1
|
Pinkston J, Jo J, Olsen KJ, Comer D, Glaittli CA, Loria JP, Johnson SJ, Hengge AC. Significant Loop Motions in the SsoPTP Protein Tyrosine Phosphatase Allow for Dual General Acid Functionality. Biochemistry 2021; 60:2888-2901. [PMID: 34496202 DOI: 10.1021/acs.biochem.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.
Collapse
Affiliation(s)
- Justin Pinkston
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Jihye Jo
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Keith J Olsen
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Drake Comer
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Charsti A Glaittli
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - J Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, Connecticut 06520, United States
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Alvan C Hengge
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
2
|
Burke JR, La Clair JJ, Philippe RN, Pabis A, Corbella M, Jez JM, Cortina GA, Kaltenbach M, Bowman ME, Louie GV, Woods KB, Nelson AT, Tawfik DS, Kamerlin SC, Noel JP. Bifunctional Substrate Activation via an Arginine Residue Drives Catalysis in Chalcone Isomerases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jason R. Burke
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - James J. La Clair
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Ryan N. Philippe
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Anna Pabis
- Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, S-751 24 Uppsala, Sweden
| | - Marina Corbella
- Department of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joseph M. Jez
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - George A. Cortina
- Department of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Miriam Kaltenbach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Marianne E. Bowman
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Gordon V. Louie
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Katherine B. Woods
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| | - Andrew T. Nelson
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dan S. Tawfik
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shina C.L. Kamerlin
- Department of Chemistry−BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joseph P. Noel
- Howard Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, La Jolla, California 92037, United States
| |
Collapse
|
3
|
Herrou J, Crosson S, Fiebig A. Structure and function of HWE/HisKA2-family sensor histidine kinases. Curr Opin Microbiol 2017; 36:47-54. [PMID: 28193573 DOI: 10.1016/j.mib.2017.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
Sensor histidine kinases regulate adaptive cellular responses to changes in the chemical or physical state of the environment. HWE/HisKA2-family kinases comprise a subset of histidine kinases that is defined by unique sequence motifs in both the catalytic and non-catalytic regions. Recent crystal structures have defined conserved intramolecular interactions that inform models of kinase regulation that are unique to the HWE/HisKA2 superfamily. Emerging genetic, biochemical and genomic data indicate that, unlike typical histidine kinases, HWE/HisKA2 kinases do not generally signal via classical DNA-binding response regulators. Rather, these unusual kinases are often part of atypical regulatory pathways that control changes in gene expression via modulation of protein-protein interactions or transcription anti-termination.
Collapse
Affiliation(s)
- Julien Herrou
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Sean Crosson
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA; Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
4
|
Abstract
We review literature on the metabolism of ribo- and deoxyribonucleotides, nucleosides, and nucleobases in Escherichia coli and Salmonella,including biosynthesis, degradation, interconversion, and transport. Emphasis is placed on enzymology and regulation of the pathways, at both the level of gene expression and the control of enzyme activity. The paper begins with an overview of the reactions that form and break the N-glycosyl bond, which binds the nucleobase to the ribosyl moiety in nucleotides and nucleosides, and the enzymes involved in the interconversion of the different phosphorylated states of the nucleotides. Next, the de novo pathways for purine and pyrimidine nucleotide biosynthesis are discussed in detail.Finally, the conversion of nucleosides and nucleobases to nucleotides, i.e.,the salvage reactions, are described. The formation of deoxyribonucleotides is discussed, with emphasis on ribonucleotidereductase and pathways involved in fomation of dUMP. At the end, we discuss transport systems for nucleosides and nucleobases and also pathways for breakdown of the nucleobases.
Collapse
|
5
|
Jongkon N, Chotpatiwetchkul W, Gleeson MP. Probing the Catalytic Mechanism Involved in the Isocitrate Lyase Superfamily: Hybrid Quantum Mechanical/Molecular Mechanical Calculations on 2,3-Dimethylmalate Lyase. J Phys Chem B 2015. [PMID: 26224328 DOI: 10.1021/acs.jpcb.5b04732] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The isocitrate lyase (ICL) superfamily catalyzes the cleavage of the C(2)-C(3) bond of various α-hydroxy acid substrates. Members of the family are found in bacteria, fungi, and plants and include ICL itself, oxaloacetate hydrolase (OAH), 2-methylisocitrate lyase (MICL), and (2R,3S)-dimethylmalate lyase (DMML) among others. ICL and related targets have been the focus of recent studies to treat bacterial and fungal infections, including tuberculosis. The catalytic process by which this family achieves C(2)-C(3) bond breaking is still not clear. Extensive structural studies have been performed on this family, leading to a number of plausible proposals for the catalytic mechanism. In this paper, we have applied quantum mechanical/molecular mechanical (QM/MM) methods to the most recently reported family member, DMML, to assess whether any of the mechanistic proposals offers a clear energetic advantage over the others. Our results suggest that Arg161 is the general base in the reaction and Cys124 is the general acid, giving rise to a rate-determining barrier of approximately 10 kcal/mol.
Collapse
Affiliation(s)
- Nathjanan Jongkon
- Department of Social and Applied Science, College of Industrial Technology, King Mongkut's University of Technology, North Bangkok , Bangkok 10800, Thailand
| | - Warot Chotpatiwetchkul
- Department of Chemistry, Faculty of Science, Kasetsart University , Chatuchak, Bangkok 10903, Thailand
| | - M Paul Gleeson
- Department of Chemistry, Faculty of Science, Kasetsart University , Chatuchak, Bangkok 10903, Thailand
| |
Collapse
|
6
|
Lawan N, Ranaghan KE, Manby FR, Mulholland AJ. Comparison of DFT and ab initio QM/MM methods for modelling reaction in chorismate synthase. Chem Phys Lett 2014. [DOI: 10.1016/j.cplett.2014.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Hung JE, Fogle EJ, Garg N, Chekan JR, Nair SK, van der Donk WA. Chemical rescue and inhibition studies to determine the role of Arg301 in phosphite dehydrogenase. PLoS One 2014; 9:e87134. [PMID: 24498026 PMCID: PMC3909101 DOI: 10.1371/journal.pone.0087134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/19/2013] [Indexed: 12/11/2022] Open
Abstract
Phosphite dehydrogenase (PTDH) catalyzes the NAD(+)-dependent oxidation of phosphite to phosphate. This reaction requires the deprotonation of a water nucleophile for attack on phosphite. A crystal structure was recently solved that identified Arg301 as a potential base given its proximity and orientation to the substrates and a water molecule within the active site. Mutants of this residue showed its importance for efficient catalysis, with about a 100-fold loss in k cat and substantially increased K m,phosphite for the Ala mutant (R301A). The 2.35 Å resolution crystal structure of the R301A mutant with NAD(+) bound shows that removal of the guanidine group renders the active site solvent exposed, suggesting the possibility of chemical rescue of activity. We show that the catalytic activity of this mutant is restored to near wild-type levels by the addition of exogenous guanidinium analogues; Brønsted analysis of the rates of chemical rescue suggests that protonation of the rescue reagent is complete in the transition state of the rate-limiting step. Kinetic isotope effects on the reaction in the presence of rescue agents show that hydride transfer remains at least partially rate-limiting, and inhibition experiments show that K i of sulfite with R301A is ∼400-fold increased compared to the parent enzyme, similar to the increase in K m for phosphite in this mutant. The results of our experiments indicate that Arg301 plays an important role in phosphite binding as well as catalysis, but that it is not likely to act as an active site base.
Collapse
Affiliation(s)
- John E. Hung
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Emily J. Fogle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Neha Garg
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jonathan R. Chekan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Wilfred A. van der Donk
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
8
|
Krajczyk A, Kulinska K, Kulinski T, Hurst BL, Day CW, Smee DF, Ostrowski T, Januszczyk P, Zeidler J. Antivirally active ribavirin analogues--4,5-disubstituted 1,2,3-triazole nucleosides: biological evaluation against certain respiratory viruses and computational modelling. Antivir Chem Chemother 2014; 23:161-71. [PMID: 23538746 DOI: 10.3851/imp2564] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Ribavirin is a broad-spectrum antiviral agent that derives some of its activity from inhibition of cellular inosine monophosphate dehydrogenase (IMPDH), resulting in lower guanosine triphosphate (GTP) levels. Here we report the biological activities of three ribavirin analogues. METHODS Antiviral activities of test compounds were performed by in vitro cytopathic effect inhibition assays against influenza A (H1N1, H3N2 and H5N1), influenza B, measles, parainfluenza type 3 (PIV-3) and respiratory syncytial viruses. Compounds were modelled into the ribavirin 5'-monophosphate binding site of the crystallographic structure of the human type II IMPDH (hIMPDH2) ternary complex. Effects of compounds on intracellular GTP levels were performed by strong anion exchange HPLC analysis. RESULTS Of the three compounds evaluated, the 5-ethynyl nucleoside (ETCAR) exhibited virus-inhibitory activities (at 1.2-20 μM, depending upon the virus) against most of the viruses, except for weak activity against PIV-3 (62 μM). Antiviral activity of ETCAR was similar to ribavirin; however, cytotoxicity of ETCAR was greater than ribavirin. Replacing the 5-ethynyl group with a 5-propynyl or bromo substituent (BrCAR) considerably reduced antiviral activity. Computational studies of ternary complexes of hIMPDH2 enzyme with 5'-monophosphates of the compounds helped rationalize the observed differences in biological activity. All compounds suppressed GTP levels in cells; additionally, BrCAR suppressed adenosine triphosphate and elevated uridine triphosphate levels. CONCLUSIONS Three compounds related to ribavirin inhibited IMPDH and had weak to moderate antiviral activity. Cytotoxicity adversely affected the antiviral selectivity of ETCAR. As with ribavirin, reduction in intracellular GTP may play a role in virus inhibition.
Collapse
Affiliation(s)
- Anna Krajczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Huo L, Davis I, Chen L, Liu A. The power of two: arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-epsilon-semialdehyde decarboxylase. J Biol Chem 2013; 288:30862-71. [PMID: 24019523 DOI: 10.1074/jbc.m113.496869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the crystal structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase from Pseudomonas fluorescens was solved as a dimer, this enzyme is a mixture of monomer, dimer, and higher order structures in solution. In this work, we found that the dimeric state, not the monomeric state, is the functionally active form. Two conserved arginine residues are present in the active site: Arg-51 and an intruding Arg-239* from the neighboring subunit. In this study, they were each mutated to alanine and lysine, and all four mutants were catalytically inactive. The mutants were also incapable of accommodating pyridine-2,6-dicarboxylic acid, a competitive inhibitor of the native enzyme, suggesting that the two Arg residues are involved in substrate binding. It was also observed that the decarboxylase activity was partially recovered in a heterodimer hybridization experiment when inactive R51(A/K) and R239(A/K) mutants were mixed together. Of the 20 crystal structures obtained from mixing inactive R51A and R239A homodimers that diffracted to a resolution lower than 3.00 Å, two structures are clearly R51A/R239A heterodimers and belong to the C2 space group. They were refined to 1.80 and 2.00 Å resolutions, respectively. Four of the remaining crystals are apparently single mutants and belong to the P42212 space group. In the heterodimer structures, one active site is shown to contain dual mutation of Ala-51 and Ala-239*, whereas the other contains the native Arg-51 and Arg-239* residues, identical to the wild-type structure. Thus, these observations provide the foundation for a molecular mechanism by which the oligomerization state of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase could regulate the enzyme activity.
Collapse
Affiliation(s)
- Lu Huo
- From the Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303
| | | | | | | |
Collapse
|
10
|
Keenholtz RA, Mouw KW, Boocock MR, Li NS, Piccirilli JA, Rice PA. Arginine as a general acid catalyst in serine recombinase-mediated DNA cleavage. J Biol Chem 2013; 288:29206-14. [PMID: 23970547 DOI: 10.1074/jbc.m113.508028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the serine family of site-specific DNA recombinases use an unusual constellation of amino acids to catalyze the formation and resolution of a covalent protein-DNA intermediate. A recent high resolution structure of the catalytic domain of Sin, a particularly well characterized family member, provided a detailed view of the catalytic site. To determine how the enzyme might protonate and stabilize the 3'O leaving group in the strand cleavage reaction, we examined how replacing this oxygen with a sulfur affected the cleavage rate by WT and mutant enzymes. To facilitate direct comparison of the cleavage rates, key experiments used suicide substrates that prevented religation after cleavage. The catalytic defect associated with mutation of one of six highly conserved arginine residues, Arg-69 in Sin, was partially rescued by a 3' phosphorothiolate substrate. We conclude that Arg-69 has an important role in stabilizing the 3'O leaving group and is the prime candidate for the general acid that protonates the 3'O, in good agreement with the position it occupies in the high resolution structure of the active site of Sin.
Collapse
|
11
|
Hung JE, Fogle EJ, Christman HD, Johannes TW, Zhao H, Metcalf WW, van der Donk WA. Investigation of the role of Arg301 identified in the X-ray structure of phosphite dehydrogenase. Biochemistry 2012; 51:4254-62. [PMID: 22564138 PMCID: PMC3361975 DOI: 10.1021/bi201691w] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Phosphite dehydrogenase (PTDH) from Pseudomonas
stutzeri catalyzes the nicotinamide adenine dinucleotide-dependent
oxidation
of phosphite to phosphate. The enzyme belongs to the family of d-hydroxy acid dehydrogenases (DHDHs). A search of the protein
databases uncovered many additional putative phosphite dehydrogenases.
The genes encoding four diverse candidates were cloned and expressed,
and the enzymes were purified and characterized. All oxidized phosphite
to phosphate and had similar kinetic parameters despite a low level
of pairwise sequence identity (39–72%). A recent crystal structure
identified Arg301 as a residue in the active site that has not been
investigated previously. Arg301 is fully conserved in the enzymes
shown here to be PTDHs, but the residue is not conserved in other
DHDHs. Kinetic analysis of site-directed mutants of this residue shows
that it is important for efficient catalysis, with an ∼100-fold
decrease in kcat and an almost 700-fold
increase in Km,phosphite for the R301A
mutant. Interestingly, the R301K mutant displayed a slightly higher kcat than the parent PTDH, and a more modest
increase in Km for phosphite (nearly 40-fold).
Given these results, Arg301 may be involved in the binding and orientation
of the phosphite substrate and/or play a catalytic role via electrostatic
interactions. Three other residues in the active site region that
are conserved in the PTDH orthologs but not DHDHs were identified
(Trp134, Tyr139, and Ser295). The importance of these residues was
also investigated by site-directed mutagenesis. All of the mutants
had kcat values similar to that of the
wild-type enzyme, indicating these residues are not important for
catalysis.
Collapse
Affiliation(s)
- John E Hung
- Department of Chemistry, University of Illinois, 600 South Mathews Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Blanc B, Mayfield JA, McDonald CA, Lukat-Rodgers GS, Rodgers KR, DuBois JL. Understanding how the distal environment directs reactivity in chlorite dismutase: spectroscopy and reactivity of Arg183 mutants. Biochemistry 2012; 51:1895-910. [PMID: 22313119 DOI: 10.1021/bi2017377] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The chlorite dismutase from Dechloromonas aromatica (DaCld) catalyzes the highly efficient decomposition of chlorite to O(2) and chloride. Spectroscopic, equilibrium thermodynamic, and kinetic measurements have indicated that Cld has two pH sensitive moieties; one is the heme, and Arg183 in the distal heme pocket has been hypothesized to be the second. This active site residue has been examined by site-directed mutagenesis to understand the roles of positive charge and hydrogen bonding in O-O bond formation. Three Cld mutants, Arg183 to Lys (R183K), Arg183 to Gln (R183Q), and Arg183 to Ala (R183A), were investigated to determine their respective contributions to the decomposition of chlorite ion, the spin state and coordination states of their ferric and ferrous forms, their cyanide and imidazole binding affinities, and their reduction potentials. UV-visible and resonance Raman spectroscopies showed that DaCld(R183A) contains five-coordinate high-spin (5cHS) heme, the DaCld(R183Q) heme is a mixture of five-coordinate and six-coordinate high spin (5c/6cHS) heme, and DaCld(R183K) contains six-coordinate low-spin (6cLS) heme. In contrast to wild-type (WT) Cld, which exhibits pK(a) values of 6.5 and 8.7, all three ferric mutants exhibited pH-independent spectroscopic signatures and kinetic behaviors. Steady state kinetic parameters of the chlorite decomposition reaction catalyzed by the mutants suggest that in WT DaCld the pK(a) of 6.5 corresponds to a change in the availability of positive charge from the guanidinium group of Arg183 to the heme site. This could be due to either direct acid-base chemistry at the Arg183 side chain or a flexible Arg183 side chain that can access various orientations. Current evidence is most consistent with a conformational adjustment of Arg183. A properly oriented Arg183 is critical for the stabilization of anions in the distal pocket and for efficient catalysis.
Collapse
Affiliation(s)
- Béatrice Blanc
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | |
Collapse
|
13
|
Hedstrom L. The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes. Crit Rev Biochem Mol Biol 2012; 47:250-63. [PMID: 22332716 DOI: 10.3109/10409238.2012.656843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The inosine monophosphate dehydrogenase (IMPDH)/guanosine monophosphate reductase (GMPR) family of (β/α)(8) enzymes presents an excellent opportunity to investigate how subtle changes in enzyme structure change reaction specificity. IMPDH and GMPR bind the same ligands with similar affinities and share a common set of catalytic residues. Both enzymes catalyze a hydride transfer reaction involving a nicotinamide cofactor hydride, and both reactions proceed via the same covalent intermediate. In the case of IMPDH, this intermediate reacts with water, while in GMPR it reacts with ammonia. In both cases, the two chemical transformations are separated by a conformational change. In IMPDH, the conformational change involves a mobile protein flap while in GMPR, the cofactor moves. Thus reaction specificity is controlled by differences in dynamics, which in turn are controlled by residues outside the active site. These findings have some intriguing implications for the evolution of the IMPDH/GMPR family.
Collapse
Affiliation(s)
- Lizbeth Hedstrom
- Departments of Biology and Chemistry, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
14
|
Singh R, Grigg JC, Armstrong Z, Murphy MEP, Eltis LD. Distal heme pocket residues of B-type dye-decolorizing peroxidase: arginine but not aspartate is essential for peroxidase activity. J Biol Chem 2012; 287:10623-10630. [PMID: 22308037 DOI: 10.1074/jbc.m111.332171] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DypB from Rhodococcus jostii RHA1 is a bacterial dye-decolorizing peroxidase (DyP) that oxidizes lignin and Mn(II). Three residues interact with the iron-bound solvent species in ferric DypB: Asn-246 and the conserved Asp-153 and Arg-244. Substitution of either Asp-153 or Asn-246 with alanine minimally affected the second order rate constant for Compound I formation (k(1) ∼ 10(5) M(-1)s(-1)) and the specificity constant (k(cat)/K(m)) for H(2)O(2). Even in the D153A/N246A double variant, these values were reduced less than 30-fold. However, these substitutions dramatically reduced the stability of Compound I (t(1/2) ∼ 0.13 s) as compared with the wild-type enzyme (540 s). By contrast, substitution of Arg-244 with leucine abolished the peroxidase activity, and heme iron of the variant showed a pH-dependent transition from high spin (pH 5) to low spin (pH 8.5). Two variants were designed to mimic the plant peroxidase active site: D153H, which was more than an order of magnitude less reactive with H(2)O(2), and N246H, which had no detectable peroxidase activity. X-ray crystallographic studies revealed that structural changes in the variants are confined to the distal heme environment. The data establish an essential role for Arg-244 in Compound I formation in DypB, possibly through charge stabilization and proton transfer. The principle roles of Asp-153 and Asn-246 appear to be in modulating the subsequent reactivity of Compound I. These results expand the range of residues known to catalyze Compound I formation in heme peroxidases.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jason C Grigg
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Zachary Armstrong
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Lindsay D Eltis
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
15
|
Patton GC, Stenmark P, Gollapalli DR, Sevastik R, Kursula P, Flodin S, Schuler H, Swales CT, Eklund H, Himo F, Nordlund P, Hedstrom L. Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes. Nat Chem Biol 2011; 7:950-8. [PMID: 22037469 PMCID: PMC4552316 DOI: 10.1038/nchembio.693] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 08/22/2011] [Indexed: 12/13/2022]
Abstract
Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.
Collapse
Affiliation(s)
- Gregory C. Patton
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Pål Stenmark
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Robin Sevastik
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Petri Kursula
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Susanne Flodin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Herwig Schuler
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Colin T. Swales
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Hans Eklund
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, P.O. Box 590, SE-751 24 Uppsala, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Pär Nordlund
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University, 61 Nanyang Drive Singapore 639798
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| |
Collapse
|
16
|
Riera TV, Zheng L, Josephine HR, Min D, Yang W, Hedstrom L. Allosteric activation via kinetic control: potassium accelerates a conformational change in IMP dehydrogenase. Biochemistry 2011; 50:8508-18. [PMID: 21870820 PMCID: PMC3186055 DOI: 10.1021/bi200785s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Allosteric activators are generally believed to shift the equilibrium distribution of enzyme conformations to favor a catalytically productive structure; the kinetics of conformational exchange is seldom addressed. Several observations suggested that the usual allosteric mechanism might not apply to the activation of IMP dehydrogenase (IMPDH) by monovalent cations. Therefore, we investigated the mechanism of K(+) activation in IMPDH by delineating the kinetic mechanism in the absence of monovalent cations. Surprisingly, the K(+) dependence of k(cat) derives from the rate of flap closure, which increases by ≥65-fold in the presence of K(+). We performed both alchemical free energy simulations and potential of mean force calculations using the orthogonal space random walk strategy to computationally analyze how K(+) accelerates this conformational change. The simulations recapitulate the preference of IMPDH for K(+), validating the computational models. When K(+) is replaced with a dummy ion, the residues of the K(+) binding site relax into ordered secondary structure, creating a barrier to conformational exchange. K(+) mobilizes these residues by providing alternate interactions for the main chain carbonyls. Potential of mean force calculations indicate that K(+) changes the shape of the energy well, shrinking the reaction coordinate by shifting the closed conformation toward the open state. This work suggests that allosteric regulation can be under kinetic as well as thermodynamic control.
Collapse
Affiliation(s)
- Thomas V. Riera
- Graduate Program in Biochemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Lianqing Zheng
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Helen R. Josephine
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| | - Donghong Min
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
| | - Wei Yang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306 USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306 USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
- Department of Chemistry, Brandeis University, 415 South St., MS 009, Waltham, MA 02454 USA
| |
Collapse
|
17
|
Inosine monophosphate dehydrogenase as a target for antiviral, anticancer, antimicrobial and immunosuppressive therapeutics. Future Med Chem 2011; 2:81-92. [PMID: 21426047 DOI: 10.4155/fmc.09.147] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo biosynthesis of guanine nucleotides. In recent years it has become the target of multiple drugs in an attempt to cure a variety of diseases. Possible therapeutic drugs range from antiviral and anticancer to immunosuppressive targets. Research has shown that if IMPDH is effectively inhibited, cancerous growth can be slowed and virus replication can be stopped. Microbial and parasitic IMPDH differ significantly from the human isoforms and targeting those isoforms could lead to effective treatments for many diseases. Inhibiting IMPDH is an extremely promising therapy for a variety of disease states. Isoform- and species-selective inhibition is desirable and scientists are making significant progress in these areas.
Collapse
|
18
|
Keenholtz RA, Rowland SJ, Boocock MR, Stark WM, Rice PA. Structural basis for catalytic activation of a serine recombinase. Structure 2011; 19:799-809. [PMID: 21645851 PMCID: PMC3238390 DOI: 10.1016/j.str.2011.03.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/01/2022]
Abstract
Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 Å crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.
Collapse
Affiliation(s)
- Ross A. Keenholtz
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sally-J. Rowland
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Martin R. Boocock
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - W. Marshall Stark
- Division of Molecular Genetics, FBLS, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Phoebe A. Rice
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
19
|
Gollapalli DR, Macpherson IS, Liechti G, Gorla SK, Goldberg JB, Hedstrom L. Structural determinants of inhibitor selectivity in prokaryotic IMP dehydrogenases. ACTA ACUST UNITED AC 2011; 17:1084-91. [PMID: 21035731 DOI: 10.1016/j.chembiol.2010.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/26/2010] [Accepted: 07/20/2010] [Indexed: 10/18/2022]
Abstract
The protozoan parasite Cryptosporidium parvum is a major cause of gastrointestinal disease; no effective drug therapy exists to treat this infection. Curiously, C. parvum IMPDH (CpIMPDH) is most closely related to prokaryotic IMPDHs, suggesting that the parasite obtained its IMPDH gene via horizontal transfer. We previously identified inhibitors of CpIMPDH that do not inhibit human IMPDHs. Here, we show that these compounds also inhibit IMPDHs from Helicobacter pylori, Borrelia burgdorferi, and Streptococcus pyogenes, but not from Escherichia coli. Residues Ala165 and Tyr358 comprise a structural motif that defines susceptible enzymes. Importantly, a second-generation CpIMPDH inhibitor has bacteriocidal activity on H. pylori but not E. coli. We propose that CpIMPDH-targeted inhibitors can be developed into a new class of antibiotics that will spare some commensal bacteria.
Collapse
|
20
|
Josephine HR, Ravichandran KR, Hedstrom L. The Cys319 loop modulates the transition between dehydrogenase and hydrolase conformations in inosine 5'-monophosphate dehydrogenase. Biochemistry 2010; 49:10674-81. [PMID: 21062060 DOI: 10.1021/bi101590c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray crystal structures of enzyme-ligand complexes are widely believed to mimic states in the catalytic cycle, but this presumption has seldom been carefully scrutinized. In the case of Tritrichomonas foetus inosine 5'-monophosphate dehydrogenase (IMPDH), 10 structures of various enzyme-substrate-inhibitor complexes have been determined. The Cys319 loop is found in at least three different conformations, suggesting that its conformation changes as the catalytic cycle progresses from the dehydrogenase step to the hydrolase reaction. Alternatively, only one conformation of the Cys319 loop may be catalytically relevant while the others are off-pathway. Here we differentiate between these two hypotheses by analyzing the effects of Ala substitutions at three residues of the Cys319 loop, Arg322, Glu323, and Gln324. These mutations have minimal effects on the value of k(cat) (≤5-fold) that obscure large effects (>10-fold) on the microscopic rate constants for individual steps. These substitutions increase the equilibrium constant for the dehydrogenase step but decrease the equilibrium between open and closed conformations of a mobile flap. More dramatic effects are observed when Arg322 is substituted with Glu, which decreases the rates of hydride transfer and hydrolysis by factors of 2000 and 130, respectively. These experiments suggest that the Cys319 loop does indeed have different conformations during the dehydrogenase and hydrolase reactions as suggested by the crystal structures. Importantly, these experiments reveal that the structure of the Cys319 loop modulates the closure of the mobile flap. This conformational change converts the enzyme from a dehydrogenase into hydrolase, suggesting that the conformation of the Cys319 loop may gate the catalytic cycle.
Collapse
Affiliation(s)
- Helen R Josephine
- Department of Biology, Brandeis University, Waltham, Massachusetts 02454-9110, United States
| | | | | |
Collapse
|
21
|
Affiliation(s)
- Lizbeth Hedstrom
- Department of Biology, Brandeis University, MS009, 415 South Street, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
22
|
An enzymatic atavist revealed in dual pathways for water activation. PLoS Biol 2008; 6:e206. [PMID: 18752347 PMCID: PMC2525682 DOI: 10.1371/journal.pbio.0060206] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 07/15/2008] [Indexed: 11/21/2022] Open
Abstract
Inosine monophosphate dehydrogenase (IMPDH) catalyzes an essential step in the biosynthesis of guanine nucleotides. This reaction involves two different chemical transformations, an NAD-linked redox reaction and a hydrolase reaction, that utilize mutually exclusive protein conformations with distinct catalytic residues. How did Nature construct such a complicated catalyst? Here we employ a “Wang-Landau” metadynamics algorithm in hybrid quantum mechanical/molecular mechanical (QM/MM) simulations to investigate the mechanism of the hydrolase reaction. These simulations show that the lowest energy pathway utilizes Arg418 as the base that activates water, in remarkable agreement with previous experiments. Surprisingly, the simulations also reveal a second pathway for water activation involving a proton relay from Thr321 to Glu431. The energy barrier for the Thr321 pathway is similar to the barrier observed experimentally when Arg418 is removed by mutation. The Thr321 pathway dominates at low pH when Arg418 is protonated, which predicts that the substitution of Glu431 with Gln will shift the pH-rate profile to the right. This prediction is confirmed in subsequent experiments. Phylogenetic analysis suggests that the Thr321 pathway was present in the ancestral enzyme, but was lost when the eukaryotic lineage diverged. We propose that the primordial IMPDH utilized the Thr321 pathway exclusively, and that this mechanism became obsolete when the more sophisticated catalytic machinery of the Arg418 pathway was installed. Thus, our simulations provide an unanticipated window into the evolution of a complex enzyme. Many enzymes have the remarkable ability to catalyze several different chemical transformations. For example, IMP dehydrogenase catalyzes both an NAD-linked redox reaction and a hydrolase reaction. These reactions utilize distinct catalytic residues and protein conformations. How did Nature construct such a complicated catalyst? While using computational methods to investigate the mechanism of the hydrolase reaction, we have discovered that IMP dehydrogenase contains two sets of catalytic residues to activate water. Importantly, the simulations are in good agreement with previous experimental observations and are further validated by subsequent experiments. Phylogenetic analysis suggests that the simpler, less efficient catalytic machinery was present in the ancestral enzyme, but was lost when the eukaryotic lineage diverged. We propose that the primordial IMP dehydrogenase utilized the less efficient machinery exclusively, and that this mechanism became obsolete when the more sophisticated catalytic machinery evolved. The presence of the less efficient machinery could facilitate adaptation, making the evolutionary challenge of the IMPDH reaction much less formidable. Thus our simulations provide an unanticipated window into the evolution of a complex enzyme. How does nature construct complex catalysts? Molecular simulations revealed two sets of catalytic residues in the enzyme IMPDH, one of which seems to represent a primitive catalytic machinery that may be a vestige of evolution.
Collapse
|
23
|
Pouwels LJ, Zhang L, Chan NH, Dorrestein PC, Wachter RM. Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Biochemistry 2008; 47:10111-22. [PMID: 18759496 DOI: 10.1021/bi8007164] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The maturation process of green fluorescent protein (GFP) entails a protein oxidation reaction triggered by spontaneous backbone condensation. The chromophore is generated by full conjugation of the Tyr66 phenolic group with the heterocycle, a process that requires C-H bond scission at the benzylic carbon. We have prepared isotope-enriched protein bearing tyrosine residues deuterated at the beta carbon, and have determined kinetic isotope effects (KIEs) on the GFP self-processing reaction. Progress curves for the production of H 2O 2 and the mature chromophore were analyzed by global curve fitting to a three-step mechanism describing preoxidation, oxidation and postoxidation events. Although a KIE for protein oxidation could not be discerned ( k H/ k D = 1.1 +/- 0.2), a full primary KIE of 5.9 (+/-2.8) was extracted for the postoxidation step. Therefore, the exocyclic carbon is not involved in the reduction of molecular oxygen. Rather, C-H bond cleavage proceeds from the oxidized cyclic imine form, and is the rate-limiting event of the final step. Substantial pH-dependence of maturation was observed upon substitution of the catalytic glutamate (E222Q), indicating an apparent p K a of 9.4 (+/-0.1) for the base catalyst. For this variant, a KIE of 5.8 (+/-0.4) was determined for the intrinsic time constant that is thought to describe the final step, as supported by ultra-high resolution mass spectrometric results. The data are consistent with general base catalysis of the postoxidation events yielding green color. Structural arguments suggest a mechanism in which the highly conserved Arg96 serves as catalytic base in proton abstraction from the Tyr66-derived beta carbon.
Collapse
Affiliation(s)
- Lauren J Pouwels
- The Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | |
Collapse
|
24
|
You YO, van der Donk WA. Mechanistic investigations of the dehydration reaction of lacticin 481 synthetase using site-directed mutagenesis. Biochemistry 2007; 46:5991-6000. [PMID: 17455908 PMCID: PMC2517115 DOI: 10.1021/bi602663x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lantibiotic synthetases catalyze the dehydration of Ser and Thr residues in their peptide substrates to dehydroalanine (Dha) and dehydrobutyrine (Dhb), respectively, followed by the conjugate addition of Cys residues to the Dha and Dhb residues to generate the thioether cross-links lanthionine and methyllanthionine, respectively. In this study ten conserved residues were mutated in the dehydratase domain of the best characterized family member, lacticin 481 synthetase (LctM). Mutation of His244 and Tyr408 did not affect dehydration activity with the LctA substrate whereas mutation of Asn247, Glu261, and Glu446 considerably slowed down dehydration and resulted in incomplete conversion. Mutation of Lys159 slowed down both steps of the net dehydration: phosphorylation of Ser/Thr residues and the subsequent phosphate elimination step to form the dehydro amino acids. Mutation of Arg399 to Met or Leu resulted in mutants that had phosphorylation activity but displayed greatly decreased phosphate elimination activity. The Arg399Lys mutant retained both activities, however. Similarly, the Thr405Ala mutant phosphorylated the LctA substrate but had compromised elimination activity. Finally, mutation of Asp242 or Asp259 to Asn led to mutant enzymes that lacked detectable dehydration activity. Whereas the Asp242Asn mutant retained phosphate elimination activity, the Asp259Asn mutant was not able to eliminate phosphate from a phosphorylated substrate peptide. A model is presented that accounts for the observed phenotypes of these mutant enzymes.
Collapse
Affiliation(s)
- Young Ok You
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave, Urbana, Illinois, telephone (217) 244 5360, FAX (217) 244 8533
- To whom correspondence should be addressed. Phone: (217) 244-5360 FAX (217) 244 8024 E-mail:
| |
Collapse
|
25
|
Affiliation(s)
- James P McEvoy
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, USA
| | | |
Collapse
|
26
|
Ju T, Goldsmith RB, Chai SC, Maroney MJ, Pochapsky SS, Pochapsky TC. One protein, two enzymes revisited: a structural entropy switch interconverts the two isoforms of acireductone dioxygenase. J Mol Biol 2006; 363:823-34. [PMID: 16989860 PMCID: PMC1808343 DOI: 10.1016/j.jmb.2006.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 12/01/2022]
Abstract
Acireductone dioxygenase (ARD) catalyzes different reactions between O2 and 1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene (acireductone) depending upon the metal bound in the active site. Ni2+ -ARD cleaves acireductone to formate, CO and methylthiopropionate. If Fe2+ is bound (ARD'), the same substrates yield methylthioketobutyrate and formate. The two forms differ in structure, and are chromatographically separable. Paramagnetism of Fe2+ renders the active site of ARD' inaccessible to standard NMR methods. The structure of ARD' has been determined using Fe2+ binding parameters determined by X-ray absorption spectroscopy and NMR restraints from H98S ARD, a metal-free diamagnetic protein that is isostructural with ARD'. ARD' retains the beta-sandwich fold of ARD, but a structural entropy switch increases order at one end of a two-helix system that bisects the beta-sandwich and decreases order at the other upon interconversion of ARD and ARD', causing loss of the C-terminal helix in ARD' and rearrangements of residues involved in substrate orientation in the active site.
Collapse
Affiliation(s)
- Tingting Ju
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
| | | | - Sergio C. Chai
- Department of Chemistry, University of Massachusetts Amherst, MA 01003-9336 USA
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts Amherst, MA 01003-9336 USA
| | - Susan Sondej Pochapsky
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
| | - Thomas C. Pochapsky
- Department of Chemistry, Brandeis University MS 015, 415 South St., Waltham, MA 02454-9110 USA
- Department of Biochemistry, Brandeis University
- Rosensteil Basic Medical Sciences Institute, Brandeis University
- Correspondence should be addressed to TCP: Phone 781-736-2559, Fax 781-736-2516 , Website http://www.chem.brandeis.edu/pochapsky
| |
Collapse
|