1
|
Hazra S, Begley TP. Alkylcysteine Sulfoxide C-S Monooxygenase Uses a Flavin-Dependent Pummerer Rearrangement. J Am Chem Soc 2023; 145:11933-11938. [PMID: 37229602 PMCID: PMC10863075 DOI: 10.1021/jacs.3c03545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Flavoenzymes are highly versatile and participate in the catalysis of a wide range of reactions, including key reactions in the metabolism of sulfur-containing compounds. S-Alkyl cysteine is formed primarily by the degradation of S-alkyl glutathione generated during electrophile detoxification. A recently discovered S-alkyl cysteine salvage pathway uses two flavoenzymes (CmoO and CmoJ) to dealkylate this metabolite in soil bacteria. CmoO catalyzes a stereospecific sulfoxidation, and CmoJ catalyzes the cleavage of one of the sulfoxide C-S bonds in a new reaction of unknown mechanism. In this paper, we investigate the mechanism of CmoJ. We provide experimental evidence that eliminates carbanion and radical intermediates and conclude that the reaction proceeds via an unprecedented enzyme-mediated modified Pummerer rearrangement. The elucidation of the mechanism of CmoJ adds a new motif to the flavoenzymology of sulfur-containing natural products and demonstrates a new strategy for the enzyme-catalyzed cleavage of C-S bonds.
Collapse
Affiliation(s)
- Sohan Hazra
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
2
|
Luo H, Tian S, Liang H, Wang H, Gao S, Dai W. Oxidative cleavage and ammoxidation of organosulfur compounds via synergistic Co-Nx sites and Co nanoparticles catalysis. Nat Commun 2023; 14:2981. [PMID: 37221164 DOI: 10.1038/s41467-023-38614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
The cleavage and functionalization of C-S bonds have become a rapidly growing field for the design or discovery of new transformations. However, it is usually difficult to achieve in a direct and selective fashion due to the intrinsic inertness and catalyst-poisonous character. Herein, for the first time, we report a novel and efficient protocol that enables direct oxidative cleavage and cyanation of organosulfur compounds by heterogeneous nonprecious-metal Co-N-C catalyst comprising graphene encapsulated Co nanoparticles and Co-Nx sites using oxygen as environmentally benign oxidant and ammonia as nitrogen source. A wide variety of thiols, sulfides, sulfoxides, sulfones, sulfonamides, and sulfonyl chlorides are viable in this reaction, enabling access to diverse nitriles under cyanide-free conditions. Moreover, modifying the reaction conditions also allows for the cleavage and amidation of organosulfur compounds to deliver amides. This protocol features excellent functional group tolerance, facile scalability, cost-effective and recyclable catalyst, and broad substrate scope. Characterization and mechanistic studies reveal that the remarkable effectiveness of the synergistic catalysis of Co nanoparticles and Co-Nx sites is crucial for achieving outstanding catalytic performance.
Collapse
Affiliation(s)
- Huihui Luo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Shuainan Tian
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun, PR China
| | - Hongliang Liang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - He Wang
- School of Chemistry and Materials Science, Liaoning Shihua University, Fushun, PR China.
| | - Shuang Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | - Wen Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China.
| |
Collapse
|
3
|
Joshi A, Iqbal Z, Kandwal P, De SR. Pd(II)–Catalyzed Non–Directed Benzylic C(sp3)–H Activation: Cascade C(sp3)–S Bond Cleavage to Access Benzaldehydes from Benzylphenyl Sulfides and Sulfoxides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Asha Joshi
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Zafar Iqbal
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Pankaj Kandwal
- NIT Uttarakhand: National Institute of Technology Uttarakhand Department of Chemistry Srinagar INDIA
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Dept. of Chemistry Srinagar Garhwal 246174 Srinagar INDIA
| |
Collapse
|
4
|
Hong B, Lee A. Visible-light-mediated oxidative C–S bond cleavage of benzyl thiols through in situ activation strategy. Org Biomol Chem 2022; 20:5938-5942. [DOI: 10.1039/d2ob00089j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method for the oxidative C–S bond cleavage of benzyl thiols was developed. In situ-activated silver species enabled the controlled bond cleavage of benzyl thiols to afford aldehydes and...
Collapse
|
5
|
Monsour CG, Decosto CM, Tafolla-Aguirre BJ, Morales LA, Selke M. Singlet Oxygen Generation, Quenching, and Reactivity with Metal Thiolates. Photochem Photobiol 2021; 97:1219-1240. [PMID: 34242405 DOI: 10.1111/php.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Metal thiolate complexes can act as photosensitizers for the generation of singlet oxygen, quenchers of singlet oxygen, and they may undergo chemical reactions with singlet oxygen leading to oxidized thiolate ligands. This review covers all of the chemical reactions of thiolate ligands with singlet oxygen (through early 2021). Since some of these reactions are self-sensitized photooxidations, singlet oxygen generation by metal complexes is also discussed. Mechanistic features such as the effects of protic vs. aprotic conditions are presented and compared with the comparatively well-understood photooxidation of organic sulfides. In general, the total rate of singlet oxygen removal correlates with the nucleophilicity of the thiolate ligand which in turn can be influenced by the metal. Some interesting patterns of reactivity have been noted as a result of this survey: Metal thiolate complexes bearing arylthiolate ligands appear to exclusively produce sulfinate (metal-bound sulfone) products upon reaction with singlet oxygen. In contrast, metal thiolate complexes bearing alkylthiolate ligands may produce sulfinate and/or sulfenate (metal-bound sulfoxide) products. Several mechanistic pathways have been proposed for these reactions, but the exact nature of any intermediates remains unknown at this time.
Collapse
Affiliation(s)
- Charlotte G Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Cassandra M Decosto
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Luis A Morales
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|
6
|
Voutyritsa E, Garreau M, Kokotou MG, Triandafillidi I, Waser J, Kokotos CG. Photochemical Functionalization of Heterocycles with EBX Reagents: C−H Alkynylation versus Deconstructive Ring Cleavage**. Chemistry 2020; 26:14453-14460. [DOI: 10.1002/chem.202002868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Maroula G. Kokotou
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
7
|
Hong B, Aganda KCC, Lee A. Oxidative C-S Bond Cleavage of Benzyl Thiols Enabled by Visible-Light-Mediated Silver(II) Complexes. Org Lett 2020; 22:4395-4399. [PMID: 32459496 DOI: 10.1021/acs.orglett.0c01399] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The oxidative cleavage reaction of the C-S bond using singlet oxygen is challenging because of its uncontrollable nature. We have developed a novel method for the singlet-oxygen-mediated selective C-S bond cleavage reaction using silver(II)-ligand complexes. Visible-light-induced silver catalysis enables the controlled oxidative cleavage of benzyl thiols to afford carbonyl compounds, such as aldehydes or ketones, which are important synthetic components.
Collapse
|
8
|
Pibiri I, Buscemi S, Palumbo Piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800076] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
- Dipartimento di Scienze per l'Innovazione Tecnologica; Istituto EuroMediterraneo di Scienza e Tecnologia - IEMEST; Via Michele Miraglia, 20 - 90139 - Palermo Italy
| |
Collapse
|
9
|
Mojarrad AG, Zakavi S. Simple low cost porphyrinic photosensitizers for large scale chemoselective oxidation of sulfides to sulfoxides under green conditions: targeted protonation of porphyrins. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02308a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Large scale chemoselective photooxidation of sulfides to sulfoxides in the presence of the diacids ofmeso-tetra(phenyl)porphyrin with different acids is reported.
Collapse
Affiliation(s)
- Aida G. Mojarrad
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| | - Saeed Zakavi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan 45137-66731
- Iran
| |
Collapse
|
10
|
Griesbeck AG, Öngel B, Atar M. New phthalimide-methionine dyad-based fluorescence probes for reactive oxygen species: Singlet oxygen, hydrogen peroxide, and hypochlorite. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Nenajdenko VG, Muzalevskiy VM, Shastin AV. Polyfluorinated ethanes as versatile fluorinated C2-building blocks for organic synthesis. Chem Rev 2015; 115:973-1050. [PMID: 25594605 DOI: 10.1021/cr500465n] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Valentine G Nenajdenko
- Department of Chemistry, Moscow State University , Leninskie Gory, Moscow 119992, Russia
| | | | | |
Collapse
|
12
|
Kusano S, Haruyama T, Ishiyama S, Hagihara S, Nagatsugi F. Development of the crosslinking reactions to RNA triggered by oxidation. Chem Commun (Camb) 2014; 50:3951-4. [DOI: 10.1039/c3cc49463b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper, we have reported a novel oxidation triggered crosslinking nucleobase ATVP (1) and demonstrated that the oxidized form ASVP (2) showed a very fast and selective crosslinking reaction to cytosine in RNA.
Collapse
Affiliation(s)
- Shuhei Kusano
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Takuya Haruyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shogo Ishiyama
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| | - Shinya Hagihara
- Institute of Transformative Bio-Molecules (WPI-ITbM)
- Nagoya University
- Nagoya, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials
- Tohoku University
- Sendai-shi, Japan
| |
Collapse
|
13
|
Zhang X. Mass spectrometric and theoretical studies on dissociation of the CS bond in the benzenesulfonic acid and benzenesulfinic acid anion series: Homolytic cleavage vs heterolytic cleavage. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Bartusik D, Aebisher D, Ghafari B, Lyons AM, Greer A. Generating singlet oxygen bubbles: a new mechanism for gas-liquid oxidations in water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3053-60. [PMID: 22260325 PMCID: PMC3329934 DOI: 10.1021/la204583v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Laser-coupled microphotoreactors were developed to bubble singlet oxygen [(1)O(2) ((1)Δ(g))] into an aqueous solution containing an oxidizable compound. The reactors consisted of custom-modified SMA fiberoptic receptacles loaded with 150 μm silicon phthalocyanine glass sensitizer particles, where the particles were isolated from direct contact with water by a membrane adhesively bonded to the bottom of each device. A tube fed O(2) gas to the reactor chambers. In the presence of O(2), singlet oxygen was generated by illuminating the sensitizer particles with 669 nm light from an optical fiber coupled to the top of the reactor. The generated (1)O(2) was transported through the membrane by the O(2) stream and formed bubbles in solution. In solution, singlet oxygen reacted with probe compounds (9,10-anthracene dipropionate dianion, trans-2-methyl-2-pentanoate anion, N-benzoyl-D,L-methionine, or N-acetyl-D,L-methionine) to give oxidized products in two stages. The early stage was rapid and showed that (1)O(2) transfer occurred via bubbles mainly in the bulk water solution. The later stage was slow; it arose only from (1)O(2)-probe molecule contact at the gas/liquid interface. A mechanism is proposed that involves (1)O(2) mass transfer and solvation, where smaller bubbles provide better penetration of (1)O(2) into the flowing stream due to higher surface-to-volume contact between the probe molecules and (1)O(2).
Collapse
Affiliation(s)
- Dorota Bartusik
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210
| | - David Aebisher
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210
| | - BiBi Ghafari
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314
| | - Alan M. Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210
| |
Collapse
|
15
|
Chaudhari UV, Deota PT. Selective Oxidation of Sulfides to Sulfoxides with Cetyltrimethylammonium Periodate. ORG PREP PROCED INT 2012. [DOI: 10.1080/00304948.2012.697729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Lanzalunga O, Lapi A. Recent photo- and radiation chemical studies of sulfur radical cations. J Sulphur Chem 2011. [DOI: 10.1080/17415993.2011.619536] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Osvaldo Lanzalunga
- a Dipartimento di Chimica and IMC-CNR, Sezione Meccanismi di Reazione , Università “La Sapienza” , P.le A. Moro, 5 I-00185 , Rome , Italy
| | - Andrea Lapi
- a Dipartimento di Chimica and IMC-CNR, Sezione Meccanismi di Reazione , Università “La Sapienza” , P.le A. Moro, 5 I-00185 , Rome , Italy
| |
Collapse
|
17
|
Cojocaru B, Neaţu Ş, Pârvulescu VI, Dumbuya K, Steinrück HP, Michael Gottfried J, Aprile C, Garcia H, Scaiano JC. Band gap effect on the photocatalytic activity of supramolecular structures obtained by entrapping photosensitizers in different inorganic supports. Phys Chem Chem Phys 2009; 11:5569-77. [DOI: 10.1039/b902348h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Yadav J, Subba Reddy B, Jain R, Baishya G. N-Chlorosuccinimide as a versatile reagent for the sulfenylation of ketones: a facile synthesis of α-ketothioethers. Tetrahedron Lett 2008. [DOI: 10.1016/j.tetlet.2008.02.136] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Baciocchi E, Del Giacco T, Lanzalunga O, Lapi A. Singlet Oxygen Promoted Carbon−Heteroatom Bond Cleavage in Dibenzyl Sulfides and Tertiary Dibenzylamines. Structural Effects and the Role of Exciplexes. J Org Chem 2007; 72:9582-9. [DOI: 10.1021/jo701641b] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Enrico Baciocchi
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy, and Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Tiziana Del Giacco
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy, and Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy, and Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| | - Andrea Lapi
- Dipartimento di Chimica and Istituto CNR di Metodologie Chimiche-IMC, Sezione Meccanismi di Reazione c/o Dipartimento di Chimica, Sapienza Università di Roma, P.le A. Moro 5, 00185 Rome, Italy, and Dipartimento di Chimica and Centro di Eccellenza Materiali Innovativi Nanostrutturati, Università di Perugia, via Elce di sotto 8, 06123 Perugia, Italy
| |
Collapse
|
20
|
Li XB, Liu JT. Reaction of Alkanesulfinyl Chloride with Grignard Reagents: a Convenient Synthesis of Alkyl Sulfoxides. CHINESE J CHEM 2007. [DOI: 10.1002/cjoc.200790243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Venkat Reddy C, Verkade JG. An advantageous tetrameric titanium alkoxide/ionic liquid as a recyclable catalyst system for the selective oxidation of sulfides to sulfones. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2007.02.053] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Affiliation(s)
- Nahed Sawwan
- Department of Chemistry, Graduate School and University Center and The City University of New York (CUNY), Brooklyn College, Brooklyn, New York 11210, USA
| | | |
Collapse
|
23
|
|
24
|
Bonesi SM, Fagnoni M, Monti S, Albini A. Reaction of singlet oxygen with some benzylic sulfides. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.07.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
C–S bond cleavage in the sensitized photooxygenation of tert-alkyl phenyl sulfides. The role of superoxide anion. Tetrahedron 2006. [DOI: 10.1016/j.tet.2005.09.154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
|
27
|
Che Y, Ma W, Ren Y, Chen C, Zhang X, Zhao J, Zang L. Photooxidation of Dibenzothiophene and 4,6-Dimethyldibenzothiophene Sensitized by N-Methylquinolinium Tetrafluoborate: Mechanism and Intermediates Investigation. J Phys Chem B 2005; 109:8270-6. [PMID: 16851967 DOI: 10.1021/jp0441238] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photooxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (DMDBT) sensitized by N-methylquinolinium tetrafluoborate (NMQ(+)BF4-) has been investigated in O2-saturated acetonitrile solutions. Nearly 100% oxidation of DBT and DMDBT was observed, and the oxidized products are predominantly composed of sulfoxides and sulfones, which are formed via photoinduced electron transfer (ET). Such ET processes were studied with fluorescence quenching of NMQ+, time-resolved transient absorption measurement, and ESR experiments. The fluorescence of NMQ+ is efficiently quenched by DBT and DMDBT via diffusion-controlled processes, with bimolecular quenching constants of 1.6 x 10(10) M(-1) s(-1) for DBT and 2.3 x 10(10) M(-1) s(-1) for DMDBT. The electron-transfer nature of the quenching is evidenced by the transient absorption measurement of the neutral radical NMQ*, which is formed by electron transfer from the substrates (DBT or DMDBT) to the excited singlet state of NMQ+. The ESR spectra of the superoxide radical anion (O2*-) trapped by 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in the photooxygenation of DBT and DMDBT as well as their sulfoxides manifest that O2 traps an electron from NMQ* to form O2*-. The fact that the formation of sulfoxides and sulfones is greatly suppressed in the presence of benzoquinone (BQ), an efficient electron trap for NMQ* and O2*-, further indicates an ET process in the photooxidation of DBT and DMDBT. As inferred from the control experiments, the role of singlet oxygen (1O2) in the photooxidation is negligible. The intermediates responsible for the formation of sulfoxides and sulfones have been examined in detail.
Collapse
Affiliation(s)
- Yanke Che
- Key Laboratory of Photochemistry, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
28
|
Latour V, Pigot T, Simon M, Cardy H, Lacombe S. Photo-oxidation of di-n-butylsulfide by various electron transfer sensitizers in oxygenated acetonitrile. Photochem Photobiol Sci 2005; 4:221-9. [PMID: 15696241 DOI: 10.1039/b413865c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective activation of different photosensitizers has been carried out under comparable conditions and their efficiency towards di-n-butylsulfide oxidation in oxygenated acetonitrile compared from the product distribution after 150 minutes of irradiation. As expected, the best selectivity towards sulfoxide is obtained with a conventional energy transfer sensitizer such as Rose Bengal (RB), but also with a quinone with a low-lying triplet state, 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil or CHLO) and with 9,10-dicyanoanthracene (DCA). More significant yields in sulfonic and sulfuric acids are obtained under sensitization with 9,10-anthraquinone (ANT) or a derivative of benzophenone, 4-benzoyl benzoic acid (4-BB), with which additional experiments were carried out in order to discuss the involvement of either singlet oxygen or superoxide radical anion. Triphenyl pyrylium tetrafluoroborate (TPT+) is inefficient under the selected conditions and sulfide photo-oxidation can only be achieved with higher TPT+ concentrations with simultaneous total TPT+ bleaching. With TPT+, 1,2,4,5-tetracyanobenzene (TCNB) and TiO2, the product distribution and the low selectivity as well as the formation of numerous common by-products are indicative of radical mechanisms. All these results are discussed according to the possible formation of activated oxygen species, such as singlet oxygen, superoxide radical anion or alkylperoxy radicals.
Collapse
Affiliation(s)
- Virginie Latour
- Laboratoire de Chimie Theorique et de Physico-Chimie Moleculaire, UMR CNRS 5624, Universite de Pau, BP 1155, 64013, Pau cedex, France
| | | | | | | | | |
Collapse
|
29
|
Baciocchi E, Del Giacco T, Elisei F, Gerini MF, Guerra M, Lapi A, Liberali P. Electron Transfer and Singlet Oxygen Mechanisms in the Photooxygenation of Dibutyl Sulfide and Thioanisole in MeCN Sensitized byN-Methylquinolinium Tetrafluoborate and 9,10-Dicyanoanthracene. The Probable Involvement of a Thiadioxirane Intermediate in Electron Transfer Photooxygenations. J Am Chem Soc 2003; 125:16444-54. [PMID: 14692788 DOI: 10.1021/ja037591o] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photooxygenations of PhSMe and Bu2S sensitized by N-methylquinolinium (NMQ+) and 9,10-dicyanoanthracene (DCA) in O2-saturated MeCN have been investigated by laser and steady-state photolysis. Laser photolysis experiments showed that excited NMQ+ promotes the efficient formation of sulfide radical cations with both substrates either in the presence or in absence of a cosensitizer (toluene). In contrast, excited DCA promotes the formation of radical ions with PhSMe, but not with Bu2S. To observe radical ions with the latter substrate, the presence of a cosensitizer (biphenyl) was necessary. With Bu2S, only the dimeric form of the radical cation, (Bu2S)2+*, was observed, while the absorptions of both PhSMe+* and (PhSMe)2+* were present in the PhSMe time-resolved spectra. The decay of the radical cations followed second-order kinetics, which in the presence of O2, was attributed to the reaction of the radical cation (presumably in the monomeric form) with O2-* generated in the reaction between NMQ* or DCA-* and O2. The fluorescence quenching of both NMQ+ and DCA was also investigated, and it was found that the fluorescence of the two sensitizers is efficiently quenched by both sulfides (rates controlled by diffusion) as well by O2 (kq = 5.9 x 10(9) M(-1) s(-1) with NMQ+ and 6.8 x 10(9) M(-1) s(-1) with DCA). It was also found that quenching of 1NMQ* by O2 led to the production of 1O2 in significant yield (PhiDelta = 0.86 in O2-saturated solutions) as already observed for 1DCA*. The steady-state photolysis experiments showed that the NMQ+- and DCA-sensitized photooxygenation of PhSMe afford exclusively the corresponding sulfoxide. A different situation holds for Bu2S: with NMQ+, the formation of Bu2SO was accompanied by that of small amounts of Bu2S2; with DCA, the formation of Bu2SO2 was also observed. It was conclusively shown that with both sensitizers, the photooxygenations of PhSMe occur by an electron transfer (ET) mechanism, as no sulfoxidation was observed in the presence of benzoquinone (BQ), which is a trap for O2-*, NMQ*, and DCA-*. BQ also suppressed the NMQ+-sensitized photooxygenation of Bu2S, but not that sensitized by DCA, indicating that the former is an ET process, whereas the second proceeds via singlet oxygen. In agreement with the latter conclusion, it was also found that the relative rate of the DCA-induced photooxygenation of Bu2S decreases by increasing the initial concentration of the substrate and is slowed by DABCO (an efficient singlet oxygen quencher). To shed light on the actual role of a persulfoxide intermediate also in ET photooxygenations, experiments in the presence of Ph2SO (a trap for the persulfoxide) were carried out. Cooxidation of Ph2SO to form Ph2SO2 was, however, observed only in the DCA-induced photooxygenation of Bu2S, in line with the singlet oxygen mechanism suggested for this reaction. No detectable amounts of Ph2SO2 were formed in the ET photooxygenations of PhSMe with both DCA and NMQ+ and of Bu2S with NMQ+. This finding, coupled with the observation that 1O2 and ET photooxygenations lead to different product distributions, makes it unlikely that, as currently believed, the two processes involve the same intermediate, i.e., a nucleophilic persulfoxide. Furthermore, the cooxidation of Ph2SO observed in the DCA-induced photooxygenation of Bu2S was drastically reduced when the reaction was performed in the presence of 0.5 M biphenyl as a cosensitizer, that is, under conditions where an (indirect) ET mechanism should operate. This observation confirms that a persulfoxide is formed in singlet oxygen but not in ET photosulfoxidations. The latter conclusion was further supported by the observation that also the intermediate formed in the reaction of thianthrene radical cation with KO2, a reaction which mimics step d (Scheme 2) in the ET mechanism of photooxygenation, is an electrophilic species, being able to oxidize Ph2S but not Ph2SO. It is thus proposed that the intermediate involved in ET sulfoxidations is a thiadioxirane, whose properties (it is an electrophilic species) seem more in line with the observed chemistry. Theoretical calculations concerning the reaction of a sulfide radical cation with O2-* provide a rationale for this proposal.
Collapse
Affiliation(s)
- Enrico Baciocchi
- Dipartimento di Chimica, Università degli Studi di Roma La Sapienza, P.le A. Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
30
|
Clennan EL, Aebisher D. The first example of a singlet oxygen induced double bond migration during sulfide photooxidation. Experimental evidence for sulfone formation via a hydroperoxy sulfonium ylide. J Org Chem 2002; 67:1036-7. [PMID: 11856061 DOI: 10.1021/jo016219t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of the formation of a sulfone concomitant with double bond migration during photooxidation of a sulfide is reported. Evidence is presented which demonstrates that the double bond migration is not a result of a prior acid-catalyzed rearrangement of an unrearranged sulfone precursor. This unusual observation is used to argue that the sulfone is formed via rearrangement of a hydroperoxy sulfonium ylide intermediate.
Collapse
Affiliation(s)
- Edward L Clennan
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA.
| | | |
Collapse
|
31
|
McCulla RD, Cubbage JW, Jenks WS. Pyrolytic elimination reactions of sulfinate and sulfonate esters. J PHYS ORG CHEM 2002. [DOI: 10.1002/poc.464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
|
33
|
Cubbage JW, Guo Y, McCulla RD, Jenks WS. Thermolysis of alkyl sulfoxides and derivatives: a comparison of experiment and theory. J Org Chem 2001; 66:8722-36. [PMID: 11749600 DOI: 10.1021/jo0160625] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gas-phase activation data were obtained for model sulfoxide elimination reactions. The activation enthalpy for methyl 3-phenylpropyl sulfoxide is 32.9 +/- 0.9 kcal/mol. Elimination by methyl vinyl sulfoxide to form acetylene has an enthalpic barrier of 41.6 +/- 0.8 kcal/mol and that of 3-phenylpropyl methanesulfinate to form hydrocinnamaldehyde is 34.6 +/- 0.6 kcal/mol. Calculations at the MP2/6-311+G(3df,2p)//MP2/6-31G(d,p) level for simplified models of these reactions provide barriers of 32.3, 40.3, and 32.7 kcal/mol, respectively. A series of other compounds are examined computationally, and it is shown that the substituent effects on the sulfoxide elimination reaction are much more straightforward to interpret if DeltaH data are available in addition to the usually determined DeltaH++. The activation enthalpy of the reverse addition reaction is also subject to structural variation and can usually be rationalized on the basis of nucleophilicity of the sulfur or polarity matching between the sulfenic acid and olefin derivative.
Collapse
Affiliation(s)
- J W Cubbage
- Department of Chemistry, Iowa State University, Ames, IA 50011-3111, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Persulfoxide (R(2)S(+)-OO(-) <--> R(2)S(.)-OO(.)) is the first formed intermediate in the reactions between singlet oxygen and organic sulfides. It is a weakly bound species that nevertheless has a sufficient lifetime to undergo a myriad of inter- and intramolecular reactions. Its behavior suggests that it can be considered as a resonance hybrid of zwitterionic and diradical canonical structures. It primarily acts as a nucleophile/base at oxygen but has a tendency to interconvert to secondary intermediates that often behave as electrophilic oxidizing agents. Judicious selection of reaction conditions and substituents can allow the use of the persulfoxide as a synthetically useful intermediate.
Collapse
Affiliation(s)
- E L Clennan
- Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|