reverse transcriptase inhibitors (NRTI). We quantify the effects of treatment and estimate the fitness of drug resistant mutants. We correctly predict that HIV-1 can develop resistance by decreasing NRTI incorporation rate, increasing its excision rate, or decreasing its affinity for the viral polymerase enzyme. Our model also allows quantification of the cell specific factors affecting NRTI efficacy. Resistance development also changes drug susceptibility distinctly and we show, for the first time, that selection of drug resistance can occur in particular target cells. This finding could provide an explanation of how clinically observed resistant viral mutants may arise. It also pin-points important parameters that may impact clinical efficacy of NAs used to treat other viruses.
Collapse
Affiliation(s)
- Max von Kleist
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
15
|
4'-C-methyl-2'-deoxyadenosine and 4'-C-ethyl-2'-deoxyadenosine inhibit HIV-1 replication. Antimicrob Agents Chemother 2011; 55:2379-89. [PMID: 21343443 DOI: 10.1128/aac.01290-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is important to develop new anti-HIV drugs that are effective against the existing drug-resistant mutants. Because the excision mechanism is an important pathway for resistance to nucleoside analogs, we are preparing analogs that retain a 3'-OH and can be extended after they are incorporated by the viral reverse transcriptase. We show that 4'-C-alkyl-deoxyadenosine (4'-C-alkyl-dA) compounds can be phosphorylated in cultured cells and can inhibit the replication of HIV-1 vectors: 4'-C-methyl- and 4'-C-ethyl-dA show both efficacy and selectivity against HIV-1. The compounds are also effective against viruses that replicate using reverse transcriptases (RTs) that carry nucleoside reverse transcriptase inhibitor resistance mutations, with the exception of the M184V mutant. Analysis of viral DNA synthesis in infected cells showed that viral DNA synthesis is blocked by the incorporation of either 4'-C-methyl- or 4'-C-ethyl-2'-deoxyadenosine. In vitro experiments with purified HIV-1 RT showed that 4'-C-methyl-2'-dATP can compete with dATP and that incorporation of the analog causes pausing in DNA synthesis. The 4'-C-ethyl compound also competes with dATP and shows a differential ability to block DNA synthesis on RNA and DNA templates. Experiments that measure the ability of the compounds to block DNA synthesis in infected cells suggest that this differential block to DNA synthesis also occurs in infected cells.
Collapse
|
16
|
Betancor G, Puertas MC, Nevot M, Garriga C, Martínez MA, Martinez-Picado J, Menéndez-Arias L. Mechanisms involved in the selection of HIV-1 reverse transcriptase thumb subdomain polymorphisms associated with nucleoside analogue therapy failure. Antimicrob Agents Chemother 2010; 54:4799-811. [PMID: 20733040 PMCID: PMC2976120 DOI: 10.1128/aac.00716-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 08/17/2010] [Indexed: 12/15/2022] Open
Abstract
Previous studies showed an increased prevalence of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) thumb subdomain polymorphisms Pro272, Arg277, and Thr286 in patients failing therapy with nucleoside analogue combinations. Interestingly, wild-type HIV-1(BH10) RT contains Pro272, Arg277, and Thr286. Here, we demonstrate that in the presence of zidovudine, HIV-1(BH10) RT mutations P272A/R277K/T286A produce a significant reduction of the viral replication capacity in peripheral blood mononuclear cells in both the absence and presence of M41L/T215Y. In studies carried out with recombinant enzymes, we show that RT thumb subdomain mutations decrease primer-unblocking activity on RNA/DNA complexes, but not on DNA/DNA template-primers. These effects were observed with primers terminated with thymidine analogues (i.e., zidovudine and stavudine) and carbovir (the relevant derivative of abacavir) and were more pronounced when mutations were introduced in the wild-type HIV-1(BH10) RT sequence context. RT thumb subdomain mutations increased by 2-fold the apparent dissociation equilibrium constant (K(d)) for RNA/DNA without affecting the K(d) for DNA/DNA substrates. RNase H assays carried out with RNA/DNA complexes did not reveal an increase in the reaction rate or in secondary cleavage events that could account for the decreased excision activity. The interaction of Arg277 with the phosphate backbone of the RNA template in HIV-1 RT bound to RNA/DNA and the location of Thr286 close to the RNA strand are consistent with thumb polymorphisms playing a role in decreasing nucleoside RT inhibitor excision activity on RNA/DNA template-primers by affecting interactions with the template-primer duplex without involvement of the RNase H activity of the enzyme.
Collapse
Affiliation(s)
- Gilberto Betancor
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Maria C. Puertas
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - María Nevot
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - César Garriga
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Miguel A. Martínez
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Javier Martinez-Picado
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain, Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain, Centro Nacional de Epidemiología, Instituto de Salud Carlos III, 28029 Madrid, Spain, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
17
|
Tu X, Das K, Han Q, Bauman JD, Clark AD, Hou X, Frenkel YV, Gaffney BL, Jones RA, Boyer PL, Hughes SH, Sarafianos SG, Arnold E. Structural basis of HIV-1 resistance to AZT by excision. Nat Struct Mol Biol 2010; 17:1202-9. [PMID: 20852643 PMCID: PMC2987654 DOI: 10.1038/nsmb.1908] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 07/20/2010] [Indexed: 02/02/2023]
Abstract
Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.
Collapse
Affiliation(s)
- Xiongying Tu
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Radzio J, Yap SH, Tachedjian G, Sluis-Cremer N. N348I in reverse transcriptase provides a genetic pathway for HIV-1 to select thymidine analogue mutations and mutations antagonistic to thymidine analogue mutations. AIDS 2010; 24:659-67. [PMID: 20160634 DOI: 10.1097/qad.0b013e328336781d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Several nonnucleoside (e.g. Y181C) and nucleoside (e.g. L74V and M184V) resistance mutations in HIV-1 reverse transcriptase are antagonistic toward thymidine analogue mutations (TAMs) that confer zidovudine (ZDV) resistance. The N348I mutation in the connection domain of reverse transcriptase also confers ZDV resistance; however, the mechanisms involved are different from TAMs. In this study, we examined whether N348I compensates for the antagonism of the TAM K70R by Y181C, L74V and M184V. DESIGN AND METHODS The ZDV monophosphate and ribonuclease H activities of recombinant-purified HIV-1 reverse transcriptase-containing combinations of K70R, N348I and Y181C, L74V or M184V were assessed using standard biochemical and antiviral assays. RESULTS As expected, the introduction of the Y181C, L74V or M184V mutations into K70R HIV-1 reverse transcriptase significantly diminished the ATP-mediated ZDV monophosphate excision activity of the enzyme. However, the N348I mutation compensated for this antagonism on RNA/DNA template/primers by significantly decreasing the frequency of secondary ribonuclease H cleavages that reduce the overall efficiency of the excision reaction. CONCLUSION The acquisition of N348I in HIV-1 reverse transcriptase - which can occur early in therapy, oftentimes before TAMs - may provide a simple genetic pathway that allows the virus to select both TAMs and mutations that are antagonistic toward TAMs.
Collapse
|
19
|
Acosta-Hoyos AJ, Scott WA. The Role of Nucleotide Excision by Reverse Transcriptase in HIV Drug Resistance. Viruses 2010; 2:372-394. [PMID: 20523911 PMCID: PMC2879589 DOI: 10.3390/v2020372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/15/2010] [Accepted: 01/25/2010] [Indexed: 01/17/2023] Open
Abstract
Nucleoside reverse transcriptase (RT) inhibitors of HIV block viral replication through the ability of HIV RT to incorporate chain-terminating nucleotide analogs during viral DNA synthesis. Once incorporated, the chain-terminating residue must be removed before DNA synthesis can continue. Removal can be accomplished by the excision activity of HIV RT, which catalyzes the transfer of the 3'-terminal residue on the blocked DNA chain to an acceptor substrate, probably ATP in most infected cells. Mutations of RT that enhance excision activity are the most common cause of resistance to 3'-azido-3'-deoxythymidine (AZT) and exhibit low-level cross-resistance to most other nucleoside RT inhibitors. The resistance to AZT is suppressed by a number of additional mutations in RT, most of which were identified because they conferred resistance to other RT inhibitors. Here we review current understanding of the biochemical mechanisms responsible for increased or decreased excision activity due to these mutations.
Collapse
Affiliation(s)
- Antonio J. Acosta-Hoyos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA; E-Mail: (A.J.A.-H.)
| | - Walter A. Scott
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA; E-Mail: (A.J.A.-H.)
| |
Collapse
|
20
|
Yokoyama M, Mori H, Sato H. Allosteric regulation of HIV-1 reverse transcriptase by ATP for nucleotide selection. PLoS One 2010; 5:e8867. [PMID: 20111609 PMCID: PMC2810339 DOI: 10.1371/journal.pone.0008867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 01/05/2010] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is a DNA polymerase that converts viral RNA genomes into proviral DNAs. How HIV-1 RT regulates nucleotide selectivity is a central issue for genetics and the nucleoside analog RT inhibitor (NRTI) resistance of HIV-1. METHODOLOGY/PRINCIPAL FINDINGS Here we show that an ATP molecule at physiological concentrations acts as an allosteric regulator of HIV-1 RT to decrease the K(m) value of the substrate, decrease the k(cat) value, and increase the K(i) value of NRTIs for RT. Computer-assisted structural analyses and mutagenesis studies suggested the positions of the ATP molecule and NRTI-resistance mutations during a catalytic reaction, which immediately predict possible influences on nucleotide insertion into the catalytic site, the DNA polymerization, and the excision reaction. CONCLUSIONS/SIGNIFICANCE These data imply that the ATP molecule and NRTI mutations can modulate nucleotide selectivity by altering the fidelity of the geometric selection of nucleotides and the probability of an excision reaction.
Collapse
Affiliation(s)
- Masaru Yokoyama
- Pathogen Genomics Center, National Institute of Infectious Diseases, Musashi Murayama-shi, Tokyo, Japan.
| | | | | |
Collapse
|
21
|
Mechanisms of resistance associated with excision of incorporated nucleotide analogue inhibitors of HIV-1 reverse transcriptase. Curr Opin HIV AIDS 2009; 2:103-7. [PMID: 19372874 DOI: 10.1097/coh.0b013e3280287a60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Nucleoside analogue reverse transcriptase inhibitors are important components in current drug regimens used to treat infection with HIV. Despite the potency of drug combinations that involve two nucleoside reverse transcriptase inhibitors and a non-nucleoside analogue or a protease inhibitor, the emergence of resistance remains a major reason for treatment failure. This article reviews biochemical mechanisms associated with resistance to nucleoside reverse transcriptase inhibitors. RECENT FINDINGS The thymidine analogues zidovudine and stavudine select for mutational patterns that facilitate the phosphorolytic excision of literally all available nucleoside reverse transcriptase inhibitors. Major progress has been made in defining genotypes that either support or counteract the reaction. Thymidine analogue-associated mutations were shown to increase rates of excision. In contrast, non-thymidine analogue reverse transcriptase inhibitors select for different mutations, e.g. M184V, L74V, and K65R that diminish the effects of thymidine analogue-associated mutations. Possible underlying biochemical mechanisms are discussed in this review. SUMMARY The non-thymidine analogue-associated mutations M184V, L74V, and K65R show incompatibilities with thymidine-analogue-associated mutations. Maximizing these effects in clinical practice may help delay the emergence of resistance. Together, the clinical and biochemical data validate the excision reaction as a target for the development of novel compounds that interfere with the reaction.
Collapse
|
22
|
Tchesnokov EP, Obikhod A, Massud I, Lisco A, Vanpouille C, Brichacek B, Balzarini J, McGuigan C, Derudas M, Margolis L, Schinazi RF, Götte M. Mechanisms associated with HIV-1 resistance to acyclovir by the V75I mutation in reverse transcriptase. J Biol Chem 2009; 284:21496-504. [PMID: 19509419 PMCID: PMC2755874 DOI: 10.1074/jbc.m109.024026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Indexed: 01/02/2023] Open
Abstract
It has recently been demonstrated that the anti-herpetic drug acyclovir (ACV) also displays antiviral activity against the human immunodeficiency virus type 1 (HIV-1). The triphosphate form of ACV is accepted by HIV-1 reverse transcriptase (RT), and subsequent incorporation leads to classical chain termination. Like all approved nucleoside analogue RT inhibitors (NRTIs), the selective pressure of ACV is associated with the emergence of resistance. The V75I mutation in HIV-1 RT appears to be dominant in this regard. By itself, this mutation is usually not associated with resistance to currently approved NRTIs. Here we studied the underlying biochemical mechanism. We demonstrate that V75I is also selected under the selective pressure of a monophosphorylated prodrug that was designed to bypass the bottleneck in drug activation to the triphosphate form (ACV-TP). Pre-steady-state kinetics reveal that V75I discriminates against the inhibitor at the level of catalysis, whereas binding of the inhibitor remains largely unaffected. The incorporated ACV-monophosphate (ACV-MP) is vulnerable to excision in the presence of the pyrophosphate donor ATP. V75I compromises binding of the next nucleotide that can otherwise provide a certain degree of protection from excision. Collectively, the results of this study suggest that ACV is sensitive to two different resistance pathways, which warrants further investigation regarding the detailed resistance profile of ACV. Such studies will be crucial in assessing the potential clinical utility of ACV and its derivatives in combination with established NRTIs.
Collapse
Affiliation(s)
- Egor P. Tchesnokov
- From the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Aleksandr Obikhod
- the Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Research, Atlanta, Georgia 30322
| | - Ivana Massud
- the Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Research, Atlanta, Georgia 30322
| | - Andrea Lisco
- Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Christophe Vanpouille
- Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Beda Brichacek
- Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Jan Balzarini
- the Rega Institute for Medical Research, Katholieke Universiteit, B-3000 Leuven, Belgium, and
| | - Christopher McGuigan
- the Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Marco Derudas
- the Welsh School of Pharmacy, Cardiff University, Cardiff CF10 3NB, United Kingdom
| | - Leonid Margolis
- Program in Physical Biology, Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Raymond F. Schinazi
- the Center for AIDS Research, Department of Pediatrics, Emory University School of Medicine and Veterans Affairs Medical Research, Atlanta, Georgia 30322
| | - Matthias Götte
- From the Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
23
|
Menéndez-Arias L. Molecular basis of human immunodeficiency virus drug resistance: an update. Antiviral Res 2009; 85:210-31. [PMID: 19616029 DOI: 10.1016/j.antiviral.2009.07.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/26/2009] [Accepted: 07/03/2009] [Indexed: 11/25/2022]
Abstract
Antiretroviral therapy has led to a significant decrease in human immunodeficiency virus (HIV)-related mortality. Approved antiretroviral drugs target different steps of the viral life cycle including viral entry (coreceptor antagonists and fusion inhibitors), reverse transcription (nucleoside and non-nucleoside inhibitors of the viral reverse transcriptase), integration (integrase inhibitors) and viral maturation (protease inhibitors). Despite the success of combination therapies, the emergence of drug resistance is still a major factor contributing to therapy failure. Viral resistance is caused by mutations in the HIV genome coding for structural changes in the target proteins that can affect the binding or activity of the antiretroviral drugs. This review provides an overview of the molecular mechanisms involved in the acquisition of resistance to currently used and promising investigational drugs, emphasizing the structural role of drug resistance mutations. The optimization of current antiretroviral drug regimens and the development of new drugs are still challenging issues in HIV chemotherapy. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid), c/Nicolás Cabrera 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
24
|
Pharmacokinetic-pharmacodynamic relationship of NRTIs and its connection to viral escape: an example based on zidovudine. Eur J Pharm Sci 2008; 36:532-43. [PMID: 19150497 DOI: 10.1016/j.ejps.2008.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/26/2008] [Accepted: 12/08/2008] [Indexed: 11/20/2022]
Abstract
In HIV disease, the mechanisms of drug resistance are only poorly understood. Incomplete suppression of HIV by antiretroviral agents is suspected to be a main reason. The objective of this in silico study is to elucidate the pharmacokinetic origins of incomplete viral suppression, exemplified for zidovudine (AZT) as a representative of the key class of nucleoside reverse transcriptase inhibitors (NRTIs). AZT, like other NRTIs, exerts its main action through its intra-cellular triphoshate (AZT-TP) by competition with natural thymidine triphosphate. We developed a physiologically based pharmacokinetic (PBPK) model describing the intra-cellular pharmacokinetics of AZT anabolites and subsequently established the pharmacokinetic-pharmacodynamic relationship. The PBPK model has been validated against clinical data of different dosing schemes. We reduced the PBPK model to derive a simple three-compartment model for AZT and AZT-TP that can readily be used in population analysis of clinical trials. A novel machanistic, and for NRTIs generic effect model has been developed that incorporates the primary effect of AZT-TP and potential secondary effect of zidovudine monophosphate. The proposed models were used to analyze the efficacy and potential toxicity of different dosing schemes for AZT. Based on the mechanism of action of NRTIs, we found that drug heterogeneities due to temporal fluctuations can create a major window of unsuppressed viral replication. For AZT, this window was most pronounced for a 600 mg/once daily dosing scheme, in which insufficient viral suppression was observed for almost half the dosing period.
Collapse
|
25
|
Yu Q, Schwidom D, Exner A, Carlsen P. Synthesis of novel homo-N-nucleoside analogs composed of a homo-1,4-dioxane sugar analog and substituted 1,3,5-triazine base equivalents. Molecules 2008; 13:3092-106. [PMID: 19078851 PMCID: PMC6245424 DOI: 10.3390/molecules13123092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 11/21/2008] [Accepted: 12/03/2008] [Indexed: 11/23/2022] Open
Abstract
Enantioselective syntheses from dimethyl tartrate of 1,3,5-triazine homo-N-nucleoside analogs, containing a 1,4-dioxane moiety replacing the sugar unit in natural nucleosides, were accomplished. The triazine heterocycle in the nucleoside analogs was further substituted with combinations of NH2, OH and Cl in the 2,4-triazine positions.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; E-mail: (Q. Y.)
| | - Dirk Schwidom
- Socrates exchange student: Department of Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Alexander Exner
- Socrates exchange student: Department of Chemistry, University of Hamburg, D-20146 Hamburg, Germany
| | - Per Carlsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), N-7491 Trondheim, Norway; E-mail: (Q. Y.)
- Author to whom correspondence should be addressed; E-mail: ; Fax: +47-73594256
| |
Collapse
|
26
|
Sarafianos SG, Marchand B, Das K, Himmel DM, Parniak MA, Hughes SH, Arnold E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. J Mol Biol 2008; 385:693-713. [PMID: 19022262 DOI: 10.1016/j.jmb.2008.10.071] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 11/19/2022]
Abstract
The rapid replication of HIV-1 and the errors made during viral replication cause the virus to evolve rapidly in patients, making the problems of vaccine development and drug therapy particularly challenging. In the absence of an effective vaccine, drugs are the only useful treatment. Anti-HIV drugs work; so far drug therapy has saved more than three million years of life. Unfortunately, HIV-1 develops resistance to all of the available drugs. Although a number of useful anti-HIV drugs have been approved for use in patients, the problems associated with drug toxicity and the development of resistance means that the search for new drugs is an ongoing process. The three viral enzymes, reverse transcriptase (RT), integrase (IN), and protease (PR) are all good drug targets. Two distinct types of RT inhibitors, both of which block the polymerase activity of RT, have been approved to treat HIV-1 infections, nucleoside analogs (NRTIs) and nonnucleosides (NNRTIs), and there are promising leads for compounds that either block the RNase H activity or block the polymerase in other ways. A better understanding of the structure and function(s) of RT and of the mechanism(s) of inhibition can be used to generate better drugs; in particular, drugs that are effective against the current drug-resistant strains of HIV-1.
Collapse
Affiliation(s)
- Stefan G Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tchesnokov EP, Obikhod A, Schinazi RF, Götte M. Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase. J Biol Chem 2008; 283:34218-28. [PMID: 18940786 DOI: 10.1074/jbc.m806797200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Entecavir (ETV) is a potent antiviral nucleoside analogue that is used to treat hepatitis B virus (HBV) infection. Recent clinical studies have demonstrated that ETV is also active against the human immunodeficiency virus type 1 (HIV-1). Unlike all approved nucleoside analogue reverse transcriptase RT) inhibitors (NRTIs), ETV contains a 3'-hydroxyl group that allows further nucleotide incorporation events to occur. Thus, the mechanism of inhibition probably differs from classic chain termination. Here, we show that the incorporated ETV-monophosphate (MP) can interfere with three distinct stages of DNA synthesis. First, incorporation of the next nucleotide at position n + 1 following ETV-MP is compromised, although DNA synthesis eventually continues. Second, strong pausing at position n + 3 suggests a long range effect, referred to as "delayed chain-termination." Third, the incorporated ETV-MP can also act as a "base pair confounder" during synthesis of the second DNA strand, when the RT enzyme needs to pass the inhibitor in the template. Enzyme kinetics revealed that delayed chain termination is the dominant mechanism of action. High resolution foot-printing experiments suggest that the incorporated ETV-MP "repels" the 3'-end of the primer from the active site of HIV-1 RT, which, in turn, diminishes incorporation of the natural nucleotide substrate at position n + 4. Most importantly, delayed chain termination protects ETV-MP from phosphorolytic excision, which represents a major resistance mechanism for approved NRTIs. Collectively, these findings provide a rationale and important tools for the development of novel, more potent delayed chain terminators as anti-HIV agents.
Collapse
Affiliation(s)
- Egor P Tchesnokov
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | |
Collapse
|
28
|
Ehteshami M, Beilhartz GL, Scarth BJ, Tchesnokov EP, McCormick S, Wynhoven B, Harrigan PR, Götte M. Connection domain mutations N348I and A360V in HIV-1 reverse transcriptase enhance resistance to 3'-azido-3'-deoxythymidine through both RNase H-dependent and -independent mechanisms. J Biol Chem 2008; 283:22222-32. [PMID: 18547911 PMCID: PMC2494928 DOI: 10.1074/jbc.m803521200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Indexed: 11/22/2022] Open
Abstract
Thymidine analogue-associated mutations (TAMs) in reverse transcriptase (RT) of the human immunodeficiency virus type 1 (HIV-1) cause resistance to 3'-azido-3'-deoxythymidine (AZT) through excision of the incorporated monophosphate. Mutations in the connection domain of HIV-1 RT can augment AZT resistance. It has been suggested that these mutations compromise RNase H cleavage, providing more time for AZT excision to occur. However, the underlying mechanism remains elusive. Here, we focused on connection mutations N348I and A360V that are frequently observed in clinical samples of treatment-experienced patients. We show that both N348I and A360V, in combination with TAMs, decrease the efficiency of RNase H cleavage and increase excision of AZT in the presence of the pyrophosphate donor ATP. The TAMs/N348I/A360V mutant accumulates transiently formed, shorter hybrids that can rebind to RT before the template is irreversibly degraded. These hybrids dissociate selectively from the RNase H-competent complex, whereas binding in the polymerase-competent mode is either not affected with N348I or modestly improved with A360V. Both connection domain mutations can compensate for TAM-mediated deficits in processive DNA synthesis, and experiments with RNase H negative mutant enzymes confirm an RNase H-independent contribution to increased levels of resistance to AZT. Moreover, the combination of diminished RNase H cleavage and increased processivity renders the use of both PP(i) and ATP advantageous, whereas classic TAMs solely enhance the ATP-dependent reaction. Taken together, our findings demonstrate that distinct, complementary mechanisms can contribute to higher levels of excision of AZT, which in turn can amplify resistance to this drug.
Collapse
Affiliation(s)
- Maryam Ehteshami
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Menéndez-Arias L. Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase. Virus Res 2008; 134:124-46. [PMID: 18272247 DOI: 10.1016/j.virusres.2007.12.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/21/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
Abstract
Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond formation. Unfortunately, available therapies do not completely suppress viral replication, and the emergence of drug-resistant HIV variants is facilitated by the high adaptation capacity of the virus. Mutations in the RT-coding region selected during treatment with nucleoside analogues confer resistance through different mechanisms: (i) altering discrimination between nucleoside RT inhibitors and natural substrates (dNTPs) (e.g. Q151M, M184V, etc.), or (ii) increasing the RT's phosphorolytic activity (e.g. M41L, T215Y and other thymidine analogue resistance mutations), which in the presence of a pyrophosphate donor (usually ATP) allow the removal of chain-terminating inhibitors from the 3' end of the primer. Both mechanisms are implicated in multi-drug resistance. The excision reaction can be modulated by mutations conferring resistance to nucleoside or nonnucleoside RT inhibitors, and by amino acid substitutions that interfere with the proper binding of the template-primer, including mutations that affect RNase H activity. New developments in the field should contribute towards improving the efficacy of current therapies.
Collapse
Affiliation(s)
- Luis Menéndez-Arias
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
30
|
Xia Q, Radzio J, Anderson KS, Sluis-Cremer N. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Protein Sci 2007; 16:1728-37. [PMID: 17656585 PMCID: PMC2203366 DOI: 10.1110/ps.072829007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTI) are a group of structurally diverse compounds that bind to a single site in HIV-1 reverse transcriptase (RT), termed the NNRTI-binding pocket (NNRTI-BP). NNRTI binding to RT induces conformational changes in the enzyme that affect key elements of the polymerase active site and also the association between the two protein subunits. To determine which conformational changes contribute to the mechanism of inhibition of HIV-1 reverse transcription, we used transient kinetic analyses to probe the catalytic events that occur directly at the enzyme's polymerase active site when the NNRTI-BP was occupied by nevirapine, efavirenz, or delavirdine. Our results demonstrate that all NNRTI-RT-template/primer (NNRTI-RT-T/P) complexes displayed a metal-dependent increase in dNTP binding affinity (K(d) ) and a metal-independent decrease in the maximum rate of dNTP incorporation (k (pol)). The magnitude of the decrease in k (pol) was dependent on the NNRTI used in the assay: Efavirenz caused the largest decrease followed by delavirdine and then nevirapine. Analyses that were designed to probe direct effects on phosphodiester bond formation suggested that the NNRTI mediate their effects on the chemistry step of the DNA polymerization reaction via an indirect manner. Because each of the NNRTI analyzed in this study exerted largely similar phenotypic effects on single nucleotide addition reactions, whereas each of them are known to exert differential effects on RT dimerization, we conclude that the NNRTI effects on subunit association do not directly contribute to the kinetic mechanism of inhibition of DNA polymerization.
Collapse
Affiliation(s)
- Qing Xia
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
31
|
Hanes JW, Johnson KA. A novel mechanism of selectivity against AZT by the human mitochondrial DNA polymerase. Nucleic Acids Res 2007; 35:6973-83. [PMID: 17940100 PMCID: PMC2175305 DOI: 10.1093/nar/gkm695] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Native nucleotides show a hyperbolic concentration dependence of the pre-steady-state rate of incorporation while maintaining concentration-independent amplitude due to fast, largely irreversible pyrophosphate release. The kinetics of 3′-azido-2′,3′-dideoxythymidine (AZT) incorporation exhibit an increase in amplitude and a decrease in rate as a function of nucleotide concentration, implying that pyrophosphate release must be slow so that nucleotide binding and incorporation are thermodynamically linked. Here we develop assays to measure pyrophosphate release and show that it is fast following incorporation of thymidine 5′-triphosphate (TTP). However, pyrophosphate release is slow (0.0009 s−1) after incorporation of AZT. Modeling of the complex kinetics resolves nucleotide binding (230 µM) and chemistry forward and reverse reactions, 0.38 and 0.22 s−1, respectively. This unique mechanism increases selectivity against AZT incorporation by allowing reversal of the reaction and release of substrate, thereby reducing kcat/Km (7 × 10−6 μ M−1 s−1). Other azido-nucleotides (AZG, AZC and AZA) and 8-oxo-7,8-dihydroguanosine-5′-triphosphate (8-oxo-dGTP) show this same phenomena.
Collapse
Affiliation(s)
- Jeremiah W Hanes
- Department of Chemistry & Biochemistry, Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
32
|
Murakami E, Bao H, Basavapathruni A, Bailey CM, Du J, Steuer HMM, Niu C, Whitaker T, Anderson KS, Otto MJ, Furman PA. Mechanism of action of (-)-(2R,4R)-1-(2-hydroxymethyl-1,3-dioxolan-4-yl) thymine as an anti-HIV agent. Antivir Chem Chemother 2007; 18:83-92. [PMID: 17542153 DOI: 10.1177/095632020701800204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
(-)-(2R,4R)-1-(2-Hydroxymethyl-1,3-dioxolan-4yl)thymine (DOT) is a thymidine analogue that has potent in vitro activity against wild-type and nucleoside reverse transcriptase inhibitor (NRTI)-resistant HIV. For nucleoside analogues to inhibit viral replication, they must be metabolized to the active triphosphate, which inhibits the viral reverse transcriptase (RT). Using purified enzymes, the kinetics of DOT phosphorylation, inhibition of wild-type and drug-resistant HIV-1 reverse transcriptase activity, and excision of DOT-5'-monophosphate (DOT-MP) from a chain-terminated primer were examined. DOT was phosphorylated by human thymidine kinase-1 (TK-1) but not by other pyrimidine nucleoside kinases, including the mitochondrial thymidine kinase (TK-2). Resistance to NRTIs involves decreased binding/incorporation and/or increased excision of the chain-terminating NRTI. RTs containing the D67N/K70R/T215Y/K219Q or T695-SS/T215Y mutations show enhanced removal of DOT-MP from terminated primer as well as approximately four-fold decreased binding/incorporation. The Q151M and K65R mutations appear to cause decreased inhibition by DOT-TP. However, both the K65R and Q151M mutations show decreased excision, which would confer greater stability on the terminated primer. These opposing mechanisms could offset the overall resistance profile and susceptibility. Little or no resistance was observed with the enzymes harbouring mutations resistant to lamivudine (M184V) and non-nucleoside RT inhibitors (K103N).
Collapse
|
33
|
Parikh UM, Zelina S, Sluis-Cremer N, Mellors JW. Molecular mechanisms of bidirectional antagonism between K65R and thymidine analog mutations in HIV-1 reverse transcriptase. AIDS 2007; 21:1405-14. [PMID: 17589186 DOI: 10.1097/qad.0b013e3281ac229b] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The K65R mutation in HIV-1 reverse transcriptase (RT) decreases susceptibility to all approved nucleoside reverse transcriptase inhibitors (NRTI) except zidovudine by selectively decreasing the incorporation of the NRTI triphosphate compared with the natural deoxyribonucleotide triphosphate substrate. Thymidine analog mutations (TAMs) confer high-level resistance to zidovudine and cross-resistance to other NRTI by increasing excision of the chain-terminating NRTI monophosphate via a phosphorolytic cleavage reaction. Recent virology and genetic studies have shown bidirectional antagonism between K65R and TAMs. The aim of this study was to elucidate the biochemical and structural mechanisms responsible for this antagonism. METHODS Steady-state and pre-steady-state kinetic analyses of NRTI triphosphate incorporation and NRTI monophosphate excision by RT containing K65R or TAMs were conducted and complemented by molecular modeling. RESULTS The addition of K65R to two clinically relevant combinations of TAMs (M41L/L210W/T215Y or D67N/K70R/T215F/K219Q) significantly reduced the recombinant enzymes' ability to excise all chain-terminating NRTI monophosphate. Transient kinetic analyses showed that TAMs decreased the extent to which RT containing K65R could discriminate against D-nucleotide analogs, but not L-nucleotide analogs, by partly restoring the maximum rate of NRTI triphosphate incorporation. In addition, the TAMs combination D67N/K70R/T215F/K219Q decreased susceptibility to the L-nucleotide lamivudine by a discrimination mechanism, whereas the M41L/L210W/T215Y combination had little effect on susceptibility to lamivudine. CONCLUSION K65R antagonizes the NRTI monophosphate excision activity of RT containing TAMs. TAMs antagonize the ability of K65R RT to discriminate against the nucleotide analog. Therapies including NRTI that select for both TAMs and K65R may prolong treatment response through the mutually antagonistic interactions between these resistance mutations.
Collapse
Affiliation(s)
- Urvi M Parikh
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
34
|
Sluis-Cremer N. Molecular mechanisms of HIV-1 resistance to nucleoside and nucleotide reverse transcriptase inhibitors. ACTA ACUST UNITED AC 2007. [DOI: 10.2217/17469600.1.2.191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat HIV-1 infection and they remain integral components of nearly all antiretroviral regimens. However, the long-term efficacy of combination therapies that contain NRTIs is limited by the selection of drug-resistant variants of HIV-1. In general, NRTI therapy selects for viruses that have mutations in reverse transcriptase (RT). These mutations can be broadly categorized into two groups depending on their phenotypic mechanism of resistance. Mutations such as K65R, K70E, L74V, Q151M and M184V allow RT to discriminate against the NRTI triphosphate by increasing the enzyme’s selectivity for incorporation of the natural deoxynucleotide triphosphate substrate. By comparison, the thymidine analog mutations – such as M41L, D67N, K70R, L210W, T215F/Y and K219Q – augment the ability of HIV-1 RT to excise a chain-terminating NRTI monophosphate from a prematurely terminated DNA chain. A comprehensive knowledge of resistance mechanisms, cross-resistance patterns and interplay between mutations – as described in this review – can help optimize antiretroviral treatment strategies and possibly aid in the design of NRTIs that are active against drug-resistant HIV-1.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- University of Pittsburgh, School of Medicine, Division of Infectious Diseases, S817 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| |
Collapse
|
35
|
Al-Masoudi NA, Al-Soud YA, Ali IAI, Schuppler T, Pannecouque C, De Clercq E. New AZT analogues having 5'-alkylsulfonyl groups: synthesis and anti-HIV activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2007; 26:223-30. [PMID: 17454731 DOI: 10.1080/15257770701257178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
New derivatives of azidothymidine (AZT) substituted by alkyl and alkylsulphonyl groups at N-3 and C-5', respectively, have been synthesized. The new synthesized derivatives showed remarkable anti-HIV-1 and HIV-2 activity in MT-4 cells. Compounds 8 and 10 have IC(50) values of 0.83 and 0.31 microg/mL against HIV-1 with therapeutic index of 83 and 403, respectively, and IC(50) values of 0.93 and 0.29 microg/mL against HIV-2 with therapeutic index of 74 and 431, respectively. This means that compounds 8 and 10 were cytotoxic to MT-4 cells at CC(50) of 69.2 microg/mL and 125 microg/mL, respectively.
Collapse
|
36
|
Marchand B, White KL, Ly JK, Margot NA, Wang R, McDermott M, Miller MD, Götte M. Effects of the translocation status of human immunodeficiency virus type 1 reverse transcriptase on the efficiency of excision of tenofovir. Antimicrob Agents Chemother 2007; 51:2911-9. [PMID: 17517852 PMCID: PMC1932533 DOI: 10.1128/aac.00314-07] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ATP-dependent phosphorolytic excision of nucleoside analogue reverse transcriptase inhibitors can diminish their inhibitory effects on human immunodeficiency virus replication. Previous studies have shown that excision can occur only when the reverse transcriptase complex exists in its pretranslocational state. Binding of the next complementary nucleotide causes the formation of a stable dead-end complex in the posttranslocational state, which blocks the excision reaction. To provide mechanistic insight into the excision of the acyclic phosphonate nucleotide analog tenofovir, we compared the efficiencies of the reaction in response to changes in the translocation status of the enzyme. We found that rates of excision of tenofovir with wild-type reverse transcriptase can be as high as those seen with 3'-azido-3'-deoxythymidine monophosphate (AZT-MP). Thymidine-associated mutations, which confer >100-fold and 3-fold decreased susceptibility to AZT and tenofovir, respectively, caused substantial increases in the efficiency of excision of both inhibitors. However, in contrast to the case for AZT-MP, the removal of tenofovir was highly sensitive to dead-end complex formation. Site-specific footprinting experiments revealed that complexes with AZT-terminated primers exist predominantly pretranslocation. In contrast, complexes with tenofovir-terminated primers are seen in both configurations. Low concentrations of the next nucleotide are sufficient to trap the complex posttranslocation despite the flexible, acyclic character of the compound. Thus, the relatively high rate of excision of tenofovir is partially neutralized by the facile switch to the posttranslocational state and by dead-end complex formation, which provides a degree of protection from excision in the cellular environment.
Collapse
Affiliation(s)
- Bruno Marchand
- Department of Microbiology & Immunology, McGill University, Lyman Duff Medical Building, Montreal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Deval J, Powdrill MH, D'Abramo CM, Cellai L, Götte M. Pyrophosphorolytic excision of nonobligate chain terminators by hepatitis C virus NS5B polymerase. Antimicrob Agents Chemother 2007; 51:2920-8. [PMID: 17502402 PMCID: PMC1932539 DOI: 10.1128/aac.00186-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonobligate chain terminators, such as 2'-C-methylated nucleotides, block RNA synthesis by the RNA-dependent RNA polymerase (RdRp) of hepatitis C virus (HCV). Previous studies with related viral polymerases have shown that classical chain terminators lacking the 3'-hydroxyl group can be excised in the presence of pyrophosphate (PP(i)), which is detrimental to the inhibitory activity of these compounds. Here we demonstrate that the HCV RdRp enzyme is capable of removing both obligate and clinically relevant nonobligate chain terminators. Pyrimidines are more efficiently excised than are purines. The presence of the next complementary templated nucleotide literally blocks the excision of obligate chain terminators through the formation of a dead-end complex (DEC). However, 2'-C-methylated CMP is still cleaved efficiently under these conditions. These findings show that a 2'-methylated primer terminus impedes nucleotide binding. The S282T mutation, associated with resistance to 2'-C-methylated nucleotides, does not affect the excision patterns. Thus, the decreased susceptibility to 2'-C-methylated nucleotides appears to be based solely on improved discrimination between the inhibitor and its natural counterpart. In conclusion, our data suggest that the phosphorolytic excision of nonobligate, pyrimidine-based chain terminators can diminish their potency. The templated nucleotide does not appear to provide protection from excision through DEC formation.
Collapse
Affiliation(s)
- Jérôme Deval
- Department of Microbiology & Immunology, McGill University, Duff Medical Building, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
38
|
Lennerstrand J, Chu CK, Schinazi RF. Biochemical studies on the mechanism of human immunodeficiency virus type 1 reverse transcriptase resistance to 1-(beta-D-dioxolane)thymine triphosphate. Antimicrob Agents Chemother 2007; 51:2078-84. [PMID: 17403997 PMCID: PMC1891359 DOI: 10.1128/aac.00119-07] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large panel of drug-resistant mutants of human immunodeficiency virus type 1 reverse transcriptase (RT) was used to study the mechanisms of resistance to 1-(beta-d-dioxolane)thymine triphosphate (DOT-TP) and other nucleotide analogs. RT containing thymidine analog-associated mutations (TAM) or RT with a T69S-SG insertion in combination with TAM removed 3'-azido-3'-deoxythymidine-5'-monophosphate or tenofovir more efficiently than DOT-monophosphate from chain-terminated DNA primer/template through ATP-mediated pyrophosphorolysis. For non-ATP-dependent discrimination toward DOT-TP, high levels of resistance were found for RT bearing the Q151M mutation with family mutations, while RT bearing only the M184V or the Y115F mutation conferred no resistance to DOT-TP. A lower degree of resistance to DOT-TP than to tenofovir diphosphate or carbovir-TP was found for RT containing the K65R mutation. In the present studies, 1-(beta-d-dioxolane)guanine triphosphate, another nucleotide with a dioxolane sugar moiety, showed a resistance profile similar to that of DOT-TP. The results suggest that DOT, compared with other approved nucleoside analogs, is overall more resilient to mutations such as TAM, M184V, and K65R, which are commonly found in viruses derived from subjects failing multinucleoside therapy.
Collapse
Affiliation(s)
- Johan Lennerstrand
- Laboratory of Biochemical Pharmacology, Emory University/Veterans Affairs Medical Center, 1670 Clairmont Rd., Medical Research 151-H, Decatur, GA 30033, USA
| | | | | |
Collapse
|
39
|
Cases-González CE, Franco S, Martínez MA, Menéndez-Arias L. Mutational patterns associated with the 69 insertion complex in multi-drug-resistant HIV-1 reverse transcriptase that confer increased excision activity and high-level resistance to zidovudine. J Mol Biol 2006; 365:298-309. [PMID: 17070543 DOI: 10.1016/j.jmb.2006.09.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) strains having dipeptide insertions in the fingers subdomain and other drug resistance-related mutations scattered throughout their reverse transcriptase (RT)-coding region show high-level resistance to zidovudine (AZT) and other nucleoside analogues. Those phenotypic effects have been correlated with their increased ATP-dependent phosphorolytic activity on chain-terminated primers. Mutations T69S and T215Y and a dipeptide insertion (i.e. Ser-Ser) between positions 69 and 70 are required to achieve low-level resistance to thymidine analogues. However, additional amino acid substitutions are necessary to achieve the high-level phenotypic resistance to AZT shown by clinical HIV isolates carrying a dipeptide insertion in their RT-coding region. In order to identify those mutations that contribute to resistance in the sequence context of an insertion-containing RT derived from an HIV clinical isolate (designated as SS RT), we expressed and purified a series of chimeric enzymes containing portions of the wild-type or SS RT sequences. ATP-mediated excision activity measurements using AZT- and stavudine (d4T)-terminated primers and phenotypic assays showed that molecular determinants of high-level resistance to AZT were located in the fingers subdomain of the polymerase. Further studies, using recombinant RTs obtained by site-directed mutagenesis, revealed that M41L, A62V and in a lesser extent K70R, were the key mutations that together with T69S, T215Y and the dipeptide insertion conferred high levels of ATP-dependent phosphorolytic activity on AZT and d4T-terminated primers. Excision activity correlated well with AZT susceptibility measurements, and was consistent with phenotypic resistance to d4T. Structural analysis of the location of the implicated amino acid substitutions revealed a coordinated effect of M41L and A62V on the positioning of the beta3-beta4 hairpin loop, which plays a key role in the resistance mechanism.
Collapse
Affiliation(s)
- Clara E Cases-González
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
40
|
Meyer PR, Smith AJ, Matsuura SE, Scott WA. Chain-terminating dinucleoside tetraphosphates are substrates for DNA polymerization by human immunodeficiency virus type 1 reverse transcriptase with increased activity against thymidine analogue-resistant mutants. Antimicrob Agents Chemother 2006; 50:3607-14. [PMID: 16940076 PMCID: PMC1635194 DOI: 10.1128/aac.00537-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleoside reverse transcriptase inhibitors are an important class of drugs for treatment of human immunodeficiency virus type 1 (HIV-1) infection. Resistance to these drugs is often the result of mutations that increase the transfer of chain-terminating nucleotides from blocked DNA termini to a nucleoside triphosphate acceptor, resulting in the generation of an unblocked DNA chain and synthesis of a dinucleoside polyphosphate containing the chain-terminating deoxynucleoside triphosphate analogue. We have synthesized and purified several dinucleoside tetraphosphates (ddAp4ddA, ddCp4ddC, ddGp4ddG, ddTp4ddT, Ap4ddG, 2'(3')-O-(N-methylanthraniloyl)-Ap4ddG, and AppNHppddG) and show that these compounds can serve as substrates for DNA chain elongation and termination resulting in inhibition of DNA synthesis. Thymidine analogue-resistant mutants of reverse transcriptase are up to 120-fold more sensitive to inhibition by these compounds than is wild-type enzyme. Drugs based on the dinucleoside tetraphosphate structure could delay or prevent the emergence of mutants with enhanced primer unblocking activity. In addition, such drugs could suppress the resistance phenotype of mutant HIV-1 that is present in individuals infected with resistant virus.
Collapse
Affiliation(s)
- Peter R Meyer
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | | | | | |
Collapse
|
41
|
White KL, Chen JM, Feng JY, Margot NA, Ly JK, Ray AS, Macarthur HL, McDermott MJ, Swaminathan S, Miller MD. The K65R reverse transcriptase mutation in HIV-1 reverses the excision phenotype of zidovudine resistance mutations. Antivir Ther 2006; 11:155-63. [PMID: 16640096 DOI: 10.1177/135965350601100209] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HIV-1 nucleoside reverse transcriptase inhibitors (NRTIs) tenofovir (TFV), abacavir, didanosine and stavudine can select for K65R, whereas zidovudine (AZT) and stavudine can select for thymidine analogue mutations (TAMs) in HIV-1 reverse transcriptase (RT). HIV-1 with TAMs shows reduced susceptibility to all NRTIs, most notably AZT, whereas HIV-1 with K65R shows reduced susceptibility to all NRTIs except AZT. K65R and TAMs rarely occur together in patients. However, when present together, K65R can restore susceptibility to AZT. This study characterizes the underlying mechanisms of resistance of these RT mutants to TFV and AZT. K65R mediated decreased binding/incorporation of TFV and AZT (increased Ki/Km of 7.1- and 4.3-fold, respectively), but also decreased excision of TFV and AZT (0.7- and 0.3-fold, respectively) when compared with wild-type RT. By contrast, TAMs mediated increased TFV and AZT excision (11- and 5.4-fold, respectively), and showed no changes in binding/incorporation. When these mutations were combined, K65R reversed TAM-mediated AZT resistance by strongly reducing AZT excision. Molecular modelling studies suggest that K65R creates additional hydrogen bonds that reduce the conformational mobility of RT, resulting in reduced polymerization and excision. Thus, consistent with clinical HIV-1 genotyping data, there appears to be no net NRTI resistance benefit for TAMs and K65R to develop together in patients taking AZT and TFV disoproxil fumarate, where the TAM pathway alone provides the greatest resistance for both drugs.
Collapse
|
42
|
Cruchaga C, Ansó E, Rouzaut A, Martínez-Irujo JJ. Selective excision of chain-terminating nucleotides by HIV-1 reverse transcriptase with phosphonoformate as substrate. J Biol Chem 2006; 281:27744-52. [PMID: 16829515 DOI: 10.1074/jbc.m603360200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major mechanism for human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) resistance to nucleoside analogs involves the phosphorolytical removal of the chain-terminating nucleotide from the 3'-end of the primer. In this work, we analyzed the effect of phosphonoformate (PFA) and other pyrophosphate (PP(i)) analogs on PP(i)- and ATP-dependent phosphorolysis catalyzed by HIV-1 RT. Our experimental data demonstrated that PFA did not behave as a linear inhibitor but as an alternative substrate, allowing RT to remove AZT from a terminated primer through a PFA-dependent mechanism. Interestingly, in non-terminated primers, PFA was not a substrate for this reaction and competitively inhibited PP(i)- and ATP-dependent phosphorolysis. In fact, binding of PFA to the RT.template/primer complex was hindered by the presence of a chain terminator at the 3'-end of the primer. Other pyrophosphate analogs, such as phosphonoacetate, were substrates for the excision reaction with both terminated and nonterminated primers, whereas pamidronate, a bisphosphonate that prevents bone resorption, was not a substrate for these reactions and competitively inhibited the phosphorolytic activity of RT. As expected from their mechanisms of action, pamidronate (but not PFA) synergistically inhibits HIV-1 RT in combination with AZT-triphosphate in the presence of PP(i) or ATP. These results provide new clues about the mechanism of action of PFA and demonstrate that only certain pyrophosphate analogs can enhance the effect of nucleosidic inhibitors by blocking the excision of chain-terminating nucleotides catalyzed by HIV-1 RT. The relevance of these findings in combined chemotherapy is discussed.
Collapse
Affiliation(s)
- Carlos Cruchaga
- Departamento de Bioquímica y Biología Molecular, Universidad de Navarra, Calle Irunlarrea s/n, 31008 Pamplona, Spain
| | | | | | | |
Collapse
|
43
|
Götte M, Wainberg MA. Significance of the L74V mutation in HIV-1 reverse transcriptase. Future Virol 2006. [DOI: 10.2217/17460794.1.4.493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mutations that confer resistance to nucleoside analog reverse transcriptase inhibitors of HIV-1 can be divided into two major classes: thymidine analog mutations (TAMs) and TAM suppressors. M184V, K65R and L74V are TAM suppressors that emerge under the selective pressure of non-thymidine analogs. Each of the three TAM suppressors have been shown to decrease the level of resistance to 3´-azido-3´-deoxythymidine against a background of certain combinations of TAMs. L74V and M184V have also been associated with decreased phenotypic susceptibility to tenofovir disoproxil fumarate in vitro. In this review, the effects associated with the L74V mutation, which confer resistance to didanosine and abacavir, are discussed. The clinical significance of this mutation and the underlying biochemical mechanisms of inhibition, resistance and resensitization are also discussed in the context of drug regimens containing didanosine and/or abacavir, in combination with 3´-azido -3´-deoxythymidine and/or tenofovir disoproxil fumarate.
Collapse
Affiliation(s)
- Matthias Götte
- McGill University, Department of Microbiology & Immunology, Duff Medical Building (D-6) 3775, University Street, Montréal, Québec H3A 2B4, Canada
| | - Mark A Wainberg
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| |
Collapse
|
44
|
White KL, Margot NA, Ly JK, Chen JM, Ray AS, Pavelko M, Wang R, McDermott M, Swaminathan S, Miller MD. A combination of decreased NRTI incorporation and decreased excision determines the resistance profile of HIV-1 K65R RT. AIDS 2005; 19:1751-60. [PMID: 16227782 DOI: 10.1097/01.aids.0000189851.21441.f1] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To determine the mechanisms of resistance of K65R mutant reverse transcriptase (RT) to the currently approved nucleoside and nucleotide RT inhibitors (NRTI). METHODS Susceptibilities of K65R mutant HIV-1 to NRTI were determined in cell culture. The Ki/Km values were measured to determine the relative binding or incorporation of the NRTI, and ATP-mediated excision of incorporated NRTI was measured to determine NRTI stability as chain terminators. RESULTS K65R HIV-1 had decreased susceptibility to most NRTI, but increased susceptibility to zidovudine (ZDV). Ki/Km values were increased 2- to 13-fold for K65R compared to wild-type RT for all NRTI, indicating decreased binding or incorporation. However, K65R also showed decreased excision of all NRTI compared to wild-type, indicating greater stability once incorporated. At physiological nucleotide concentrations, excision of ZDV, carbovir (the active metabolite of abacavir; ABC), stavudine (d4T), and tenofovir was further decreased, while excision of didanosine (ddI), zalcitabine (ddC), lamivudine (3TC), and emtricitabine (FTC) was unchanged. The decreased binding or incorporation of ZDV by K65R appeared counteracted by decreased excision resulting in overall increased susceptibility to ZDV in cell culture. For ABC, tenofovir, and d4T, despite having decreased excision, decreased binding or incorporation resulted in reduced susceptibilities to K65R. For ddI, ddC, 3TC, and FTC, decreased binding or incorporation by K65R appeared responsible for the decreased susceptibilities in cell culture. CONCLUSIONS NRTI resistance in cells can consist of both altered binding or incorporation and altered excision of the NRTI. For K65R, the combination of these opposing mechanisms results in decreased susceptibility to most NRTI but increased susceptibility to ZDV.
Collapse
|
45
|
Miranda LR, Götte M, Liang F, Kuritzkes DR. The L74V mutation in human immunodeficiency virus type 1 reverse transcriptase counteracts enhanced excision of zidovudine monophosphate associated with thymidine analog resistance mutations. Antimicrob Agents Chemother 2005; 49:2648-56. [PMID: 15980332 PMCID: PMC1168711 DOI: 10.1128/aac.49.7.2648-2656.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymidine analog mutations (TAMs) in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) confer resistance to zidovudine (AZT) by increasing the rate of ATP-dependent phosphorolysis of the terminal nucleotide monophosphate (primer unblocking). By contrast, the L74V mutation, which confers resistance to didanosine, sensitizes HIV-1 to AZT and partially restores AZT susceptibility when present together with one or more TAMs. To compare rates of primer unblocking in RTs carrying different clusters of TAMs and to explore the biochemical mechanism by which L74V affects AZT susceptibility, ATP-mediated rescue of AZT-blocked DNA synthesis was assayed using a series of purified recombinant RTs. Rates of primer unblocking were higher in the 67N/70R/219Q RT than in the 41L/210W/215Y enzyme and were similar to rates observed with an RT carrying six TAMs (41L/67N/70R/210W/215Y/219Q). The presence of 74V in an otherwise wild-type RT reduced the rate of primer unblocking to a degree similar to that observed with the M184V mutation for lamivudine resistance, which also sensitizes HIV-1 to AZT. Introduction of 74V into RTs carrying TAMs partially counteracted the effect of TAMs on the rate of primer unblocking. The effect of 74V was less marked than that of the 184V mutation in the 67N/70R/219Q and 41L/210W/215Y RTs but similar in the RT carrying six TAMs. These results demonstrate that L74V enhances AZT susceptibility by reducing the extent of its removal by ATP-dependent phosphorolysis and provides further evidence for a common mechanism by which mutations conferring resistance to didanosine and lamivudine sensitize HIV-1 to AZT.
Collapse
Affiliation(s)
- Luis R Miranda
- Section of Retroviral Therapeutics, Brigham and Women's Hospital, and Division of AIDS, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
46
|
Frankel FA, Marchand B, Turner D, Götte M, Wainberg MA. Impaired rescue of chain-terminated DNA synthesis associated with the L74V mutation in human immunodeficiency virus type 1 reverse transcriptase. Antimicrob Agents Chemother 2005; 49:2657-64. [PMID: 15980333 PMCID: PMC1168713 DOI: 10.1128/aac.49.7.2657-2664.2005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The L74V and M184V mutations in the reverse transcriptase (RT) gene of human immunodeficiency virus type 1 (HIV-1) are frequently associated with resistance to the nucleoside reverse transcriptase inhibitors abacavir, didanosine, and lamivudine. Yet viruses containing any of these mutations often display hypersusceptibility to zidovudine (ZDV). Two distinct mechanisms have been described to explain HIV-1 drug resistance. One of these involves diminished rates of incorporation of the nucleotide analogue by mutated RT, while the other mechanism involves increased rates of phosphorolytic excision of the drug-terminated primer. To understand the biochemical mechanisms responsible for the hypersensitization of L74V-containing viruses to ZDV, we studied the efficiency of excision of ZDV-monophosphate (ZDV-MP)-terminated primers by recombinant wild-type and mutated HIV-1 RTs in cell-free assays. We observed that the L74V mutation in RT caused reductions in ATP-dependent removal of ZDV-MP from newly synthesized viral DNA. In addition, we determined that the L74V and M184V mutations did not affect the ratio between the populations of RT-DNA/DNA complexes found at pre- and posttranslocational stages; however, they might have affected proper alignment between incorporated chain terminator and pyrophosphate donor, substrate orientation, affinity for ATP, and/or primer-template substrate. Finally, we confirmed previous findings that L74V-containing viruses display diminished replication capacity and that this is associated with reduced levels of synthesis of early reverse-transcribed viral DNA molecules.
Collapse
Affiliation(s)
- Fernando A Frankel
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, 3755 Côte-Ste-Catherine Road, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | |
Collapse
|
47
|
Smith AJ, Meyer PR, Asthana D, Ashman MR, Scott WA. Intracellular substrates for the primer-unblocking reaction by human immunodeficiency virus type 1 reverse transcriptase: detection and quantitation in extracts from quiescent- and activated-lymphocyte subpopulations. Antimicrob Agents Chemother 2005; 49:1761-9. [PMID: 15855493 PMCID: PMC1087649 DOI: 10.1128/aac.49.5.1761-1769.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of human immunodeficiency virus type 1 (HIV-1)-infected patients with 3'-azido-3'-deoxythymidine (AZT) selects for mutant forms of viral reverse transcriptase (RT) with increased ability to remove chain-terminating nucleotides from blocked DNA chains. We tested various cell extracts for the presence of endogenous acceptor substrates for this reaction. Cell extracts incubated with HIV-1 RT and [(32)P]ddAMP-terminated DNA primer/template gave rise to (32)P-labeled adenosine 2',3'-dideoxyadenosine 5',5'''-P(1),P(4)-tetraphosphate (Ap(4)ddA), ddATP, Gp(4)ddA, and Ap(3)ddA, corresponding to the transfer of [(32)P]ddAMP to ATP, PP(i), GTP, and ADP, respectively. Incubation with [(32)P]AZT monophosphate (AZTMP)-terminated primer/template gave rise to the analogous (32)P-labeled AZT derivatives. Based on the rates of formation of the specific excision products, ATP and PP(i) levels were determined: ATP was present at 1.3 to 2.2 mM in H9 cells, macrophages, and unstimulated CD4(+) or CD8(+) T cells, while PP(i) was present at 7 to 15 microM. Under these conditions, the ATP-dependent reaction predominated, and excision by the AZT-resistant mutant RT was more efficient than wild type RT. Activated CD4(+) or CD8(+) T cells contained 1.4 to 2.7 mM ATP and 55 to 79 microM PP(i). These cellular PP(i) concentrations are lower than previously reported; nonetheless, the PP(i)-dependent reaction predominated in extracts from activated T cells, and excision by mutant and wild-type RT occurred with similar efficiency. While PP(i)-dependent excision may contribute to AZT resistance in vivo, it is likely that selection of AZT-resistant mutants occurs primarily in an environment where the ATP-dependent reaction predominates.
Collapse
Affiliation(s)
- Anthony J Smith
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | | | | | | | |
Collapse
|
48
|
Sluis-Cremer N, Arion D, Parikh U, Koontz D, Schinazi RF, Mellors JW, Parniak MA. The 3'-azido group is not the primary determinant of 3'-azido-3'-deoxythymidine (AZT) responsible for the excision phenotype of AZT-resistant HIV-1. J Biol Chem 2005; 280:29047-52. [PMID: 15970587 DOI: 10.1074/jbc.m503166200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism of human immunodeficiency virus (HIV) 1 resistance to 3'-azido-3'-deoxythymidine (AZT) involves reverse transcriptase (RT)-catalyzed phosphorolytic excision of the chain-terminating AZT-5'-monophosphate (AZTMP). Primers terminated with AZTMP are generally better substrates for this reaction than those terminated with 2',3'-dideoxynucleoside-5'-monophosphate (2',3'-ddNMP) analogs that lack a 3'-azido moiety. This led to the hypothesis that the 3'-azido group is a major structural determinant for maintaining the primer terminus in the appropriate site for phosphorolytic excision of AZTMP by AZT-resistant (AZT(R)) RT. To test this hypothesis, we evaluated the incorporation, phosphorolytic excision, and antiviral activity of a panel of 3'-azido-2',3'-ddN including 3'-azido-2',3'-ddA (AZddA), 3'-azido-2',3'-ddC (AZddC), 3'-azido-2',3'-ddG (AZddG), AZT, and 3'-azido-2',3'-ddU (AZddU). The results indicate that mutations correlated with resistance to AZT (D67N/K70R/T215F/K219Q) confer resistance to the 3'-azidopyrimidine nucleosides (AZddC, AZT, and AZddU) but not to the 3'-azidopurine nucleosides (AZddA and AZddG). The data suggest that the presence of a 3'-azido group on the 3'-terminal nucleotide of the primer does not confer increased phosphorolytic excision by AZT(R) RT for all 3'-azido-ddNMP analogs. Thus, the 3'-azido group cannot be the only structural determinant important for the enhanced phosphorolytic excision of AZTMP associated with HIV resistance to AZT. Other structural components, such as the base, must play a role in defining the specificity of the excision phenotype arising from AZT resistance mutations.
Collapse
Affiliation(s)
- Nicolas Sluis-Cremer
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Radzio J, Sluis-Cremer N. Stereo-selectivity of HIV-1 reverse transcriptase toward isomers of thymidine-5'-O-1-thiotriphosphate. Protein Sci 2005; 14:1929-33. [PMID: 15937285 PMCID: PMC2253364 DOI: 10.1110/ps.051445605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The first pre-steady-state kinetic analysis of the stereo-selective incorporation of Rp- and Sp-isomers of thymidine-5'-O-1-thiotriphosphate (TTPalphaS) by HIV-1 reverse transcriptase (RT) is reported. Rates of polymerization (k(pol)), apparent dissociation constants (K(d)), and substrate specificities (k(pol)/K(d)) were measured for TTP, Rp-TTPalphaS, and Sp-TTPalphaS in the presence of Mg(2+), Mn(2+), and Co(2+). HIV-1 RT exhibits a strong preference to incorporate Sp-TTPalphaS over Rp-TTPalphaS in the presence of Mg(2+); however, this stereo-selective preference was decreased when Mg(2+) was replaced with Mn(2+) and Co(2+). Furthermore, HIV-1 RT exhibited no phosphorothioate elemental effects for the incorporation of Sp-TTPalphaS, but large elemental effects were calculated for Rp-TTPalphaS for each of the metals tested. These results are discussed in relation to our current understanding of the RT active-site structure and the mechanism of DNA synthesis.
Collapse
Affiliation(s)
- Jessica Radzio
- University of Pittsburgh School of Medicine, Division of Infectious Diseases, S817 Scaife Hall, PA 15261, USA
| | | |
Collapse
|
50
|
Boyer PL, Julias JG, Marquez VE, Hughes SH. Fixed conformation nucleoside analogs effectively inhibit excision-proficient HIV-1 reverse transcriptases. J Mol Biol 2005; 345:441-50. [PMID: 15581889 DOI: 10.1016/j.jmb.2004.10.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Revised: 10/07/2004] [Accepted: 10/11/2004] [Indexed: 11/25/2022]
Abstract
An important mechanism of resistance to nucleoside analogs is the enhanced excision of the analog after it has been incorporated. Excision requires that the analog be located at the 3' terminus of the primer. We have developed nucleoside analogs that do not block DNA synthesis at the point of incorporation, but only after additional normal dNTPs have been added to the DNA. Such "delayed chain terminators" should be relatively resistant to excision and therefore effective against drug-resistant HIV-1 reverse transcriptases (RTs) that are proficient at excision. We tested a class of nucleoside analogs in which a pseudosugar ring is locked in either the North or the South conformation. These analogs have a 3' OH present on the pseudosugar ring, which allows extension of the primer strand after the analog is incorporated. We asked whether these analogs would inhibit polymerization by HIV-1 RT in assays using purified HIV-1 RT and in cell-based assays. HIV-1 RT did not effectively incorporate the analogs in which the pseudosugar is in the South conformation. The North conformation analogs are readily incorporated into the primer; the primer can be extended for two or three additional nucleotides before extension is inhibited. This block to polymerization is not complete; larger extension products are detectable at longer incubation times. Experiments with purified excision-proficient HIV-1 RT mutants suggest that the North conformation analogs are relatively resistant to excision. These analogs can also block the replication of viruses containing excision-proficient RTs. Although the fixed-conformation nucleotides are probably not suitable for development as drugs, other nucleoside analogs that cause delayed chain termination may complement the nucleoside analogs already approved for HIV-1 therapy.
Collapse
Affiliation(s)
- Paul L Boyer
- HIV Drug Resistance Program, National Cancer Institute at Frederick, PO Box B, Bldg. 539, Frederick, MD 21702, USA
| | | | | | | |
Collapse
|