1
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Key interaction networks: Identifying evolutionarily conserved non-covalent interaction networks across protein families. Protein Sci 2024; 33:e4911. [PMID: 38358258 PMCID: PMC10868456 DOI: 10.1002/pro.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Protein structure (and thus function) is dictated by non-covalent interaction networks. These can be highly evolutionarily conserved across protein families, the members of which can diverge in sequence and evolutionary history. Here we present KIN, a tool to identify and analyze conserved non-covalent interaction networks across evolutionarily related groups of proteins. KIN is available for download under a GNU General Public License, version 2, from https://www.github.com/kamerlinlab/KIN. KIN can operate on experimentally determined structures, predicted structures, or molecular dynamics trajectories, providing insight into both conserved and missing interactions across evolutionarily related proteins. This provides useful insight both into protein evolution, as well as a tool that can be exploited for protein engineering efforts. As a showcase system, we demonstrate applications of this tool to understanding the evolutionary-relevant conserved interaction networks across the class A β-lactamases.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Rory M. Crean
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| | - Peter M. Kasson
- Department of Molecular PhysiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Shina C. L. Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
2
|
González-Bello C. Designing Irreversible Inhibitors-Worth the Effort? ChemMedChem 2015; 11:22-30. [DOI: 10.1002/cmdc.201500469] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS); Universidade de Santiago de Compostela; calle Jenaro de la Fuente s/n Santiago de Compostela 15782 Spain
| |
Collapse
|
3
|
Carey PR, Heidari-Torkabadi H. New techniques in antibiotic discovery and resistance: Raman spectroscopy. Ann N Y Acad Sci 2015; 1354:67-81. [PMID: 26275225 DOI: 10.1111/nyas.12847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy can play a role in both antibiotic discovery and understanding the molecular basis of resistance. A major challenge in drug development is to measure the population of the drug molecules inside a cell line and to follow the chemistry of their reactions with intracellular targets. Recently, a protocol based on Raman microscopy has been developed that achieves these goals. Drug candidates are soaked into live bacterial cells and subsequently the cells are frozen and freeze-dried. The samples yield exemplary (nonresonance) Raman data that provide a measure of the number of drug molecules within each cell, as well as details of drug-target interactions. Results are discussed for two classes of compounds inhibiting either β-lactamase or dihydrofolate reductase enzymes in a number of Gram-positive or Gram-negative cell lines. The advantages of the present protocol are that it does not use labels and it can measure the kinetics of cell-compound uptake on the time scale of minutes. Spectroscopic interpretation is supported by in vitro Raman experiments. Studying drug-target interactions in aqueous solution and in single crystals can provide molecular level insights into drug-target interactions, which, in turn, provide the underpinnings of our understanding of data from bacterial cells. Thus, the applicability of X-ray crystallographic-derived data to in-cell chemistry can be tested.
Collapse
Affiliation(s)
- Paul R Carey
- Department of Biochemistry.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
4
|
Che T, Rodkey E, Bethel CR, Shanmugam S, Ding Z, Pusztai-Carey M, Nottingham M, Chai W, Buynak JD, Bonomo RA, van den Akker F, Carey PR. Detecting a quasi-stable imine species on the reaction pathway of SHV-1 β-lactamase and 6β-(hydroxymethyl)penicillanic acid sulfone. Biochemistry 2015; 54:734-43. [PMID: 25536850 PMCID: PMC4310624 DOI: 10.1021/bi501197t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/22/2014] [Indexed: 11/30/2022]
Abstract
For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxothiazolidine ring leading to formation of the iminium ion within 3 min. The iminium ion slowly loses a proton and converts to cis-enamine (which is a β-aminoacrylate) in 1 h for sulbactam and in 4 h for 6β-(hydroxymethyl) sulbactam. Rapid mix-rapid freeze Raman spectroscopy was used to follow the reactions between the two sulfones and SHV-1. Within 23 ms, a 10-fold excess of sulbactam was entirely hydrolyzed to give a cis-enamine product. In contrast, the 6β-(hydroxymethyl) sulbactam formed longer-lived acyl-enzyme intermediates that are a mixture of imine and enamines. Single crystal Raman studies, soaking in and washing out unreacted substrates, revealed stable populations of imine and trans-enamine acyl enzymes. The corresponding X-ray crystallographic data are consonant with the Raman data and also reveal the role played by the 6β-hydroxymethyl group in retarding hydrolysis of the acyl enzymes. The 6β-hydroxymethyl group sterically hinders approach of the water molecule as well as restraining the side chain of E166 that facilitates hydrolysis.
Collapse
Affiliation(s)
- Tao Che
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Elizabeth
A. Rodkey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Christopher R. Bethel
- Research
Service, Louis Stokes Cleveland Veterans
Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Sivaprakash Shanmugam
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Zhe Ding
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marianne Pusztai-Carey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Michael Nottingham
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Weirui Chai
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - John D. Buynak
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Robert A. Bonomo
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Research
Service, Louis Stokes Cleveland Veterans
Affairs Medical Center, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Department of Molecular
Biology and Microbiology, Department of Pharmacology, and Department of
Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Rodkey EA, McLeod DC, Bethel CR, Smith KM, Xu Y, Chai W, Che T, Carey PR, Bonomo RA, van den Akker F, Buynak JD. β-Lactamase inhibition by 7-alkylidenecephalosporin sulfones: allylic transposition and formation of an unprecedented stabilized acyl-enzyme. J Am Chem Soc 2013; 135:18358-69. [PMID: 24219313 PMCID: PMC4042847 DOI: 10.1021/ja403598g] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The inhibition of the class A SHV-1 β-lactamase by 7-(tert-butoxycarbonyl)methylidenecephalosporin sulfone was examined kinetically, spectroscopically, and crystallographically. An 1.14 Å X-ray crystal structure shows that the stable acyl-enzyme, which incorporates an eight-membered ring, is a covalent derivative of Ser70 linked to the 7-carboxy group of 2-H-5,8-dihydro-1,1-dioxo-1,5-thiazocine-4,7-dicarboxylic acid. A cephalosporin-derived enzyme complex of this type is unprecedented, and the rearrangement leading to its formation may offer new possibilities for inhibitor design. The observed acyl-enzyme derives its stability from the resonance stabilization conveyed by the β-aminoacrylate (i.e., vinylogous urethane) functionality as there is relatively little interaction of the eight-membered ring with active site residues. Two mechanistic schemes are proposed, differing in whether, subsequent to acylation of the active site serine and opening of the β-lactam, the resultant dihydrothiazine fragments on its own or is assisted by an adjacent nucleophilic atom, in the form of the carbonyl oxygen of the C7 tert-butyloxycarbonyl group. This compound was also found to be a submicromolar inhibitor of the class C ADC-7 and PDC-3 β-lactamases.
Collapse
Affiliation(s)
- Elizabeth A. Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - David C. McLeod
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Christopher R. Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Kerri M. Smith
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Yan Xu
- Department of Chemistry, Cleveland State University, 2121 Euclid Ave., Cleveland, Ohio 44115, United States
| | - Weirui Chai
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
| | - Tao Che
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - Robert A. Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 10701 East Boulevard, Cleveland, Ohio 44106, United States
| | - Focco van den Akker
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Ave., Cleveland, Ohio 44106, United States
| | - John D. Buynak
- Department of Chemistry, Southern Methodist University, 3215 Daniel Ave., Dallas, Texas 75275, United States
- Center for Drug Discovery, Design, and Development, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
6
|
Nottingham M, Bethel CR, Pagadala SRR, Harry E, Pinto A, Lemons ZA, Drawz SM, Akker FVD, Carey PR, Bonomo RA, Buynak JD. Modifications of the C6-substituent of penicillin sulfones with the goal of improving inhibitor recognition and efficacy. Bioorg Med Chem Lett 2010; 21:387-93. [PMID: 21129961 DOI: 10.1016/j.bmcl.2010.10.134] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Revised: 10/26/2010] [Accepted: 10/27/2010] [Indexed: 11/27/2022]
Abstract
In order to evaluate the importance of a hydrogen-bond donating substituent in the design of β-lactamase inhibitors, a series of C6-substituted penicillin sulfones, lacking a C2' substituent, and having an sp(3) hybridized C6, was prepared and evaluated against a representative classes A and C β-lactamases. It was found that a C6 hydrogen-bond donor is necessary for good inhibitory activity, but that this feature alone is not sufficient in this series of C6β-substituted penicillin sulfones. Other factors which may impact the potency of the inhibitor include the steric bulk of the C6 substituent (e.g., methicillin sulfone) which may hinder recognition in the class A β-lactamases, and also high similarity to the natural substrates (e.g., penicillin G sulfone) which may render the prospective inhibitor a good substrate of both classes of enzyme. The best inhibitors had non-directional hydrogen-bonding substituents, such as hydroxymethyl, which may allow sufficient conformational flexibility of the acyl-enzyme for abstraction of the C6 proton by E166 (class A), thus promoting isomerization to the β-aminoacrylate as a stabilized acyl-enzyme.
Collapse
Affiliation(s)
- Micheal Nottingham
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
Collapse
|