1
|
Güven NE, Uçmak H, İlter Uçar Ç, Havan M, Yıldırım M, Teber S, Kendirli T. Atlantoaxial Instability due to Os Odontoideum in a Child with Christianson Syndrome. Mol Syndromol 2024; 15:398-402. [PMID: 39359952 PMCID: PMC11444701 DOI: 10.1159/000538015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/22/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Christianson syndrome is a rare neurodevelopmental disorder associated with mutations in the SLC9A6 gene located on the chromosome X. It is characterized by intellectual disability, developmental delay, speech and language impairments, dysmorphic features, seizures, ataxia, and neurobehavioral problems. Case Presentation A 5-year-old boy was presented with respiratory failure and then progressive muscle weakness in all four extremities. He manifested acquired microcephaly, intellectual disability, global developmental delay, distinct dysmorphic facial features, seizures, spastic tetraparesis, truncal hypotonia, speech impairment, failure to thrive, malnutrition, recurrent lung infections, self-mutilation, primary hyperparathyroidism, medullary nephrocalcinosis, and atlantoaxial instability due to os odontoideum. Brain magnetic resonance imaging revealed atlantoaxial instability due to os odontoideum, a narrow foramen magnum, myelopathy due to spinal cord compression, and cerebral and cerebellar atrophy. Discussion This report highlights a significant contribution by introducing a child with Christianson syndrome describing atlantoaxial instability due to os odontoideum, a previously undocumented phenomenon. This report suggests a potential link between Christianson syndrome and atlantoaxial instability. In children with Christianson syndrome experiencing increased muscle weakness in all extremities during follow-up, consideration of underlying myelopathy due to os odontoideum is advised.
Collapse
Affiliation(s)
- Nezaket Ezgi Güven
- Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Hacer Uçmak
- Division of Pediatric Intensive Care, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Çiğdem İlter Uçar
- Division of Pediatric Neurology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Merve Havan
- Division of Pediatric Intensive Care, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Miraç Yıldırım
- Division of Pediatric Neurology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serap Teber
- Division of Pediatric Neurology, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Tanıl Kendirli
- Division of Pediatric Intensive Care, Department of Pediatrics, Ankara University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
2
|
Papini N, Giussani P, Tringali C. Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases? Int J Mol Sci 2024; 25:8884. [PMID: 39201569 PMCID: PMC11354325 DOI: 10.3390/ijms25168884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
Collapse
Affiliation(s)
| | | | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, LITA Segrate, 20054 Segrate, MI, Italy; (N.P.); (P.G.)
| |
Collapse
|
3
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ exchanger NHE6 governing localization to the endosome compartment. J Biol Chem 2024; 300:107552. [PMID: 39002678 PMCID: PMC11375261 DOI: 10.1016/j.jbc.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/15/2024] Open
Abstract
Mutations in the endosomal Na+/H+ exchanger 6 (NHE6) cause Christianson syndrome, an X-linked neurological disorder. NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl terminus as bait, we identify Golgi-associated, gamma adaptin ear-containing, ADP-ribosylation factor (ARF) binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using: coimmunoprecipitation; overexpressed constructs in mammalian cells; and coimmunoprecipitation of endogenously expressed GGA1 and NHE6 from neuroblastoma cells, as well as from the mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7, and NHE9) and that there is significantly less interaction with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate the cytoplasmic tail of NHE6 interacts most strongly with GGA1. We demonstrate the colocalization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mislocalized in GGA1 KO cells, wherein we find less NHE6 in endosomes, but more NHE6 transport to lysosomes, and more Golgi retention of NHE6, with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mislocalization, and Golgi retention, we find the intraluminal pH in Golgi to be alkalinized in GGA1-null cells. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intracellular NHE to the endosome compartment.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Ravi Kiran Kasula
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA; Center for Translational Neuroscience, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
4
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
5
|
Shinohara Y, Komiya Y, Morimoto K, Endo Y, Terashima M, Suzuki T, Takino T, Ninomiya I, Yamada H, Uto Y. Development of UTX-143, a selective sodium-hydrogen exchange subtype 5 inhibitor, using amiloride as a lead compound. Bioorg Med Chem 2024; 99:117603. [PMID: 38246115 DOI: 10.1016/j.bmc.2024.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
NHE5, an isoform of the Na+/H+ exchanger (NHE) protein, is an ion-transporting membrane protein that regulates intracellular pH and is highly expressed in colorectal adenocarcinoma. Therefore, we hypothesized that NHE5 inhibitors can be used as anticancer drugs. However, because NHE1 is ubiquitously expressed in all cells, it is extremely important to demonstrate its selective inhibitory activity against NHE5. We used amiloride, an NHE non-selective inhibitor, as a lead compound and created UTX-143, which has NHE5-selective inhibitory activity, using a structure-activity relationship approach. UTX-143 showed selective cytotoxic effects on cancer cells and reduced the migratory and invasive abilities of cancer cells. These results suggest a new concept wherein drugs exhibit cancer-specific cytotoxic effects through selective inhibition of NHE5 and the possibility of UTX-143 as a lead NHE5-selective inhibitor.
Collapse
Affiliation(s)
- Yusei Shinohara
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yuki Komiya
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Kashin Morimoto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yoshio Endo
- Central Research Resource Branch, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Minoru Terashima
- Division of Functional Geneomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takeshi Suzuki
- Division of Functional Geneomics, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takahisa Takino
- Division of Education for Global Standard, Institute of Liberal Arts and Science, Kanazawa University Kakuma-machi, Kanazawa 920-1192, Japan
| | - Itasu Ninomiya
- Director of Central Medical Center and Department of Surgery, Fukui Prefectural Hospital, Yotsui-2, Fukui 910-0846, Japan
| | - Hisatsugu Yamada
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan
| | - Yoshihiro Uto
- Graduate School of Technology, Industrial and Social Science, Tokushima University, Minamijosanjimacho-2, Tokushima 770-8506, Japan.
| |
Collapse
|
6
|
Wu Q, Ma L, Joesch-Cohen L, Schmidt M, Uzun EDG, Morrow EM. Targeting NHE6 gene expression identifies lysosome and neurodevelopmental mechanisms in a haploid in vitro cell model. Biol Open 2023; 12:bio059778. [PMID: 37747131 PMCID: PMC10695175 DOI: 10.1242/bio.059778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 09/06/2023] [Indexed: 09/26/2023] Open
Abstract
Christianson syndrome (CS) is an X-linked disorder resulting from loss-of-function (LoF) mutations in SLC9A6 encoding the endosomal Na+/H+ exchanger 6 (NHE6). CS presents with developmental delay, seizures, intellectual disability, nonverbal status, postnatal microcephaly, and ataxia. To define transcriptome signatures of NHE6 LoF, we conducted in-depth RNA-sequencing (RNA-seq) analysis on a haploid NHE6 null cell model. CRIPSR/Cas9 genome editing introduced multiple LoF mutations into SLC9A6 in the near haploid human cell line Hap1. Isogenic, paired parental controls were also studied. NHE6 mutant cell lines were confirmed to have intra-endosomal over-acidification as was seen in other NHE6 null cells. RNA-seq analysis was performed by two widely used pipelines: HISAT2-StringTie-DEseq2 and STAR-HTseq-DEseq2. We identified 1056 differentially expressed genes in mutant NHE6 lines, including genes associated with neurodevelopment, synapse function, voltage-dependent calcium channels, and neuronal signaling. Weighted gene co-expression network analysis was then applied and identified a critical module enriched for genes governing lysosome function. By identifying significantly changed gene expression that is associated with lysosomal mechanisms in NHE6-null cells, our analyses suggest that loss of NHE6 function may converge on mechanisms implicated in lysosome-related neurologic disease. Further, this haploid cell model will serve as an important tool for translational science in CS.
Collapse
Affiliation(s)
- Qing Wu
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
| | - Li Ma
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Lena Joesch-Cohen
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
| | - Michael Schmidt
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ece D. Gamsiz Uzun
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Eric M. Morrow
- Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Center for Computational Molecular Biology, Providence, RI 02912, USA
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Ma L, Kasula RK, Ouyang Q, Schmidt M, Morrow EM. GGA1 interacts with the endosomal Na+/H+ Exchanger NHE6 governing localization to the endosome compartment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.565997. [PMID: 37986849 PMCID: PMC10659387 DOI: 10.1101/2023.11.08.565997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Mutations in the endosomal Na+/H+ exchanger (NHE6) cause Christianson syndrome (CS), an X-linked neurological disorder. Previous studies have shown that NHE6 functions in regulation of endosome acidification and maturation in neurons. Using yeast two-hybrid screening with the NHE6 carboxyl-terminus as bait, we identify Golgi-associated, Gamma adaptin ear containing, ARF binding protein 1 (GGA1) as an interacting partner for NHE6. We corroborated the NHE6-GGA1 interaction using co-immunoprecipitation (co-IP): using over-expressed constructs in mammalian cells; and co-IP of endogenously-expressed GGA1 and NHE6 from neuroblastoma cells, as well as from mouse brain. We demonstrate that GGA1 interacts with organellar NHEs (NHE6, NHE7 and NHE9) but not with cell-surface localized NHEs (NHE1 and NHE5). By constructing hybrid NHE1/NHE6 exchangers, we demonstrate that the cytoplasmic tail of NHE6 is necessary and sufficient for interactions with GGA1. We demonstrate the co-localization of NHE6 and GGA1 in cultured, primary hippocampal neurons, using super-resolution microscopy. We test the hypothesis that the interaction of NHE6 and GGA1 functions in the localization of NHE6 to the endosome compartment. Using subcellular fractionation experiments, we show that NHE6 is mis-localized in GGA1 knockout cells wherein we find less NHE6 in endosomes but more NHE6 transport to lysosomes, and more Golgi retention of NHE6 with increased exocytosis to the surface plasma membrane. Consistent with NHE6 mis-localization, and Golgi retention, we find the intra-luminal pH in Golgi to be alkalinized. Our study demonstrates a new interaction between NHE6 and GGA1 which functions in the localization of this intra-cellular NHE to the endosome compartment.
Collapse
|
8
|
Berning L, Lenz T, Bergmann AK, Poschmann G, Brass HUC, Schlütermann D, Friedrich A, Mendiburo MJ, David C, Akgün S, Pietruszka J, Stühler K, Stork B. The Golgi stacking protein GRASP55 is targeted by the natural compound prodigiosin. Cell Commun Signal 2023; 21:275. [PMID: 37798768 PMCID: PMC10552397 DOI: 10.1186/s12964-023-01275-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The bacterial secondary metabolite prodigiosin has been shown to exert anticancer, antimalarial, antibacterial and immunomodulatory properties. With regard to cancer, it has been reported to affect cancer cells but not non-malignant cells, rendering prodigiosin a promising lead compound for anticancer drug discovery. However, a direct protein target has not yet been experimentally identified. METHODS We used mass spectrometry-based thermal proteome profiling in order to identify target proteins of prodigiosin. For target validation, we employed a genetic knockout approach and electron microscopy. RESULTS We identified the Golgi stacking protein GRASP55 as target protein of prodigiosin. We show that prodigiosin treatment severely affects Golgi morphology and functionality, and that prodigiosin-dependent cytotoxicity is partially reduced in GRASP55 knockout cells. We also found that prodigiosin treatment results in decreased cathepsin activity and overall blocks autophagic flux, whereas co-localization of the autophagosomal marker LC3 and the lysosomal marker LAMP1 is clearly promoted. Finally, we observed that autophagosomes accumulate at GRASP55-positive structures, pointing towards an involvement of an altered Golgi function in the autophagy-inhibitory effect of this natural compound. CONCLUSION Taken together, we propose that prodigiosin affects autophagy and Golgi apparatus integrity in an interlinked mode of action involving the regulation of organelle alkalization and the Golgi stacking protein GRASP55. Video Abstract.
Collapse
Affiliation(s)
- Lena Berning
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Thomas Lenz
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Ann Kathrin Bergmann
- Core Facility for Electron Microscopy, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Hannah U C Brass
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
| | - David Schlütermann
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Annabelle Friedrich
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - María José Mendiburo
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Céline David
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Seda Akgün
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich Heine University Düsseldorf at Forschungszentrum Jülich and Bioeconomy Science Center (BioSC), 52426, Jülich, Germany
- Institute of Bio- and Geosciences: Biotechnology (IBG-1), Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Biological Medical Research Centre, Heinrich Heine University, 40225, Düsseldorf, Germany
- Institute of Molecular Medicine I, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, 40225, Germany.
| |
Collapse
|
9
|
Altered distribution and localization of organellar Na +/H + exchangers in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2023; 13:34. [PMID: 36732328 PMCID: PMC9895429 DOI: 10.1038/s41398-023-02336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex and multifactorial disorder associated with altered neurotransmission as well as numerous signaling pathway and protein trafficking disruptions. The pH of intracellular organelles involved in protein trafficking is tightly regulated and impacts their functioning. The SLC9A family of Na+/H+ exchangers (NHEs) plays a fundamental role in cellular and intracellular pH homeostasis. Four organellar NHE isoforms (NHE6-NHE9) are targeted to intracellular organelles involved in protein trafficking. Increased interactions between organellar NHEs and receptor of activated protein C kinase 1 (RACK1) can lead to redistribution of NHEs to the plasma membrane and hyperacidification of target organelles. Given their role in organelle pH regulation, altered expression and/or localization of organellar NHEs could be an underlying cellular mechanism contributing to abnormal intracellular trafficking and disrupted neurotransmitter systems in schizophrenia. We thus characterized organellar NHE expression, co-immunoprecipitation with RACK1, and Triton X-114 (TX-114) phase partitioning in dorsolateral prefrontal cortex of 25 schizophrenia and 25 comparison subjects by Western blot analysis. In schizophrenia after controlling for subject age at time of death, postmortem interval, tissue pH, and sex, there was significantly decreased total expression of NHE8, decreased co-immunoprecipitation of NHE8 (64%) and NHE9 (56%) with RACK1, and increased TX-114 detergent phase partitioning of NHE6 (283%), NHE9 (75%), and RACK1 (367%). Importantly, none of these dependent measures was significantly impacted when comparing those in the schizophrenia group on antipsychotics to those off of antipsychotics for at least 6 weeks at their time of death and none of these same proteins were affected in rats chronically treated with haloperidol. In summary, we characterized organellar NHE expression and distribution in schizophrenia DLPFC and identified abnormalities that could represent a novel mechanism contributing to disruptions in protein trafficking and neurotransmission in schizophrenia.
Collapse
|
10
|
Parnell LD, Magadmi R, Zwanger S, Shukitt-Hale B, Lai CQ, Ordovás JM. Dietary Responses of Dementia-Related Genes Encoding Metabolic Enzymes. Nutrients 2023; 15:644. [PMID: 36771351 PMCID: PMC9921944 DOI: 10.3390/nu15030644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
The age-related loss of the cognitive function is a growing concern for global populations. Many factors that determine cognitive resilience or dementia also have metabolic functions. However, this duality is not universally appreciated when the action of that factor occurs in tissues external to the brain. Thus, we examined a set of genes involved in dementia, i.e., those related to vascular dementia, Alzheimer's disease, Parkinson's disease, and the human metabolism for activity in 12 metabolically active tissues. Mining the Genotype-Tissue Expression (GTEx) data showed that most of these metabolism-dementia (MD) genes (62 of 93, 67%) exhibit a higher median expression in any of the metabolically active tissues than in the brain. After identifying that several MD genes served as blood-based biomarkers of longevity in other studies, we examined the impact of the intake of food, nutrients, and other dietary factors on the expression of MD genes in whole blood in the Framingham Offspring Study (n = 2134). We observed positive correlations between flavonoids and HMOX1, taurine and UQCRC1, broccoli and SLC10A2, and myricetin and SLC9A8 (p < 2.09 × 10-4). In contrast, dairy protein, palmitic acid, and pie were negatively correlated, respectively, with the expression of IGF1R, CSF1R, and SLC9A8, among others (p < 2.92 × 10-4). The results of this investigation underscore the potential contributions of metabolic enzyme activity in non-brain tissues to the risk of dementia. Specific epidemiological or intervention studies could be designed using specific foods and nutrients or even dietary patterns focused on these foods and nutrients that influence the expression of some MD genes to verify the findings presented here.
Collapse
Affiliation(s)
- Laurence D Parnell
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - Rozana Magadmi
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
| | | | - Barbara Shukitt-Hale
- Neuroscience and Aging Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - Chao-Qiang Lai
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Agricultural Research Service, US Department of Agriculture, Boston, MA 02111, USA
| | - José M Ordovás
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA
| |
Collapse
|
11
|
Gómez-Mellado VE, Ho-Mok KS, van der Mark VA, van der Wel NN, Grootemaat AE, Verhoeven AJ, Elferink RPJO, Paulusma CC. The phospholipid flippase ATP8B1 is required for lysosomal fusion in macrophages. Cell Biochem Funct 2022; 40:914-925. [PMID: 36169099 PMCID: PMC10087937 DOI: 10.1002/cbf.3752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
ATP8B1 is a phospholipid flippase and member of the type 4 subfamily of P-type ATPases (P4-ATPase) subfamily. P4-ATPases catalyze the translocation of phospholipids across biological membranes, ensuring proper membrane asymmetry, which is crucial for membrane protein targeting and activity, vesicle biogenesis, and barrier function. Here we have investigated the role of ATP8B1 in the endolysosomal pathway in macrophages. Depletion of ATP8B1 led to delayed degradation of content in the phagocytic pathway and in overacidification of the endolysosomal system. Furthermore, ATP8B1 knockdown cells exhibited large multivesicular bodies filled with intraluminal vesicles. Similar phenotypes were observed in CRISPR-generated ATP8B1 knockout cells. Importantly, induction of autophagy led to accumulation of autophagosomes in ATP8B1 knockdown cells. Collectively, our results support a novel role for ATP8B1 in lysosomal fusion in macrophages, a process crucial in the terminal phase of endolysosomal degradation.
Collapse
Affiliation(s)
- Valentina E Gómez-Mellado
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kam S Ho-Mok
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent A van der Mark
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Anita E Grootemaat
- Department of Medical Biology, Electron Microscopy Center Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Arthur J Verhoeven
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald P J Oude Elferink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Coen C Paulusma
- Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
14
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
15
|
Lizarraga SB, Ma L, Maguire AM, van Dyck LI, Wu Q, Ouyang Q, Kavanaugh BC, Nagda D, Livi LL, Pescosolido MF, Schmidt M, Alabi S, Cowen MH, Brito-Vargas P, Hoffman-Kim D, Gamsiz Uzun ED, Schlessinger A, Jones RN, Morrow EM. Human neurons from Christianson syndrome iPSCs reveal mutation-specific responses to rescue strategies. Sci Transl Med 2021; 13:13/580/eaaw0682. [PMID: 33568516 DOI: 10.1126/scitranslmed.aaw0682] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/04/2020] [Accepted: 09/18/2020] [Indexed: 12/16/2022]
Abstract
Christianson syndrome (CS), an X-linked neurological disorder characterized by postnatal attenuation of brain growth (postnatal microcephaly), is caused by mutations in SLC9A6, the gene encoding endosomal Na+/H+ exchanger 6 (NHE6). To hasten treatment development, we established induced pluripotent stem cell (iPSC) lines from patients with CS representing a mutational spectrum, as well as biologically related and isogenic control lines. We demonstrated that pathogenic mutations lead to loss of protein function by a variety of mechanisms: The majority of mutations caused loss of mRNA due to nonsense-mediated mRNA decay; however, a recurrent, missense mutation (the G383D mutation) had both loss-of-function and dominant-negative activities. Regardless of mutation, all patient-derived neurons demonstrated reduced neurite growth and arborization, likely underlying diminished postnatal brain growth in patients. Phenotype rescue strategies showed mutation-specific responses: A gene transfer strategy was effective in nonsense mutations, but not in the G383D mutation, wherein residual protein appeared to interfere with rescue. In contrast, application of exogenous trophic factors (BDNF or IGF-1) rescued arborization phenotypes across all mutations. These results may guide treatment development in CS, including gene therapy strategies wherein our data suggest that response to treatment may be dictated by the class of mutation.
Collapse
Affiliation(s)
- Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Abbie M Maguire
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA
| | - Laura I van Dyck
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Qing Wu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA
| | - Brian C Kavanaugh
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Dipal Nagda
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Liane L Livi
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA
| | - Matthew F Pescosolido
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Michael Schmidt
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| | - Shanique Alabi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Paul Brito-Vargas
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.,Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208, USA
| | - Diane Hoffman-Kim
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, RI 02912, USA.,Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.,Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| | - Ece D Gamsiz Uzun
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA.,Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard N Jones
- Quantitative Sciences Program, Department of Psychiatry and Human Behavior and Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA. .,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.,Hassenfeld Child Health Innovation Institute, Brown University, Providence, RI 02912, USA.,Developmental Disorders Genetics Research Program, Department of Psychiatry and Human Behavior, Emma Pendleton Bradley Hospital, East Providence, RI 02915, USA
| |
Collapse
|
16
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
17
|
Bugge K, Brakti I, Fernandes CB, Dreier JE, Lundsgaard JE, Olsen JG, Skriver K, Kragelund BB. Interactions by Disorder - A Matter of Context. Front Mol Biosci 2020; 7:110. [PMID: 32613009 PMCID: PMC7308724 DOI: 10.3389/fmolb.2020.00110] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms depend on timely and organized interactions between proteins linked in interactomes of high complexity. The recent increased precision by which protein interactions can be studied, and the enclosure of intrinsic structural disorder, suggest that it is time to zoom out and embrace protein interactions beyond the most central points of physical encounter. The present paper discusses protein-protein interactions in the view of structural disorder with an emphasis on flanking regions and contexts of disorder-based interactions. Context constitutes an overarching concept being of physicochemical, biomolecular, and physiological nature, but it also includes the immediate molecular context of the interaction. For intrinsically disordered proteins, which often function by exploiting short linear motifs, context contributes in highly regulatory and decisive manners and constitute a yet largely unrecognized source of interaction potential in a multitude of biological processes. Through selected examples, this review emphasizes how multivalency, charges and charge clusters, hydrophobic patches, dynamics, energetic frustration, and ensemble redistribution of flanking regions or disordered contexts are emerging as important contributors to allosteric regulation, positive and negative cooperativity, feedback regulation and negative selection in binding. The review emphasizes that understanding context, and in particular the role the molecular disordered context and flanking regions take on in protein interactions, constitute an untapped well of energetic modulation potential, also of relevance to drug discovery and development.
Collapse
Affiliation(s)
- Katrine Bugge
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Inna Brakti
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Catarina B. Fernandes
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jesper E. Dreier
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe E. Lundsgaard
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Olsen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Karen Skriver
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B. Kragelund
- REPIN, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Kucharava K, Brand Y, Albano G, Sekulic-Jablanovic M, Glutz A, Xian X, Herz J, Bodmer D, Fuster DG, Petkovic V. Sodium-hydrogen exchanger 6 (NHE6) deficiency leads to hearing loss, via reduced endosomal signalling through the BDNF/Trk pathway. Sci Rep 2020; 10:3609. [PMID: 32107410 PMCID: PMC7046661 DOI: 10.1038/s41598-020-60262-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
Acid-base homeostasis is critical for normal growth, development, and hearing function. The sodium-hydrogen exchanger 6 (NHE6), a protein mainly expressed in early and recycling endosomes, plays an important role in regulating organellar pH. Mutations in NHE6 cause complex, slowly progressive neurodegeneration. Little is known about NHE6 function in the mouse cochlea. Here, we found that all NHE isoforms were expressed in wild-type (WT) mouse cochlea. Nhe6 knockout (KO) mice showed significant hearing loss compared to WT littermates. Immunohistochemistry in WT mouse cochlea showed that Nhe6 was localized in the organ of Corti (OC), spiral ganglion (SG), stria vascularis (SV), and afferent nerve fibres. The middle and the inner ears of WT and Nhe6 KO mice were not different morphologically. Given the putative role of NHE6 in early endosomal function, we examined Rab GTPase expression in early and late endosomes. We found no change in Rab5, significantly lower Rab7, and higher Rab11 levels in the Nhe6 KO OC, compared to WT littermates. Because Rabs mediate TrkB endosomal signalling, we evaluated TrkB phosphorylation in the OCs of both strains. Nhe6 KO mice showed significant reductions in TrkB and Akt phosphorylation in the OC. In addition, we examined genes used as markers of SG type I (Slc17a7, Calb1, Pou4f1, Cal2) and type II neurons (Prph, Plk5, Cacna1g). We found that all marker gene expression levels were significantly elevated in the SG of Nhe6 KO mice, compared to WT littermates. Anti-neurofilament factor staining showed axon loss in the cochlear nerves of Nhe6 KO mice compared to WT mice. These findings indicated that BDNF/TrkB signalling was disrupted in the OC of Nhe6 KO mice, probably due to TrkB reduction, caused by over acidification in the absence of NHE6. Thus, our findings demonstrated that NHEs play important roles in normal hearing in the mammalian cochlea.
Collapse
Affiliation(s)
- Krystsina Kucharava
- Department of Biomedicine, and Clinic for Otolaryngology, Head and Neck Surgery, Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Yves Brand
- Clinic for Otolaryngology, Head and Neck Surgery, Kantonsspital Graubünden, Chur, 7000, Switzerland
| | - Giuseppe Albano
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, and NCCR Transcure, University of Bern, Bern, Switzerland
| | - Marijana Sekulic-Jablanovic
- Department of Biomedicine, and Clinic for Otolaryngology, Head and Neck Surgery, Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Andrea Glutz
- Department of Biomedicine, and Clinic for Otolaryngology, Head and Neck Surgery, Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Xunde Xian
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Joachim Herz
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Daniel Bodmer
- Department of Biomedicine, and Clinic for Otolaryngology, Head and Neck Surgery, Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Daniel G Fuster
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, and NCCR Transcure, University of Bern, Bern, Switzerland
| | - Vesna Petkovic
- Department of Biomedicine, and Clinic for Otolaryngology, Head and Neck Surgery, Hospital Basel, University of Basel, Basel, 4031, Switzerland.
| |
Collapse
|
19
|
Functional Assessment In Vivo of the Mouse Homolog of the Human Ala-9-Ser NHE6 Variant. eNeuro 2019; 6:ENEURO.0046-19.2019. [PMID: 31676550 PMCID: PMC6893231 DOI: 10.1523/eneuro.0046-19.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 11/21/2022] Open
Abstract
Christianson syndrome (CS) is an X-linked neurogenetic disorder resulting from loss-of-function (LoF) mutations in SLC9A6, which encodes the endosomal Na+/H+ exchanger 6 (NHE6). NHE6 regulates proton efflux from endosomes and, thus, participates in regulating cargo processing and trafficking. LoF mutations in NHE6 cause aberrant acidification of endosomes. While CS arises in males generally due to clear LoF mutations, other potentially hypomorphic variants have emerged, yet most of these variants have not been evaluated for functional effects, particularly in vivo Here we characterize an SLC9A6 variant that has been previously reported in patients, yet now also appears in exome datasets of largely control individuals-c.25G>T, p.A9S. By heterologous expression in cell lines, we show that human NHE6A9S is expressed and localizes in a manner comparable to control NHE6. By genome editing, we generated the equivalent NHE6 mutation in mouse-p.A11S-and determined that male NHE6A11S mice have normal brain size at 6 months of age and do not show cerebellar degeneration or defective neuronal arborization. Neurons from male NHE6A11S mice also did not demonstrate an abnormality in intraendosomal pH compared with controls. These findings are in contrast to findings in NHE6-null mice previously reported and indicate that the NHE6A11S variant functions at a level equivalent to control NHE6 for many of the assays performed. These data stand in support of the population genetic data, which are also evaluated here, indicating that the A9S variant is unlikely to confer disease susceptibility with high penetrance.
Collapse
|
20
|
Baumgartner M, Drake K, Kanadia RN. An Integrated Model of Minor Intron Emergence and Conservation. Front Genet 2019; 10:1113. [PMID: 31798628 PMCID: PMC6865273 DOI: 10.3389/fgene.2019.01113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Minor introns constitute <0.5% of the introns in the human genome and have remained an enigma since their discovery. These introns are removed by a distinct splicing complex, the minor spliceosome. Both are ancient, tracing back to the last eukaryotic common ancestor (LECA), which is reflected by minor intron enrichment in specific gene families, such as the mitogen activated-protein kinase kinases, voltage-gated sodium and calcium ion channels, and E2F transcription factors. Most minor introns occur as single introns in genes with predominantly major introns. Due to this organization, minor intron-containing gene (MIG) expression requires the coordinated action of two spliceosomes, which increases the probability of missplicing. Thus, one would expect loss of minor introns via purifying selection. This has resulted in complete minor intron loss in at least nine eukaryotic lineages. However, minor introns are highly conserved in land plants and metazoans, where their importance is underscored by embryonic lethality when the minor spliceosome is inactivated. Conditional inactivation of the minor spliceosome has shown that rapidly dividing progenitor cells are highly sensitive to minor spliceosome loss. Indeed, we found that MIGs were significantly enriched in a screen for genes essential for survival in 341 cycling cell lines. Here, we propose that minor introns inserted randomly into genes in LECA or earlier and were subsequently conserved in genes crucial for cycling cell survival. We hypothesize that the essentiality of MIGs allowed minor introns to endure through the unicellularity of early eukaryotic evolution. Moreover, we identified 59 MIGs that emerged after LECA, and that many of these are essential for cycling cell survival, reinforcing our essentiality model for MIG conservation. This suggests that minor intron emergence is dynamic across eukaryotic evolution, and that minor introns should not be viewed as molecular fossils. We also posit that minor intron splicing was co-opted in multicellular evolution as a regulatory switch for en masse control of MIG expression and the biological processes they regulate. Specifically, this mode of regulation could control cell proliferation and thus body size, an idea supported by domestication syndrome, wherein MIGs are enriched in common candidate animal domestication genes.
Collapse
Affiliation(s)
- Marybeth Baumgartner
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Brain and Cognitive Sciences, University of Connecticut, Mansfield, CT, United States
| | - Kyle Drake
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States.,Institute of Systems Genomics, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
21
|
Kerner-Rossi M, Gulinello M, Walkley S, Dobrenis K. Pathobiology of Christianson syndrome: Linking disrupted endosomal-lysosomal function with intellectual disability and sensory impairments. Neurobiol Learn Mem 2019; 165:106867. [PMID: 29772390 PMCID: PMC6235725 DOI: 10.1016/j.nlm.2018.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 11/18/2022]
Abstract
Christianson syndrome (CS) is a recently described rare neurogenetic disorder presenting early in life with a broad range of neurological symptoms, including severe intellectual disability with nonverbal status, hyperactivity, epilepsy, and progressive ataxia due to cerebellar atrophy. CS is due to loss-of-function mutations in SLC9A6, encoding NHE6, a sodium-hydrogen exchanger involved in the regulation of early endosomal pH. Here we review what is currently known about the neuropathogenesis of CS, based on insights from experimental models, which to date have focused on mechanisms that affect the CNS, specifically the brain. In addition, parental reports of sensory disturbances in their children with CS, including an apparent insensitivity to pain, led us to explore sensory function and related neuropathology in Slc9a6 KO mice. We present new data showing sensory deficits in Slc9a6 KO mice, which had reduced behavioral responses to noxious thermal and mechanical stimuli (Hargreaves and Von Frey assays, respectively) compared to wild type (WT) littermates. Immunohistochemical and ultrastructural analysis of the spinal cord and peripheral nervous system revealed intracellular accumulation of the glycosphingolipid GM2 ganglioside in KO but not WT mice. This cellular storage phenotype was most abundant in neurons of lamina I-II of the dorsal horn, a major relay site in the processing of painful stimuli. Spinal cords of KO mice also exhibited changes in astroglial and microglial populations throughout the gray matter suggestive of a neuroinflammatory process. Our findings establish the Slc9a6 KO mouse as a relevant tool for studying the sensory deficits in CS, and highlight selective vulnerabilities in relevant cell populations that may contribute to this phenotype. How NHE6 loss of function leads to such a multifaceted neurological syndrome is still undefined, and it is likely that NHE6 is involved with many cellular processes critical to normal nervous system development and function. In addition, the sensory issues exhibited by Slc9a6 KO mice, in combination with our neuropathological findings, are consistent with NHE6 loss of function impacting the entire nervous system. Sensory dysfunction in intellectually disabled individuals is challenging to assess and may impair patient safety and quality of life. Further mechanistic studies of the neurological impairments underlying CS and other genetic intellectual disability disorders must also take into account mechanisms affecting broader nervous system function in order to understand the full range of associated disabilities.
Collapse
Affiliation(s)
- Mallory Kerner-Rossi
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven Walkley
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Kostantin Dobrenis
- Dominick P. Purpura Dept. of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
22
|
Bernardino RL, Carrageta DF, Sousa M, Alves MG, Oliveira PF. pH and male fertility: making sense on pH homeodynamics throughout the male reproductive tract. Cell Mol Life Sci 2019; 76:3783-3800. [PMID: 31165202 PMCID: PMC11105638 DOI: 10.1007/s00018-019-03170-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 02/07/2023]
Abstract
In the male reproductive tract, ionic equilibrium is essential to maintain normal spermatozoa production and, hence, the reproductive potential. Among the several ions, HCO3- and H+ have a central role, mainly due to their role on pH homeostasis. In the male reproductive tract, the major players in pH regulation and homeodynamics are carbonic anhydrases (CAs), HCO3- membrane transporters (solute carrier 4-SLC4 and solute carrier 26-SLC26 family transporters), Na+-H+ exchangers (NHEs), monocarboxylate transporters (MCTs) and voltage-gated proton channels (Hv1). CAs and these membrane transporters are widely distributed throughout the male reproductive tract, where they play essential roles in the ionic balance of tubular fluids. CAs are the enzymes responsible for the production of HCO3- which is then transported by membrane transporters to ensure the maturation, storage, and capacitation of the spermatozoa. The transport of H+ is carried out by NHEs, Hv1, and MCTs and is essential for the electrochemical balance and for the maintenance of the pH within the physiological limits along the male reproductive tract. Alterations in HCO3- production and transport of ions have been associated with some male reproductive dysfunctions. Herein, we present an up-to-date review on the distribution and role of the main intervenient on pH homeodynamics in the fluids throughout the male reproductive tract. In addition, we discuss their relevance for the establishment of the male reproductive potential.
Collapse
Affiliation(s)
- Raquel L Bernardino
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - David F Carrageta
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Mário Sousa
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Laboratory of Cell Biology, Department of Microscopy, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal.
- i3S-Institute for Innovation and Health Research, University of Porto, Porto, Portugal.
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
Tsareva EY, Favorova OO, Boyko AN, Kulakova OG. Genetic Markers for Personalized Therapy of Polygenic Diseases: Pharmacogenetics of Multiple Sclerosis. Mol Biol 2019. [DOI: 10.1134/s0026893319040149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Matsuda S, Kakegawa W, Yuzaki M. PhotonSABER: new tool shedding light on endocytosis and learning mechanisms in vivo. Commun Integr Biol 2019; 12:34-37. [PMID: 31143361 PMCID: PMC6527187 DOI: 10.1080/19420889.2019.1586048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 11/01/2022] Open
Abstract
In the central nervous system, activity-dependent endocytosis of postsynaptic AMPA-type glutamate receptors (AMPA receptors) is thought to mediate long-term depression (LTD), which is a synaptic plasticity model in various neuronal circuits. However, whether and how AMPA receptor endocytosis and LTD at specific synapses are causally linked to learning and memory in vivo remains unclear. Recently, we developed a new optogenetic tool, PhotonSABER, which could control AMPA receptor endocytosis in temporal, spatial, and cell-type-specific manners at activated synapses. Using PhotonSABER, we found that AMPA receptor endocytosis and LTD at synapses between parallel fibers and Purkinje cells in the cerebellum mediate oculomotor learning. We also found that PhotonSABER could inhibit endocytosis of epidermal growth factor receptors in HeLa cells upon light stimulation. These results demonstrate that PhotonSABER is a powerful tool for analyzing the physiological functions of endocytosis in non-neuronal cells, as well as the roles of LTD in various brain regions.
Collapse
Affiliation(s)
- Shinji Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan.,Brain Science Inspired Life Support Research Center (BLSC), The University of Electro-Communications, Tokyo, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
Liu Y, Wen H, Qi X, Zhang X, Zhang K, Fan H, Tian Y, Hu Y, Li Y. Genome-wide identification of the Na+/H+ exchanger gene family in Lateolabrax maculatus and its involvement in salinity regulation. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:286-298. [DOI: 10.1016/j.cbd.2019.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 01/21/2023]
|
26
|
Vanneste M, Huang Q, Li M, Moose D, Zhao L, Stamnes MA, Schultz M, Wu M, Henry MD. High content screening identifies monensin as an EMT-selective cytotoxic compound. Sci Rep 2019; 9:1200. [PMID: 30718715 PMCID: PMC6361972 DOI: 10.1038/s41598-018-38019-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/11/2018] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is implicated in cancer metastasis and drug resistance. Specifically targeting cancer cells in an EMT-like state may have therapeutic value. In this study, we developed a cell imaging-based high-content screening protocol to identify EMT-selective cytotoxic compounds. Among the 2,640 compounds tested, salinomycin and monensin, both monovalent cation ionophores, displayed a potent and selective cytotoxic effect against EMT-like cells. The mechanism of action of monensin was further evaluated. Monensin (10 nM) induced apoptosis, cell cycle arrest, and an increase in reactive oxygen species (ROS) production in TEM 4-18 cells. In addition, monensin rapidly induced swelling of Golgi apparatus and perturbed mitochondrial function. These are previously known effects of monensin, albeit occurring at much higher concentrations in the micromolar range. The cytotoxic effect of monensin was not blocked by inhibitors of ferroptosis. To explore the generality of our findings, we evaluated the toxicity of monensin in 24 human cancer cell lines and classified them as resistant or sensitive based on IC50 cutoff of 100 nM. Gene Set Enrichment Analysis identified EMT as the top enriched gene set in the sensitive group. Importantly, increased monensin sensitivity in EMT-like cells is associated with elevated uptake of 3H-monensin compared to resistant cells.
Collapse
Affiliation(s)
- Marion Vanneste
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Qin Huang
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mengshi Li
- Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA
| | - Devon Moose
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Lei Zhao
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA
| | - Mark A Stamnes
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael Schultz
- Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,Human Toxicology, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Wu
- Department of Biochemistry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA.,University of Iowa High Throughput Screening Facility (UIHTS), University of Iowa, Iowa City, IA, 52242, USA.,Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Michael D Henry
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Radiation Oncology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Department of Urology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
27
|
Lee JH, Kim J, Park J, Heo WD, Lee GM. Analysis of Golgi pH in Chinese hamster ovary cells using ratiometric pH‐sensitive fluorescent proteins. Biotechnol Bioeng 2019; 116:1006-1016. [DOI: 10.1002/bit.26920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Jong Hyun Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jihoon Kim
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Jong‐Ho Park
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Won Do Heo
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| | - Gyun Min Lee
- Department of Biological SciencesKAISTDaejeon Republic of Korea
| |
Collapse
|
28
|
Dragwidge JM, Ford BA, Ashnest JR, Das P, Gendall AR. Two Endosomal NHX-Type Na+/H+ Antiporters are Involved in Auxin-Mediated Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2018; 59:1660-1669. [PMID: 29788486 DOI: 10.1093/pcp/pcy090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/29/2018] [Indexed: 05/16/2023]
Abstract
In Arabidopsis thaliana, the endosomal-localized Na+/H+ antiporters NHX5 and NHX6 regulate ion and pH homeostasis and are important for plant growth and development. However, the mechanism by which these endosomal NHXs function in plant development is not well understood. Auxin modulates plant growth and development through the formation of concentration gradients in plant tissue to control cell division and expansion. Here, we identified a role for NHX5 and NHX6 in the establishment and maintenance of auxin gradients in embryo and root tissues. We observed developmental impairment and abnormal cell division in embryo and root tissues in the double knockout nhx5 nhx6, consistent with these tissues showing high expression of NHX5 and NHX6. Through confocal microscopy imaging with the DR5::GFP auxin reporter, we identify defects in the perception, accumulation and redistribution of auxin in nhx5 nhx6 cells. Furthermore, we find that the steady-state levels of the PIN-FORMED (PIN) auxin efflux carriers PIN1 and PIN2 are reduced in nhx5 nhx6 root cells. Our results demonstrate that NHX5 and NHX6 function in auxin-mediated plant development by maintaining PIN abundance at the plasma membrane, and provide new insight into the regulation of plant development by endosomal NHX antiporters.
Collapse
Affiliation(s)
- Jonathan Michael Dragwidge
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
| | - Brett Andrew Ford
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Clunies Ross Street, Acton, ACT, Australia
| | - Joanne Rachel Ashnest
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, Saskatoon, Canada
| | - Partha Das
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
- College of Agriculture, Tripura, Lembucherra, India
| | - Anthony Richard Gendall
- Department of Animal, Plant and Soil Sciences, AgriBio, Centre for AgriBiosciences, La Trobe University, 5 Ring Road, Bundoora, VIC, Australia
| |
Collapse
|
29
|
Zhang Y, Xia S, Fang M, Mazi W, Zeng Y, Johnston T, Pap A, Luck R, Liu H. New near-infrared rhodamine dyes with large Stokes shifts for sensitive sensing of intracellular pH changes and fluctuations. Chem Commun (Camb) 2018; 54:7625-7628. [PMID: 29927444 PMCID: PMC6058674 DOI: 10.1039/c8cc03520b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New near-infrared rhodamine dyes with large Stokes shifts were developed and applied for sensitive detection of cellular pH changes and fluctuations by incorporating an additional amine group with fused rings into the rhodamine dyes to enhance the electron donating ability of amine groups and improve the spectroscopic properties of the dyes.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Yanbo Zeng
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Taylor Johnston
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Adam Pap
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Rudy Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| |
Collapse
|
30
|
A mouse model of autism implicates endosome pH in the regulation of presynaptic calcium entry. Nat Commun 2018; 9:330. [PMID: 29362376 PMCID: PMC5780507 DOI: 10.1038/s41467-017-02716-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/19/2017] [Indexed: 11/21/2022] Open
Abstract
Psychoactive compounds such as chloroquine and amphetamine act by dissipating the pH gradient across intracellular membranes, but the physiological mechanisms that normally regulate organelle pH remain poorly understood. Interestingly, recent human genetic studies have implicated the endosomal Na+/H+ exchanger NHE9 in both autism spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD). Plasma membrane NHEs regulate cytosolic pH, but the role of intracellular isoforms has remained unclear. We now find that inactivation of NHE9 in mice reproduces behavioral features of ASD including impaired social interaction, repetitive behaviors, and altered sensory processing. Physiological characterization reveals hyperacidic endosomes, a cell-autonomous defect in glutamate receptor expression and impaired neurotransmitter release due to a defect in presynaptic Ca2+ entry. Acute inhibition of synaptic vesicle acidification rescues release but without affecting the primary defect due to loss of NHE9. The Na+/H+ exchanger NHE9 is proposed to regulate the H+ electrochemical gradient across endosomal membranes. Here, the authors find that NHE9 knockout mice show autism spectrum disorder-like behaviors and disrupted synaptic vesicle exocytosis due to impaired presynaptic calcium entry.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Studies investigating postnatal brain growth disorders inform the biology underlying the development of human brain circuitry. This research is becoming increasingly important for the diagnosis and treatment of childhood neurodevelopmental disorders, including autism and related disorders. Here, we review recent research on typical and abnormal postnatal brain growth and examine potential biological mechanisms. RECENT FINDINGS Clinically, brain growth disorders are heralded by diverging head size for a given age and sex, but are more precisely characterized by brain imaging, post-mortem analysis, and animal model studies. Recent neuroimaging and molecular biological studies on postnatal brain growth disorders have broadened our view of both typical and pathological postnatal neurodevelopment. Correlating gene and protein function with brain growth trajectories uncovers postnatal biological mechanisms, including neuronal arborization, synaptogenesis and pruning, and gliogenesis and myelination. Recent investigations of childhood neurodevelopmental and neurodegenerative disorders highlight the underlying genetic programming and experience-dependent remodeling of neural circuitry. SUMMARY To understand typical and abnormal postnatal brain development, clinicians and researchers should characterize brain growth trajectories in the context of neurogenetic syndromes. Understanding mechanisms and trajectories of postnatal brain growth will aid in differentiating, diagnosing, and potentially treating neurodevelopmental disorders.
Collapse
|
32
|
Abstract
Oncotic cell death or oncosis represents a major mechanism of cell death in ischaemic stroke, occurring in many central nervous system (CNS) cell types including neurons, glia and vascular endothelial cells. In stroke, energy depletion causes ionic pump failure and disrupts ionic homeostasis. Imbalance between the influx of Na+ and Cl- ions and the efflux of K+ ions through various channel proteins and transporters creates a transmembrane osmotic gradient, with ensuing movement of water into the cells, resulting in cell swelling and oncosis. Oncosis is a key mediator of cerebral oedema in ischaemic stroke, contributing directly through cytotoxic oedema, and indirectly through vasogenic oedema by causing vascular endothelial cell death and disruption of the blood-brain barrier (BBB). Hence, inhibition of uncontrolled ionic flux represents a novel and powerful strategy in achieving neuroprotection in stroke. In this review, we provide an overview of oncotic cell death in the pathology of stroke. Importantly, we summarised the therapeutically significant pathways of water, Na+, Cl- and K+ movement across cell membranes in the CNS and their respective roles in the pathobiology of stroke.
Collapse
|
33
|
Gomez Zubieta DM, Hamood MA, Beydoun R, Pall AE, Kondapalli KC. MicroRNA-135a regulates NHE9 to inhibit proliferation and migration of glioblastoma cells. Cell Commun Signal 2017; 15:55. [PMID: 29268774 PMCID: PMC5740897 DOI: 10.1186/s12964-017-0209-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022] Open
Abstract
Background Glioblastoma multiformae (GBM) is the most aggressive type of malignant brain tumor with complex molecular profile. Overexpression of Na+/H+ Exchanger isoform 9 (NHE9) promotes tumor progression and correlates positively with insensitivity to radiochemotherapy and poor prognosis. However, molecular mechanisms responsible for increase in NHE9 levels beyond a critical threshold have not been identified. Methods Bioinformatics analysis, luciferase reporter assays, real-time PCR and western blotting were conducted to examine the expression profiles and identify microRNAs (miRNA) that target NHE9. Cell proliferation and migration assays were conducted in U87 glioblastoma cells to determine the consequence of miRNA mediated targeting of NHE9. Endosomal pH measurements, immunofluorescence microscopy and surface biotinylation experiments were conducted to characterize the mechanistic basis of regulation. Results We show that microRNA 135a (miR-135a) targets NHE9 to downregulate its expression in U87 cells. MiR-135a levels are significantly lower in glioblastoma cells compared to normal brain tissue. Downregulation of NHE9 expression by miR-135a affects proliferative and migratory capacity of U87 cells. Selectively increasing NHE9 expression in these cells restored their ability to proliferate and migrate. We demonstrate that miR-135a takes a two-pronged approach affecting epidermal growth factor receptors (EGFRs) to suppress tumor cell growth and migration. EGFR activity is a potent stimulator of oncogenic signaling. While miR-135a targets EGFR transcripts to decrease the total number of receptors made, by targeting NHE9 it routes the few EGFRs made away from the plasma membrane to dampen oncogenic signaling. NHE9 is localized to sorting endosomes in glioblastoma cells where it alkalinizes the endosome lumen by leaking protons. Downregulation of NHE9 expression by miR-135a acidifies sorting endosomes limiting EGFR trafficking to the glioblastoma cell membrane. Conclusions We propose downregulation of miR-135a as a potential mechanism underlying the high NHE9 expression observed in subset of glioblastomas. Future studies should explore miR-135a as a potential therapeutic for glioblastomas with NHE9 overexpression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0209-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniela M Gomez Zubieta
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, SFC # 207, Dearborn, MI, 48128, USA
| | - Mohamed A Hamood
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, SFC # 207, Dearborn, MI, 48128, USA
| | - Rami Beydoun
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, SFC # 207, Dearborn, MI, 48128, USA
| | - Ashley E Pall
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, SFC # 207, Dearborn, MI, 48128, USA
| | - Kalyan C Kondapalli
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, SFC # 207, Dearborn, MI, 48128, USA.
| |
Collapse
|
34
|
Ito M, Morino M, Krulwich TA. Mrp Antiporters Have Important Roles in Diverse Bacteria and Archaea. Front Microbiol 2017; 8:2325. [PMID: 29218041 PMCID: PMC5703873 DOI: 10.3389/fmicb.2017.02325] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/10/2017] [Indexed: 11/13/2022] Open
Abstract
Mrp (Multiple resistance and pH) antiporter was identified as a gene complementing an alkaline-sensitive mutant strain of alkaliphilic Bacillus halodurans C-125 in 1990. At that time, there was no example of a multi-subunit type Na+/H+ antiporter comprising six or seven hydrophobic proteins, and it was newly designated as the monovalent cation: proton antiporter-3 (CPA3) family in the classification of transporters. The Mrp antiporter is broadly distributed among bacteria and archaea, not only in alkaliphiles. Generally, all Mrp subunits, mrpA–G, are required for enzymatic activity. Two exceptions are Mrp from the archaea Methanosarcina acetivorans and the eubacteria Natranaerobius thermophilus, which are reported to sustain Na+/H+ antiport activity with the MrpA subunit alone. Two large subunits of the Mrp antiporter, MrpA and MrpD, are homologous to membrane-embedded subunits of the respiratory chain complex I, NuoL, NuoM, and NuoN, and the small subunit MrpC has homology with NuoK. The functions of the Mrp antiporter include sodium tolerance and pH homeostasis in an alkaline environment, nitrogen fixation in Schizolobium meliloti, bile salt tolerance in Bacillus subtilis and Vibrio cholerae, arsenic oxidation in Agrobacterium tumefaciens, pathogenesis in Pseudomonas aeruginosa and Staphylococcus aureus, and the conversion of energy involved in metabolism and hydrogen production in archaea. In addition, some Mrp antiporters transport K+ and Ca2+ instead of Na+, depending on the environmental conditions. Recently, the molecular structure of the respiratory chain complex I has been elucidated by others, and details of the mechanism by which it transports protons are being clarified. Based on this, several hypotheses concerning the substrate transport mechanism in the Mrp antiporter have been proposed. The MrpA and MrpD subunits, which are homologous to the proton transport subunit of complex I, are involved in the transport of protons and their coupling cations. Herein, we outline other recent findings on the Mrp antiporter.
Collapse
Affiliation(s)
- Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Bio-Nano Electronics Research Center, Toyo University, Kawagoe, Japan
| | - Masato Morino
- Graduate School of Life Sciences, Toyo University, Gunma, Japan.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry A Krulwich
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Parashar A, Chakraborty D, Alex SA, Dan P, Chandrasekaran N, Mukherjee A. Effects of titanium dioxide nanoparticles on horseradish peroxidase-mediated peroxidation reactions. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.06.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Ma L, Ouyang Q, Werthmann GC, Thompson HM, Morrow EM. Live-cell Microscopy and Fluorescence-based Measurement of Luminal pH in Intracellular Organelles. Front Cell Dev Biol 2017; 5:71. [PMID: 28871281 PMCID: PMC5566985 DOI: 10.3389/fcell.2017.00071] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/04/2017] [Indexed: 11/16/2022] Open
Abstract
Luminal pH is an important functional feature of intracellular organelles. Acidification of the lumen of organelles such as endosomes, lysosomes, and the Golgi apparatus plays a critical role in fundamental cellular processes. As such, measurement of the luminal pH of these organelles has relevance to both basic research and translational research. At the same time, accurate measurement of intraorganellar pH in living cells can be challenging and may be a limiting hurdle for research in some areas. Here, we describe three powerful methods to measure rigorously the luminal pH of different intracellular organelles, focusing on endosomes, lysosomes, and the Golgi apparatus. The described methods are based on live imaging of pH-sensitive fluorescent probes and include: (1) A protocol based on quantitative, ratiometric measurement of endocytosis of pH-sensitive and pH-insensitive fluorescent conjugates of transferrin; (2) A protocol for the use of proteins tagged with a ratiometric variant of the pH-sensitive intrinsically fluorescent protein pHluorin; and (3) A protocol using the fluorescent dye LysoSensor™. We describe necessary reagents, key procedures, and methods and equipment for data acquisition and analysis. Examples of implementation of the protocols are provided for cultured cells derived from a cancer cell line and for primary cultures of mouse hippocampal neurons. In addition, we present strengths and weaknesses of the different described intraorganellar pH measurement methods. These protocols are likely to be of benefit to many researchers, from basic scientists to those conducting translational research with a focus on diseases in patient-derived cells.
Collapse
Affiliation(s)
- Li Ma
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Brown Institute for Brain Science, Brown UniversityProvidence, RI, United States
| | - Qing Ouyang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Brown Institute for Brain Science, Brown UniversityProvidence, RI, United States
| | - Gordon C Werthmann
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States
| | - Heather M Thompson
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Brown Institute for Brain Science, Brown UniversityProvidence, RI, United States.,Hassenfeld Child Health Innovation Institute, Brown UniversityProvidence, RI, United States
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown UniversityProvidence, RI, United States.,Brown Institute for Brain Science, Brown UniversityProvidence, RI, United States.,Hassenfeld Child Health Innovation Institute, Brown UniversityProvidence, RI, United States
| |
Collapse
|
37
|
Farsi Z, Jahn R, Woehler A. Proton electrochemical gradient: Driving and regulating neurotransmitter uptake. Bioessays 2017; 39. [PMID: 28383767 DOI: 10.1002/bies.201600240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Accumulation of neurotransmitters in the lumen of synaptic vesicles (SVs) relies on the activity of the vacuolar-type H+ -ATPase. This pump drives protons into the lumen, generating a proton electrochemical gradient (ΔμH+ ) across the membrane. Recent work has demonstrated that the balance between the chemical (ΔpH) and electrical (ΔΨ) components of ΔμH+ is regulated differently by some distinct vesicle types. As different neurotransmitter transporters use ΔpH and ΔΨ with different relative efficiencies, regulation of this gradient balance has the potential to influence neurotransmitter uptake. Nevertheless, the underlying mechanisms responsible for this regulation remain poorly understood. In this review, we provide an overview of current neurotransmitter uptake models, with a particular emphasis on the distinct roles of the electrical and chemical gradients and current hypotheses for regulatory mechanisms.
Collapse
Affiliation(s)
- Zohreh Farsi
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Andrew Woehler
- Max-Delbrück Center for Molecular Medicine, Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
38
|
Beydoun R, Hamood MA, Gomez Zubieta DM, Kondapalli KC. Na +/H + Exchanger 9 Regulates Iron Mobilization at the Blood-Brain Barrier in Response to Iron Starvation. J Biol Chem 2017; 292:4293-4301. [PMID: 28130443 DOI: 10.1074/jbc.m116.769240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Iron is essential for brain function, with loss of iron homeostasis in the brain linked to neurological diseases ranging from rare syndromes to more common disorders, such as Parkinson's and Alzheimer's diseases. Iron entry into the brain is regulated by the blood-brain barrier (BBB). Molecular mechanisms regulating this transport are poorly understood. Using an in vitro model of the BBB, we identify NHE9, an endosomal cation/proton exchanger, as a novel regulator of this system. Human brain microvascular endothelial cells (hBMVECs) that constitute the BBB receive brain iron status information via paracrine signals from ensheathing astrocytes. In hBMVECs, we show that NHE9 expression is up-regulated very early in a physiological response invoked by paracrine signals from iron-starved astrocytes. Ectopic expression of NHE9 in hBMVECs without external cues induced up-regulation of the transferrin receptor (TfR) and down-regulation of ferritin, leading to an increase in iron uptake. Mechanistically, we demonstrate that NHE9 localizes to recycling endosomes in hBMVECs where it raises the endosomal pH. The ensuing alkalization of the endosomal lumen increased translocation of TfRs to the hBMVEC membrane. TfRs on the membrane were previously shown to facilitate both recycling-dependent and -independent iron uptake. We propose that NHE9 regulates TfR-dependent, recycling-independent iron uptake in hBMVECs by fine-tuning the endosomal pH in response to paracrine signals and is therefore an important regulator in iron mobilization pathway at the BBB.
Collapse
Affiliation(s)
- Rami Beydoun
- From the Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
| | - Mohamed A Hamood
- From the Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
| | - Daniela M Gomez Zubieta
- From the Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
| | - Kalyan C Kondapalli
- From the Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128
| |
Collapse
|
39
|
Rossano AJ, Kato A, Minard KI, Romero MF, Macleod GT. Na + /H + exchange via the Drosophila vesicular glutamate transporter mediates activity-induced acid efflux from presynaptic terminals. J Physiol 2016; 595:805-824. [PMID: 27641622 DOI: 10.1113/jp273105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/14/2016] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Intracellular pH regulation is vital to neurons as nerve activity produces large and rapid acid loads in presynaptic terminals. Rapid clearance of acid loads is necessary to maintain control of neurotransmission, but neuronal acid clearance mechanisms remain poorly understood. Glutamate is loaded into synaptic vesicles via the vesicular glutamate transporter (VGLUT), a mechanism conserved across phyla, and this study reports a previously unknown role for VGLUT as an acid-extruding protein when deposited in the plasmamembrane during exocytosis. The finding was made in Drosophila (fruit fly) larval motor neurons through a combined pharamacological and genetic dissection of presynaptic pH homeostatic mechanisms. A dual role for VGLUT serves to integrate neuronal activity and pH regulation in presynaptic nerve terminals. ABSTRACT Neuronal activity can result in transient acidification of presynaptic terminals, and such shifts in cytosolic pH (pHcyto ) probably influence mechanisms underlying forms of synaptic plasticity with a presynaptic locus. As neuronal activity drives acid loading in presynaptic terminals, we hypothesized that the same activity might drive acid efflux mechanisms to maintain pHcyto homeostasis. To better understand the integration of neuronal activity and pHcyto regulation we investigated the acid extrusion mechanisms at Drosophila glutamatergic motorneuron terminals. Expression of a fluorescent genetically encoded pH indicator, named 'pHerry', in the presynaptic cytosol revealed acid efflux following nerve activity to be greater than that predicted from measurements of the intrinsic rate of acid efflux. Analysis of activity-induced acid transients in terminals deficient in either endocytosis or exocytosis revealed an acid efflux mechanism reliant upon synaptic vesicle exocytosis. Pharmacological and genetic dissection in situ and in a heterologous expression system indicate that this acid efflux is mediated by conventional plasmamembrane acid transporters, and also by previously unrecognized intrinsic H+ /Na+ exchange via the Drosophila vesicular glutamate transporter (DVGLUT). DVGLUT functions not only as a vesicular glutamate transporter but also serves as an acid-extruding protein when deposited on the plasmamembrane.
Collapse
Affiliation(s)
- Adam J Rossano
- School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Akira Kato
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8503, Japan.,Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Karyl I Minard
- Biological Sciences & Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33431, USA
| | - Michael F Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Gregory T Macleod
- Biological Sciences & Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33431, USA
| |
Collapse
|
40
|
Kim J, Lee HY, Ahn J, Hyun M, Lee I, Min KJ, You YJ. NHX-5, an Endosomal Na+/H+ Exchanger, Is Associated with Metformin Action. J Biol Chem 2016; 291:18591-9. [PMID: 27435670 DOI: 10.1074/jbc.c116.744037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 01/18/2023] Open
Abstract
Diabetes is one of the most impactful diseases worldwide. The most commonly prescribed anti-diabetic drug is metformin. In this study, we identified an endosomal Na(+)/H(+) exchanger (NHE) as a new potential target of metformin from an unbiased screen in Caenorhabditis elegans The same NHE homolog also exists in flies, where it too mediates the effects of metformin. Our results suggest that endosomal NHEs could be a metformin target and provide an insight into a novel mechanism of action of metformin on regulating the endocytic cycle.
Collapse
Affiliation(s)
- Jeongho Kim
- From the Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Hye-Yeon Lee
- From the Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Jheesoo Ahn
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, and
| | - Moonjung Hyun
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, and
| | - Inhwan Lee
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, and
| | - Kyung-Jin Min
- From the Department of Biological Sciences, Inha University, Incheon 22212, South Korea
| | - Young-Jai You
- the Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia 23298, and the Nagoya Research Center for Brain & Neural Circuits, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
41
|
Zhao H, Carney KE, Falgoust L, Pan JW, Sun D, Zhang Z. Emerging roles of Na⁺/H⁺ exchangers in epilepsy and developmental brain disorders. Prog Neurobiol 2016; 138-140:19-35. [PMID: 26965387 DOI: 10.1016/j.pneurobio.2016.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/03/2016] [Accepted: 02/27/2016] [Indexed: 12/15/2022]
Abstract
Epilepsy is a common central nervous system (CNS) disease characterized by recurrent transient neurological events occurring due to abnormally excessive or synchronous neuronal activity in the brain. The CNS is affected by systemic acid-base disorders, and epileptic seizures are sensitive indicators of underlying imbalances in cellular pH regulation. Na(+)/H(+) exchangers (NHEs) are a family of membrane transporter proteins actively involved in regulating intracellular and organellar pH by extruding H(+) in exchange for Na(+) influx. Altering NHE function significantly influences neuronal excitability and plays a role in epilepsy. This review gives an overview of pH regulatory mechanisms in the brain with a special focus on the NHE family and the relationship between epilepsy and dysfunction of NHE isoforms. We first discuss how cells translocate acids and bases across the membrane and establish pH homeostasis as a result of the concerted effort of enzymes and ion transporters. We focus on the specific roles of the NHE family by detailing how the loss of NHE1 in two NHE mutant mice results in enhanced neuronal excitability in these animals. Furthermore, we highlight new findings on the link between mutations of NHE6 and NHE9 and developmental brain disorders including epilepsy, autism, and attention deficit hyperactivity disorder (ADHD). These studies demonstrate the importance of NHE proteins in maintaining H(+) homeostasis and their intricate roles in the regulation of neuronal function. A better understanding of the mechanisms underlying NHE1, 6, and 9 dysfunctions in epilepsy formation may advance the development of new epilepsy treatment strategies.
Collapse
Affiliation(s)
- Hanshu Zhao
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China.,Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Karen E Carney
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lindsay Falgoust
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jullie W Pan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, PA 15213, USA
| | - Zhongling Zhang
- Department of Neurology, The First Affiliated Hospital of the Harbin Medical University, Harbin, China
| |
Collapse
|
42
|
Sodium-Proton (Na+/H+) Antiporters: Properties and Roles in Health and Disease. Met Ions Life Sci 2016; 16:391-458. [DOI: 10.1007/978-3-319-21756-7_12] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
43
|
Fan SHY, Numata Y, Numata M. Endosomal Na+/H+ exchanger NHE5 influences MET recycling and cell migration. Mol Biol Cell 2015; 27:702-15. [PMID: 26700318 PMCID: PMC4750928 DOI: 10.1091/mbc.e15-04-0257] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/18/2015] [Indexed: 12/17/2022] Open
Abstract
The neuron-enriched Na+/H+ exchanger NHE5 is expressed in C6 glioma cells, acidifies recycling endosomes, and modulates cell surface abundance of receptor tyrosine kinases MET and EGFR. NHE5 depletion impairs MET recycling and facilitates degradation, thereby impairing cell migration and polarity. Increased recycling and elevated cell surface expression of receptors serve as a mechanism for persistent receptor-mediated signaling. We show that the neuron-enriched Na+/H+ exchanger NHE5 is abundantly expressed in C6 glioma cells and plays an important part in regulating cell surface expression of the receptor tyrosine kinases MET and EGF receptor. NHE5 is associated with transferrin receptor (TfR)- and Rab11-positive recycling endosomal membranes, and NHE5 knockdown by short hairpin RNA significantly elevates pH of TfR-positive recycling endosomes. We present evidence that NHE5 facilitates MET recycling to the plasma membrane, protects MET from degradation, and modulates HGF-induced phosphatidylinositol-3-kinase and mitogen-activated protein kinase signaling. Moreover, NHE5 depletion abrogates Rac1 and Cdc42 signaling and actin cytoskeletal remodeling. We further show that NHE5 knockdown impairs directed cell migration and causes loss of cell polarity. Our study highlights a possible role of recycling endosomal pH in regulating receptor-mediated signaling through vesicular trafficking.
Collapse
Affiliation(s)
- Steven Hung-Yi Fan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yuka Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Masayuki Numata
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
44
|
Sikora J, Leddy J, Gulinello M, Walkley SU. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities. Dis Model Mech 2015; 9:13-23. [PMID: 26515654 PMCID: PMC4728337 DOI: 10.1242/dmm.022780] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/25/2015] [Indexed: 01/31/2023] Open
Abstract
Christianson syndrome (CS) is an X-linked neurodevelopmental and neurological disorder characterized in males by core symptoms that include non-verbal status, intellectual disability, epilepsy, truncal ataxia, postnatal microcephaly and hyperkinesis. CS is caused by mutations in the SLC9A6 gene, which encodes a multipass transmembrane sodium (potassium)-hydrogen exchanger 6 (NHE6) protein, functional in early recycling endosomes. The extent and variability of the CS phenotype in female heterozygotes, who presumably express the wild-type and mutant SLC9A6 alleles mosaically as a result of X-chromosome inactivation (XCI), have not yet been systematically characterized. Slc9a6 knockout mice (Slc9a6 KO) were generated by insertion of the bacterial lacZ/β-galactosidase (β-Gal) reporter into exon 6 of the X-linked gene. Mutant Slc9a6 KO male mice have been shown to develop late endosomal/lysosomal dysfunction associated with glycolipid accumulation in selected neuronal populations and patterned degeneration of Purkinje cells (PCs). In heterozygous female Slc9a6 KO mice, β-Gal serves as a transcriptional/XCI reporter and thus facilitates testing of effects of mosaic expression of the mutant allele on penetrance of the abnormal phenotype. Using β-Gal, we demonstrated mosaic expression of the mutant Slc9a6 allele and mosaically distributed lysosomal glycolipid accumulation and PC pathology in the brains of heterozygous Slc9a6 KO female mice. At the behavioral level, we showed that heterozygous female mice suffer from visuospatial memory and motor coordination deficits similar to but less severe than those observed in X-chromosome hemizygous mutant males. Our studies in heterozygous Slc9a6 KO female mice provide important clues for understanding the likely phenotypic range of Christianson syndrome among females heterozygous for SLC9A6 mutations and might improve diagnostic practice and genetic counseling by helping to characterize this presumably underappreciated patient/carrier group.
Collapse
Affiliation(s)
- Jakub Sikora
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA Institute of Inherited Metabolic Disorders, Charles University in Prague - 1st Faculty of Medicine, Ke Karlovu 2, Praha 2 160 00, Czech Republic
| | - Jennifer Leddy
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria Gulinello
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven U Walkley
- Dominick P. Purpura Department of Neuroscience, Rose F. Kennedy Intellectual and Developmental Disabilities Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
45
|
Verma V, Bali A, Singh N, Jaggi AS. Implications of sodium hydrogen exchangers in various brain diseases. J Basic Clin Physiol Pharmacol 2015; 26:417-426. [PMID: 26020555 DOI: 10.1515/jbcpp-2014-0117] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/22/2015] [Indexed: 06/04/2023]
Abstract
Na+/H+ exchangers (NHEs) are the transporter proteins that play an important role in intracellular pH (pHi) regulation, cell differentiation and cell volume and that mediate transepithelial Na+ and HCO3- absorption on the basis of chemical gradients across the plasma membrane. Its activation causes an increase in intracellular Na+, which further leads to Ca+ overload and cell death. The pharmacological inhibition of these transporter proteins prevents myocardial infarction and other heart diseases like congestive heart failure in experimental animal models as well as in clinical situations. The more recent studies have implicated the role of these exchangers in the pathophysiology of brain diseases. Out of nine NHE isoforms, NHE-1 is the major isoform present in the brain and regulates the trans-cellular ion transport through blood-brain barrier membrane, and alteration in their function leads to severe brain abnormalities. NHEs were shown to be involved in pathophysiologies of many brain diseases like epilepsy, Alzheimer's disease, neuropathic pain and ischemia/reperfusion-induced cerebral injury. Na+/H+-exchanger inhibitors (e.g., amiloride and cariporide) produce protective effects on ischemia/reperfusion-induced brain injury (e.g., stroke), exhibit good antiepileptic potential and attenuate neuropathic pain in various animal models. The present review focuses on the pathophysiological role of these ion exchangers in different brain diseases with possible mechanisms.
Collapse
|
46
|
Călinescu O, Fendler K. A universal mechanism for transport and regulation of CPA sodium proton exchangers. Biol Chem 2015; 396:1091-6. [DOI: 10.1515/hsz-2014-0278] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/26/2015] [Indexed: 02/02/2023]
Abstract
Abstract
Recent studies performed on a series of Na+/H+ exchangers have led us to postulate a general mechanism for Na+/H+ exchange in the monovalent cation/proton antiporter superfamily. This simple mechanism employs a single binding site for which both substrates compete. The developed kinetic model is self-regulatory, ensuring down-regulation of transport activity at extreme pH, and elegantly explains the pH-dependent activity of Na+/H+ exchangers. The mechanism was experimentally verified and shown to describe both electrogenic and electroneutral exchangers. Using a small number of parameters, exchanger activity can be modeled under different conditions, providing insights into the physiological role of Na+/H+ exchangers.
Collapse
|
47
|
Sellebjerg F, Oturai AB. Multiple sclerosis: A clinically useful genetic variant in multiple sclerosis? Nat Rev Neurol 2015; 11:371-2. [PMID: 26077840 DOI: 10.1038/nrneurol.2015.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Finn Sellebjerg
- Danish Multiple Sclerosis Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Centre, Department of Neurology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, 2100 Copenhagen, Denmark
| |
Collapse
|
48
|
Esposito F, Sorosina M, Ottoboni L, Lim ET, Replogle JM, Raj T, Brambilla P, Liberatore G, Guaschino C, Romeo M, Pertel T, Stankiewicz JM, Martinelli V, Rodegher M, Weiner HL, Brassat D, Benoist C, Patsopoulos NA, Comi G, Elyaman W, Martinelli Boneschi F, De Jager PL. A pharmacogenetic study implicates SLC9a9 in multiple sclerosis disease activity. Ann Neurol 2015; 78:115-27. [PMID: 25914168 DOI: 10.1002/ana.24429] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVE A proportion of multiple sclerosis (MS) patients experience disease activity despite treatment. The early identification of the most effective drug is critical to impact long-term outcome and to move toward a personalized approach. The aim of the present study is to identify biomarkers for further clinical development and to yield insights into the pathophysiology of disease activity. METHODS We performed a genome-wide association study in interferon-β (IFNβ)-treated MS patients followed by validation in 3 independent cohorts. The role of the validated variant was examined in several RNA data sets, and the function of the presumed target gene was explored using an RNA interference approach in primary T cells in vitro. RESULTS We found an association between rs9828519(G) and nonresponse to IFNβ (pdiscovery = 4.43 × 10(-8)) and confirmed it in a meta-analysis across 3 replication data sets (preplication = 7.78 × 10(-4)). Only 1 gene is found in the linkage disequilibrium block containing rs9828519: SLC9A9. Exploring the function of this gene, we see that SLC9A9 mRNA expression is diminished in MS subjects who are more likely to have relapses. Moreover, SLC9A9 knockdown in T cells in vitro leads an increase in expression of IFNγ, which is a proinflammatory molecule. INTERPRETATION This study identifies and validates the role of rs9828519, an intronic variant in SLC9A9, in IFNβ-treated subjects, demonstrating a successful pharmacogenetic screen in MS. Functional characterization suggests that SLC9A9, an Na(+) -H(+) exchanger found in endosomes, appears to influence the differentiation of T cells to a proinflammatory fate and may have a broader role in MS disease activity, outside of IFNβ treatment.
Collapse
Affiliation(s)
- Federica Esposito
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Linda Ottoboni
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Elaine T Lim
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Joseph M Replogle
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Program for Medical and Population Genetics, Broad Institute, Cambridge, MA.,Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Towfique Raj
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Program for Medical and Population Genetics, Broad Institute, Cambridge, MA.,Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Paola Brambilla
- Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Liberatore
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Clara Guaschino
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Marzia Romeo
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy
| | - Thomas Pertel
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - James M Stankiewicz
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - Vittorio Martinelli
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Mariaemma Rodegher
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA
| | - David Brassat
- Department of Neurology, Purpan Hospital and Mixed Unit of Research 1043, University of Toulouse, Toulouse, France
| | - Christophe Benoist
- Harvard Medical School, Boston, MA.,Program for Medical and Population Genetics, Broad Institute, Cambridge, MA
| | - Nikolaos A Patsopoulos
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Program for Medical and Population Genetics, Broad Institute, Cambridge, MA.,Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Giancarlo Comi
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Wassim Elyaman
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| | - Filippo Martinelli Boneschi
- Department of Neurology and Neurorehabilitation, San Raffaele Scientific Institute, Milan, Italy.,Laboratory of Genetics of Complex Neurological Disorders, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Philip L De Jager
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA.,Harvard Medical School, Boston, MA.,Program for Medical and Population Genetics, Broad Institute, Cambridge, MA.,Program in Translational Neuropsychiatric Genomics, Institute for the Neurosciences, Department of Neurology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
49
|
Reguera M, Bassil E, Tajima H, Wimmer M, Chanoca A, Otegui MS, Paris N, Blumwald E. pH Regulation by NHX-Type Antiporters Is Required for Receptor-Mediated Protein Trafficking to the Vacuole in Arabidopsis. THE PLANT CELL 2015; 27:1200-17. [PMID: 25829439 PMCID: PMC4558692 DOI: 10.1105/tpc.114.135699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 05/18/2023]
Abstract
Protein trafficking requires proper ion and pH homeostasis of the endomembrane system. The NHX-type Na(+)/H(+) antiporters NHX5 and NHX6 localize to the Golgi, trans-Golgi network, and prevacuolar compartments and are required for growth and trafficking to the vacuole. In the nhx5 nhx6 T-DNA insertional knockouts, the precursors of the 2S albumin and 12S globulin storage proteins accumulated and were missorted to the apoplast. Immunoelectron microscopy revealed the presence of vesicle clusters containing storage protein precursors and vacuolar sorting receptors (VSRs). Isolation and identification of complexes of VSRs with unprocessed 12S globulin by 2D blue-native PAGE/SDS-PAGE indicated that the nhx5 nhx6 knockouts showed compromised receptor-cargo association. In vivo interaction studies using bimolecular fluorescence complementation between VSR2;1, aleurain, and 12S globulin suggested that nhx5 nhx6 knockouts showed a significant reduction of VSR binding to both cargoes. In vivo pH measurements indicated that the lumens of VSR compartments containing aleurain, as well as the trans-Golgi network and prevacuolar compartments, were significantly more acidic in nhx5 nhx6 knockouts. This work demonstrates the importance of NHX5 and NHX6 in maintaining endomembrane luminal pH and supports the notion that proper vacuolar trafficking and proteolytic processing of storage proteins require endomembrane pH homeostasis.
Collapse
Affiliation(s)
- Maria Reguera
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Elias Bassil
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Hiromi Tajima
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Monika Wimmer
- Institute of Crop Science and Resource Conservation, Division of Plant Nutrition, University of Bonn, D-53115 Bonn, Germany
| | - Alexandra Chanoca
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Marisa S Otegui
- Departments of Botany and Genetics, University of Wisconsin, Madison, Wisconsin 53706
| | - Nadine Paris
- Biochemistry and Plant Molecular Biology Laboratory, Unité Mixte de Recherche 5004, 34060 Montpellier, France
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, California 95616
| |
Collapse
|
50
|
Hunter JM, Kiefer J, Balak CD, Jooma S, Ahearn ME, Hall JG, Baumbach-Reardon L. Review of X-linked syndromes with arthrogryposis or early contractures-aid to diagnosis and pathway identification. Am J Med Genet A 2015; 167A:931-73. [DOI: 10.1002/ajmg.a.36934] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/05/2014] [Indexed: 02/03/2023]
Affiliation(s)
- Jesse M. Hunter
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Jeff Kiefer
- Knowledge Mining; Translational Genomics Research Institute; Phoenix Arizona
| | - Christopher D. Balak
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Sonya Jooma
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Mary Ellen Ahearn
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| | - Judith G. Hall
- Departments of Medical Genetics and Pediatrics; University of British Columbia and BC Children's Hospital Vancouver; British Columbia Canada
| | - Lisa Baumbach-Reardon
- Integrated Functional Cancer Genomics; Translational Genomics Research Institute; Phoenix Arizona
| |
Collapse
|