1
|
Huang W, Tan Z, Xiao Q, Liu X, Liu K, Li Z, Zhou X, Bai L, Luo K. QpmH esterase from cotton rhizosphere bacteria: A novel approach for degrading quizalofop-p-ethyl herbicide. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:138037. [PMID: 40147131 DOI: 10.1016/j.jhazmat.2025.138037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
Within the rhizosphere, a rich population of biocontrol bacteria serves as a valuable resource for the biodegradation of environmental herbicides. This study aimed to evaluate rhizospheric microorganisms for their potential to degrade Quizalofop-p-ethyl, a widely used herbicide to control annual and perennial weeds in a variety of crops. A bacterial strain, MJ-8, isolated from cotton rhizosphere soil, demonstrated significant degradation activity. Based on morphological characteristics and 16S rRNA sequencing, the strain was identified as Priestia megaterium. Strain MJ-8 achieved a degradation rate of 90.65 % for Quizalofop-p-ethyl. Genomic analysis and amino acid sequence alignment revealed a key gene, designated QpmH, encoding a 30 kDa protein with strong biodegradation activity. Heterologous expression of the QpmH gene confirmed its role in Quizalofop-p-ethyl degradation. Molecular docking studies and structural modeling further elucidated the enzymatic mechanisms, supported by the analysis of their degradation products. Additionally, when QpmH gene was introduced into rice plants through Agrobacterium-mediated transformation, the resultant transformant conferred resistance to Quizalofop-p-ethyl at the recommended application dose. These findings highlight Priestia megaterium strain MJ-8 as a promising biological agent for sustainable herbicide management and position the QpmH gene as a potential new target for developing herbicide-resistant crops.
Collapse
Affiliation(s)
- Wenjing Huang
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zebao Tan
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Qin Xiao
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Xiangying Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Kailin Liu
- College of plant protection, Hunan Agricultural University, Changsha 410128, China
| | - Zuren Li
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xuguo Zhou
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Lianyang Bai
- Hunan Weed Science Key Laboratory, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Kun Luo
- College of plant protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Zhu YM, Yao G, Shao S, Liu XY, Xu J, Chen C, Zhang XW, Huang ZR, Xu CZ, Zhang L, Wu XM. Mechanistic Insight into the Enantioselective Degradation of Esterase QeH to ( R)/( S)-Quizalofop-Ethyl with Molecular Dynamics Simulation Using a Residue-Specific Force Field. Int J Mol Sci 2024; 25:9964. [PMID: 39337452 PMCID: PMC11432306 DOI: 10.3390/ijms25189964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/25/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The enantioselective mechanism of the esterase QeH against the two enantiomers of quizalofop-ethyl (QE) has been primitively studied using computational and experimental approaches. However, it is still unclear how the esterase QeH adjusts its conformation to adapt to substrate binding and promote enzyme-substrate interactions in the catalytic kinetics. The equilibrium processes of enzyme-substrate interactions and catalytic dynamics were reproduced by performing independent molecular dynamics (MD) runs on the QeH-(R)/(S)-QE complexes with a newly developed residue-specific force field (RSFF2C). Our results indicated that the benzene ring of the (R)-QE structure can simultaneously form anion-π and cation-π interactions with the side-chain group of Glu328 and Arg384 in the binding cavity of the QeH-(R)-QE complex, resulting in (R)-QE being closer to its catalytic triplet system (Ser78-Lys81-Tyr189) with the distances measured for the hydroxyl oxygen atom of the catalytic Ser78 of QeH and the carbonyl carbon atom of (R)-QE of 7.39 Å, compared to the 8.87 Å for (S)-QE, whereas the (S)-QE structure can only form an anion-π interaction with the side chain of Glu328 in the QeH-(S)-QE complex, being less close to its catalytic site. The computational alanine scanning mutation (CAS) calculations further demonstrated that the π-π stacking interaction between the indole ring of Trp351 and the benzene ring of (R)/(S)-QE contributed a lot to the binding stability of the enzyme-substrate (QeH-(R)/(S)-QE). These results facilitate the understanding of their catalytic processes and provide new theoretical guidance for the directional design of other key enzymes for the initial degradation of aryloxyphenoxypropionate (AOPP) herbicides with higher catalytic efficiencies.
Collapse
Affiliation(s)
- Yu-Meng Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Gui Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Song Shao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xin-Yu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jun Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Chun Chen
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Xing-Wang Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zhuo-Ran Huang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Cheng-Zhen Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
- School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China
| | - Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Xiao-Min Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
3
|
Zhou X, Huang J, Xu S, Cheng H, Liu B, Huang J, Liu J, Pan D, Wu X. Novel Bifunctional Amidase Catalyzing the Degradation of Propanil and Aryloxyphenoxypropionate Herbicides in Rhodococcus sp. C-1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18067-18077. [PMID: 39082634 DOI: 10.1021/acs.jafc.4c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Propanil residues can contaminate habitats where microbial degradation is predominant. In this study, an efficient propanil-degrading strain C-1 was isolated from paddy and identified as Rhodococcus sp. It can completely degrade 10 μg/L-150 mg/L propanil within 0.33-10 h via the hydrolysis of the amide bond, forming 3,4-dichloroaniline. A novel bifunctional amidase, PamC, was identified in strain C-1. PamC can catalyze the hydrolysis of the amide bond of propanil to produce 3,4-dichloroaniline as well as the hydrolysis of the ester bonds of aryloxyphenoxypropionate herbicides (APPHs, clodinafop-propargyl, cyhalofop-butyl, fenoxaprop-p-ethyl, fluazifop-p-butyl, haloxyfop-p-methyl, and quizalofop-p-ethyl) to form aryloxyphenoxypropionic acids. Molecular docking and site-directed mutagenesis confirmed that the catalytic triad Lys82-Ser157-Ser181 was the active center for PamC to hydrolyze propanil and cyhalofop-butyl. This study presents a novel bifunctional amidase with capabilities for both amide and ester bond hydrolysis and enhances our understanding of the molecular mechanisms underlying the degradation of propanil and APPHs.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jinjin Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Shiwei Xu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Huan Cheng
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Bin Liu
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Junwei Huang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Liu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Dandan Pan
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
4
|
Gao Y, Guo Y, Wang Q, Zhang B, Wu X. Efficient Biodegradation of Multiple Aryloxyphenoxypropionate Herbicides by Corynebacterium sp. Z-1 and the Proposed Degradation Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39038232 DOI: 10.1021/acs.jafc.4c02786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Esterases are crucial for aryloxyphenoxypropionate herbicide (AOPP) biodegradation. However, the underlying molecular mechanisms of AOPP biodegradation by esterases are poorly understood. In the current work, Corynebacterium sp. Z-1 was isolated and found to degrade multiple AOPPs, including quizalofop-p-ethyl (QPE), haloxyfop-p-methyl (HPM), fenoxaprop-p-ethyl (FPE), cyhalofop-butyl (CYB), and clodinafop-propargyl (CFP). A novel esterase, QfeH, which catalyzes the cleavage of ester bonds in AOPPs to form AOPP acids, was identified from strain Z-1. The catalytic activities of QfeH toward AOPPs decreased in the following order: CFP > FPE > CYB > QPE > HPM. Molecular docking, computational analyses, and site-directed mutagenesis indicated the catalytic mechanisms of QfeH-mediated degradation of different AOPPs. Notably, the key residue S159 is essential for the activity of QfeH. Moreover, V222Y, T227M, T227A, A271R, and M275K mutants, exhibiting 2.9-5.0 times greater activity than QfeH, were constructed. This study facilitates the mechanistic understanding of AOPPs bioremediation by esterases.
Collapse
Affiliation(s)
- Yongsheng Gao
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yurui Guo
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Qingyuan Wang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Baoyu Zhang
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xiangwei Wu
- Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
5
|
Mao Z, Song M, Zhao R, Liu Y, Zhu Y, Liu X, Liang H, Zhang H, Wu X, Wang G, Li F, Zhang L. Characterization of two novel hydrolases from Sphingopyxis sp. DBS4 for enantioselective degradation of chiral herbicide diclofop-methyl. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133967. [PMID: 38457978 DOI: 10.1016/j.jhazmat.2024.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Diclofop-methyl, an aryloxyphenoxypropionate (AOPP) herbicide, is a chiral compound with two enantiomers. Microbial detoxification and degradation of various enantiomers is garnering immense research attention. However, enantioselective catabolism of diclofop-methyl has been rarely explored, especially at the molecular level. This study cloned two novel hydrolase genes (dcmA and dcmH) in Sphingopyxis sp. DBS4, and characterized them for diclofop-methyl degradation. DcmA, a member of the amidase superfamily, exhibits 26.1-45.9% identity with functional amidases. Conversely, DcmH corresponded to the DUF3089 domain-containing protein family (a family with unknown function), sharing no significant similarity with other biochemically characterized proteins. DcmA exhibited a broad spectrum of substrates, with preferential hydrolyzation of (R)-(+)-diclofop-methyl, (R)-(+)-quizalofop-ethyl, and (R)-(+)-haloxyfop-methyl. DcmH also preferred (R)-(+)-quizalofop-ethyl and (R)-(+)-haloxyfop-methyl degradation while displaying no apparent enantioselective activity towards diclofop-methyl. Using site-directed mutagenesis and molecular docking, it was determined that Ser175 was the fundamental residue influencing DcmA's activity against the two enantiomers of diclofop-methyl. For the degradation of AOPP herbicides, DcmA is an enantioselective amidase that has never been reported in research. This study provided novel hydrolyzing enzyme resources for the remediation of diclofop-methyl in the environment and deepened the understanding of enantioselective degradation of chiral AOPP herbicides mediated by microbes.
Collapse
Affiliation(s)
- Zhenbo Mao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Man Song
- College of Chemistry and Materials Science, Huaibei Normal University, 235000 Huaibei, China
| | - Ruiqi Zhao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Yuan Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Yumeng Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Xinyu Liu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Hailong Liang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Huijun Zhang
- Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Xiaomin Wu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Guangli Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Feng Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China
| | - Long Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 235000 Huaibei, China; Anhui Bio-breeding Engineering Research Center for Watermelon and Melon, School of Life Sciences, Huaibei Normal University, 235000 Huaibei, China.
| |
Collapse
|
6
|
Liu S, Ni J, Guan Y, Tao J, Wu L, Hou M, Wu S, Xu W, Zhang C, Ye J. Changes in physiology, antioxidant system, and gene expression in Microcystis aeruginosa under fenoxaprop-p-ethyl stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28754-28763. [PMID: 38558345 DOI: 10.1007/s11356-024-32927-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.
Collapse
Affiliation(s)
- Sijia Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jiawei Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Ying Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jianwei Tao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Liang Wu
- Los Angeles Regional Water Quality Control Board, Los Angeles, CA, 90013, USA
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shichao Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Wenwu Xu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Chu Zhang
- School of Computer Science and Information Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
7
|
Meidl P, Lehmann A, Bi M, Breitenreiter C, Benkrama J, Li E, Riedo J, Rillig MC. Combined application of up to ten pesticides decreases key soil processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11995-12004. [PMID: 38227255 PMCID: PMC11289034 DOI: 10.1007/s11356-024-31836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Natural systems are under increasing pressure by a range of anthropogenic global change factors. Pesticides represent a nearly ubiquitously occurring global change factor and have the potential to affect soil functions. Currently the use of synthetic pesticides is at an all-time high with over 400 active ingredients being utilized in the EU alone, with dozens of these pesticides occurring concurrently in soil. However, we presently do not understand the impacts of the potential interaction of multiple pesticides when applied simultaneously. Using soil collected from a local grassland, we utilize soil microcosms to examine the role of both rate of change and number of a selection of ten currently used pesticides on soil processes, including litter decomposition, water stable aggregates, aggregate size, soil pH, and EC. Additionally, we used null models to enrich our analyses to examine potential patterns caused by interactions between pesticide treatments. We find that both gradual and abrupt pesticide application have negative consequences for soil processes. Notably, pesticide number plays a significant role in affecting soil health. Null models also reveal potential synergistic behavior between pesticides which can further their consequences on soil processes. Our research highlights the complex impacts of pesticides, and the need for environmental policy to address the threats posed by pesticides.
Collapse
Affiliation(s)
- Peter Meidl
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Anika Lehmann
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Mohan Bi
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Carla Breitenreiter
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Jasmina Benkrama
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Erqin Li
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Judith Riedo
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C Rillig
- Institut Für Biologie, Freie Universität Berlin, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
8
|
Deng W, Li Y, Yao S, Duan Z, Yang Q, Yuan S. ACCase gene mutations and P450-mediated metabolism contribute to cyhalofop-butyl resistance in Eleusine indica biotypes from direct-seeding paddy fields. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105530. [PMID: 37532339 DOI: 10.1016/j.pestbp.2023.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023]
Abstract
Eleusine indica causes problems in direct-seeding rice fields across Jiangsu Province in China. Long-term application of chemical herbicides has led to the widespread evolution of resistance in E. indica. In this study, we surveyed the resistance level of cyhalofop-butyl (CyB) in 19 field-collected E. indica biotypes, and characterized its underlying resistance mechanisms. All 19 biotypes evolved moderate- to high-level resistance to CyB (from 5.8- to 171.1-fold). 18 biotypes had a target-site mechanism with Trp-1999-Ser, Trp-2027-Cys, or Asp-2078-Gly mutations, respectively. One biotype (JSSQ-1) was identified to have metabolic resistance, in which malathion pretreatment significantly reduced the CyB resistance, and cyhalofop acid was degraded 1.7- to 2.5-times faster in this biotype compared with a susceptible control. Furthermore, the JSSQ-1 biotype showed multiple resistance to acetyl-CoA carboxylase (ACCase) inhibitor metamifop (RI = 4.6) and fenoxaprop-p-ethyl (RI = 5.1), acetolactate synthase (ALS) inhibitor imazethapyr (RI = 4.1), and hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor mesotrione (RI = 3.5). In addition, 11 out of 19 E. indica biotypes exhibited multiple resistance to glyphosate. This research has identified the widespread occurrence of CyB resistance in E. indica, attributed to target-site mutations or enhanced metabolism. Moreover, certain biotypes have exhibited resistance to multiple herbicides or even cross-resistance. Consequently, there is an urgent need to implement diverse weed management practices to effectively combat the proliferation of this weed in rice fields.
Collapse
Affiliation(s)
- Wei Deng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Li
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Sai Yao
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Zhiwen Duan
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Qian Yang
- Jiangsu Lixiahe District Institute of Agricultural Sciences, Yangzhou, China
| | - Shuzhong Yuan
- College of Plant Protection, Yangzhou University, Yangzhou, China.
| |
Collapse
|
9
|
Deng X, Zhao P, Xie Y, Bai L. Self-Assembled Sphere Covalent Organic Framework with Enhanced Herbicidal Activity by Loading Cyhalofop-butyl. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1417-1425. [PMID: 36629331 DOI: 10.1021/acs.jafc.2c07616] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanopesticides are considered to be a novel and efficient kind of tool for controlling pests in modern agriculture. Covalent organic frameworks (COFs), with high surface areas, ordered structures, and rich functional groups for loading pesticides, are a class of promising carrier materials that can be used to develop efficient nanopesticide delivery systems. However, until now, only a strong ionic interaction between the pesticide and COF can be utilized to achieve the combination between the pesticide and COF. On the basis of this method, charged pesticide molecules are the only choice for COF-based nanopesticides, which limits the exploitation. The way to load the uncharged pesticide molecules into COF still needs to be explored. Herein, in this research, we provided a commonly mild and high-efficacy strategy for loading an uncharged pesticide molecule into COF. The herbicide cyhalofop-butyl (CB), as a neutral model pesticide molecule, was loaded into the sphere COF (SCOF, a model COF synthesized at room temperature) without any ionic interaction via the host-guest strategy. The loading capacity of CB into SCOF (CB@SCOF) was determined at 57% (w/w). Smaller CB@SCOF particles (150-200 nm) can efficiently enter the weed leaves and stems, enhancing the accumulation of the effective concentration in weeds, thus increasing herbicidal activity, in comparison to CB emulsifiable (EC, micrometer scale). Furthermore, CB@SCOF had a solubilization effect for CB in water and can improve the photostability of CB. Thus, the CB-loaded COF nanosphere showed excellent herbicidal activities against the target weeds Echinochloa crus-galli and Leptochloa chinensis compared to commercial CB EC. In conclusion, this study also provides a mild and high-efficacy pesticide loading strategy for COFs. The constructed efficient delivery system and pesticide formulation containing herbicidal COF nanospheres exhibit great potential applications for controlling weeds in sustainable agriculture.
Collapse
Affiliation(s)
- Xile Deng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan410125, People's Republic of China
| | - Pengyue Zhao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
| | - Yong Xie
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Lianyang Bai
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan410125, People's Republic of China
| |
Collapse
|
10
|
Isolation and partial characterization of a novel bacteriocin from Pseudomonas azotoformans with antimicrobial activity against Pasterella multocida. Arch Microbiol 2022; 204:112. [PMID: 34982208 DOI: 10.1007/s00203-021-02639-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/29/2022]
Abstract
In this study, a bacteriocin PA996 isolated from Pseudomonas azotoformans (P. azotoformans) was purified to homogeneity by ammonium sulphate precipitation and SP-Sepharose column chromatography. P. azotoformans began to grow at 6 h, reached exponential phase at 12-18 h. Bacteriocin PA996 was produced at 18 h and reached a maximum level of 2400 AU/mL. The molecular mass of purified bacteriocin PA996 was estimated by SDS-PAGE and its molecular mass was approximately 50 kDa. By screening in vitro, the bacteriocin PA996 showed an antimicrobial activity against Pasteurella multocida (P. multocida). The bacteriocin PA996 showed antibacterial activity in the range of pH2-10 and it was heat labile. The inhibitory activities were diminished after treatment with proteinase K, trypsin and papain, respectively, while catalase treatment was ineffective. The minimal inhibitory concentration (MIC) and bactericidal kinetics curves showed that the bacteriocin PA996 had a good inhibitory ability against P. multocida. Our data indicate that bacteriocin PA996 could inhibit the growth of P. maltocida and it may have the potential to apply as an alternative therapeutic drug.
Collapse
|
11
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Zhao T, Hu K, Li J, Zhu Y, Liu A, Yao K, Liu S. Current insights into the microbial degradation for pyrethroids: strain safety, biochemical pathway, and genetic engineering. CHEMOSPHERE 2021; 279:130542. [PMID: 33866100 DOI: 10.1016/j.chemosphere.2021.130542] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/09/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
As a biologically inspired insecticide, pyrethroids (PYRs) exert evident toxic side effects on non-target organisms. PYRs and their general toxic intermediate 3-phenoxybenzoic acid (3-PBA) have shown high detection rates/levels in human beings recently, for which diet was identified as the major exposure route. Microbial mineralization has emerged as a versatile strategy in addressing such escalating concern. Herein, PYRs and 3-PBA biodegradation with regards to strain safety, application and surfactant were summarized. Numerous PYRs-degrading microbes have been reported yet with a minority focused on 3-PBA. Most isolates were from contaminated sites while several microbial food cultures (MFCs) have been investigated. MFCs such as Bacillus spp. and Aspergillus spp. that dominate in PYRs-degrading microbial pools are applicable candidates for agricultural by-products detoxification during the postharvest process. Subsequently, we discussed committed degradation steps, wherein hydrolase responsible for PYRs ester linkage cleavage and oxygenase for 3-PBA diphenyl ether bond rupture play vital roles. Finally, comprehensive information of the key enzyme genes is outlined along with methodologies concerning gene cloning. Cytochrome P450 monooxygenases (CYP) is competent for diphenyl ether scission. Newly-developed omics has become a feasible gene and enzyme mining technology. To achieve PYRs mineralization in feed and food commodities, the screening of MFCs rich in related enzymes and the construction of MFCs-derived genetically modified microbes (GMMs) exhibit great potential considering the safety issues.
Collapse
Affiliation(s)
- Tianye Zhao
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yuanting Zhu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Kai Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
13
|
Xu A, Zhang X, Wu S, Xu N, Huang Y, Yan X, Zhou J, Cui Z, Dong W. Pollutant Degrading Enzyme: Catalytic Mechanisms and Their Expanded Applications. Molecules 2021; 26:4751. [PMID: 34443339 PMCID: PMC8401168 DOI: 10.3390/molecules26164751] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/03/2021] [Accepted: 07/30/2021] [Indexed: 11/16/2022] Open
Abstract
The treatment of environmental pollution by microorganisms and their enzymes is an innovative and socially acceptable alternative to traditional remediation approaches. Microbial biodegradation is often characterized with high efficiency as this process is catalyzed via degrading enzymes. Various naturally isolated microorganisms were demonstrated to have considerable ability to mitigate many environmental pollutants without external intervention. However, only a small fraction of these strains are studied in detail to reveal the mechanisms at the enzyme level, which strictly limited the enhancement of the degradation efficiency. Accordingly, this review will comprehensively summarize the function of various degrading enzymes with an emphasis on catalytic mechanisms. We also inspect the expanded applications of these pollutant-degrading enzymes in industrial processes. An in-depth understanding of the catalytic mechanism of enzymes will be beneficial for exploring and exploiting more degrading enzyme resources and thus ameliorate concerns associated with the ineffective biodegradation of recalcitrant and xenobiotic contaminants with the help of gene-editing technology and synthetic biology.
Collapse
Affiliation(s)
- Anming Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Xiaoxiao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Shilei Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Ning Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.H.); (X.Y.)
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China; (A.X.); (X.Z.); (S.W.); (N.X.); (J.Z.)
| |
Collapse
|
14
|
Li X, Wang J, Wu W, Jia Y, Fan S, Hlaing TS, Khokhar I, Yan Y. Cometabolic biodegradation of quizalofop-p-ethyl by Methylobacterium populi YC-XJ1 and identification of QPEH1 esterase. ELECTRON J BIOTECHN 2020. [DOI: 10.1016/j.ejbt.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
15
|
Li X, Wang J, Jia Y, Reheman A, Yan Y. The Genome Analysis of Methylobacterium populi YC-XJ1 with Diverse Xenobiotics Biodegrading Capacity and Degradation Characteristics of Related Hydrolase. Int J Mol Sci 2020; 21:ijms21124436. [PMID: 32580446 PMCID: PMC7352507 DOI: 10.3390/ijms21124436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Methylobacterium populi YC-XJ1 isolated from desert soil exhibited a diverse degrading ability towards aromatic oxyphenoxypropionic acid esters (AOPPs) herbicide, phthalate esters (PAEs), organophosphorus flame retardants (OPFRs), chlorpyrifos and phoxim. The genome of YC-XJ1 was sequenced and analyzed systematically. YC-XJ1 contained a large number of exogenous compounds degradation pathways and hydrolase resources. The quizalofop-p-ethyl (QPE) degrading gene qpeh2 and diethyl phthalate (DEP) degrading gene deph1 were cloned and expressed. The characteristics of corresponding hydrolases were investigated. The specific activity of recombinant QPEH2 was 0.1 ± 0.02 U mg-1 for QPE with kcat/Km values of 1.8 ± 0.016 (mM-1·s-1). The specific activity of recombinant DEPH1 was 0.1 ± 0.02 U mg-1 for DEP with kcat/Km values of 0.8 ± 0.02 (mM-1·s-1). This work systematically illuminated the metabolic versatility of strain YC-XJ1 via the combination of genomics analysis and laboratory experiments. These results suggested that strain YC-XJ1 with diverse xenobiotics biodegrading capacity was a promising candidate for the bioremediation of polluted sites.
Collapse
Affiliation(s)
- Xianjun Li
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Junhuan Wang
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Yang Jia
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
| | - Aikebaier Reheman
- Key Laboratory of Toxicology, Ningde Normal University, Ningde 352100, China
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.L.); (J.W.); (Y.J.)
- Correspondence: (A.R.); (Y.Y.); Tel.: +86-10-82109685 (Y.Y.)
| |
Collapse
|
16
|
Liang Q, Yan Z, Li X. Influence of the herbicide haloxyfop-R-methyl on bacterial diversity in rhizosphere soil of Spartina alterniflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110366. [PMID: 32126413 DOI: 10.1016/j.ecoenv.2020.110366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Haloxyfop-R-methyl (haloxyfop) can efficiently control Spartina alterniflora in coastal ecosystems, but its effect on soil microbial communities is not known. In the present study, the impact of the haloxyfop on rhizosphere soil bacterial communities of S. alterniflora over the dissipation process of the herbicide has been studied in a coastal wetland. The response of the bacterial community in the rhizoplane (iron plaque) of S. alterniflora subjected to haloxyfop treatment was also investigated. Results showed that the persistence of haloxyfop in the rhizosphere soil followed an exponential decay with a half-life of 2.6-4.9 days, and almost all of the haloxyfop dissipated on Day 30. The diversity of rhizosphere soil bacteria was decreased at the early stages (Days 1, 3 & 7) and recovered at late stages (Days 15 & 30) of the haloxyfop treatment. Application of haloxyfop treatment increased the relative abundance of the genera Pseudomonas, Acinetobacter, Pontibacter, Shewanella and Aeromonas. Strains isolated from these genera can degrade herbicides efficiently, which possibly played a role in the degradation of haloxyfop. The rhizoplane bacterial diversity was reduced on Day 15 while being vastly enhanced on Day 30. Soil variables, including the electric conductivity, redox potential, and soil moisture, along with the soil haloxyfop residue, jointly shape the bacterial community in rhizosphere soil.
Collapse
Affiliation(s)
- Qiuyao Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| | - Zhongzheng Yan
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
| | - Xiuzhen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China
| |
Collapse
|
17
|
Abstract
A Gram-stain-negative, aerobic, non-flagellated and filamentous-shaped bacterium, HX-16-21T, was isolated from activated sludge. Strain HX-16-21T was able to degrade gentisate, protocatechuic acid and p-hydroxybenzoic acid and herbicides quizalofop-p-ethyl and diclofop-methyl. The strain shared 97.2 % 16S rRNA gene sequence similarity to
Niastella vici
CCTCC AB 2015052T and less than 97 % similarities to other type strains. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain HX-16-21T belonged to the genus
Niastella
and formed a subclade with
N. vici
CCTCC AB 2015052T. The major polar lipids were phosphatidylethanolamine, phosphatidylcholine and six unidentified lipids. The major fatty acids were iso-C15:0, iso-C15:1 G and iso-C17:0 3-OH. The predominant respiratory quinone was menaquinone 7 (MK-7). The draft genome of strain HX-16-21T was 8.1 Mb, and the G+C content was 43.5 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain HX-16-21T and
N. vici
CCTCC AB 2015052T were 80.6 and 26.8 %, respectively. Based on both phenotypic and phylogenetic evidence, strain HX-16-21T is considered to represent a novel species in the genus
Niastella
, for which the name Niastella caeni sp. nov. is proposed. The type strain is HX-16-21T (=KCTC 72288T=ACCC 61580T).
Collapse
|
18
|
Liu B, Yang X, Sheng M, Yang Z, Qiu J, Wang C, He J. Sphingobacterium olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2020; 70:1931-1939. [DOI: 10.1099/ijsem.0.004000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, rod-shaped, non-motile and non-spore-forming bacterium, designated HAL-9T, was isolated from oil-contaminated soil in Daqing oilfield, Heilongjiang Province, PR China. Strain HAL-9T was able to degrade quizalofop-p-ethyl and diclofop-methyl. Growth was observed at 10–35 °C (optimum, 30 °C), pH 6.0–10.0 (optimum, pH 7.0) and salinity of 0 %–5.0 % (w/v; optimum 1.0 %). The results of phylogenetic analysis based on the 16S rRNA gene indicated that strain HAL-9T belongs to the genus
Sphingobacterium
and showed the highest sequence similarity (98.3 %) to
Sphingobacterium alkalisoli
Y3L14T, followed by
Sphingobacterium mizutaii
DSM 11724T (95.1 %) and
Sphingobacterium lactis
DSM 22361T (95.1 %). Menaquinone-7 (MK-7) was the only isoprenoid quinone. The predominant cellular fatty acids were summed feature 3 (C16 : 1
ω7c and/or C16 : 1
ω6c), iso-C15: 0 and iso-C17 : 0 3-OH. The major polar lipids were phosphatidylethanolamine, three phosphoglycolipids and three unidentified lipids. The draft genome of strain HAL-9T was 5.41 Mb. The G+C content of strain HAL-9T was 40.6 mol%. Furthermore, the average nucleotide identity and in silico DNA–DNA hybridization values between strain HAL-9T and
S. alkalisoli
Y3L14T were 86.2 % and 32.8 %, respectively, which were below the standard thresholds for species differentiation. On the basis of phenotypic, genotypic and phylogenetic evidence, strain HAL-9T represents a novel species in the genus
Sphingobacterium
, for which the name Sphingobacterium olei sp. nov. is proposed. The type strain is HAL-9T (=ACCC 61581T=CCTCC AB 2019176T=KCTC 72287T).
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaojun Yang
- Nanjing Customs, Nanjing, Jiangsu 210001, PR China
| | - Mengyao Sheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Zhou Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jiguo Qiu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Chenghong Wang
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
19
|
Wu P, Mo W, Chen Z, Wang Y, Cui Y, Zhang Y, Song Y, Jin L, Hou Y, Zhu F, Cao B, Li N. The removal of cyhalofop-butyl in soil by surplus Rhodopseudanonas palustris in wastewater purification. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 245:168-172. [PMID: 31152960 DOI: 10.1016/j.jenvman.2019.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The biorestoration of cyhalofop-butyl and fertility in soil using Rhodopseudanonas palustris (R. palustris) in the treated wastewater were investigated in this research. Cyhalofop-butyl was not degraded under control group. The treated wastewater containing R. palustris degraded cyhalofop-butyl and remediated fertility. Interestingly, the cyhalofop-butyl-hydrolyzing carboxylesterase gene was expressed after inoculation 24 h. Subsequently, the cyhalofop-butyl-hydrolyzing carboxylesterase were synthesized to degrade cyhalofop-butyl. The cyhalofop-butyl started to be degraded after inoculation 24 h. The cyhalofop-butyl as stimulus signal induced cyhalofop-butyl-hydrolyzing carboxylesterase gene expression through signal transduction pathway. This process took 24 h for R. palustris as they were ancient bacteria. The residual organics in the wastewater provided sufficient carbon sources and energy for R. palustris under three dosage groups. The new method completed the remediation of cyhalofop-butyl pollution, the improvement of soil fertility and soybean processing wastewater treatment simultaneously, and realized the resource reutilization of wastewater and R. palustris as sludge.
Collapse
Affiliation(s)
- Pan Wu
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - WenTao Mo
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Zhaobo Chen
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanling Wang
- Department of Anesthesiology, The Third Affiliated Hospital of SunYat-Sen University, Guangzhou, 510630, China
| | - Yubo Cui
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China.
| | - Ying Zhang
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Yantao Song
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Liming Jin
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yanxi Hou
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China
| | - Feifei Zhu
- Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Li
- School of Environment and Resources, Dalian Minzu University, Dalian, 116600, China; School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
20
|
Xu X, Wang J, Yu T, Nian H, Zhang H, Wang G, Li F. Characterization of a novel aryloxyphenoxypropionate herbicide-hydrolyzing carboxylesterase with R-enantiomer preference from Brevundimonas sp. QPT-2. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Zhang H, Yu T, Li J, Wang YR, Wang GL, Li F, Liu Y, Xiong MH, Ma YQ. Two dcm Gene Clusters Essential for the Degradation of Diclofop-methyl in a Microbial Consortium of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12217-12226. [PMID: 30375865 DOI: 10.1021/acs.jafc.8b05382] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The metabolism of widely used aryloxyphenoxypropionate herbicides has been extensively studied in microbes. However, the information on the degradation of diclofop-methyl (DCM) is limited, with no genetic and biochemical investigation reported. The consortium L1 of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was able to degrade DCM through a synergistic metabolism. To elaborate the molecular mechanism of DCM degradation, the metabolic pathway for DCM was first investigated. DCM was initially transformed by strain JT-3 to diclofop acid and then by strain JT-9 to 2-(4-hydroxyphenoxy) propionic acid as well as 2,4-dichlorophenol. Subsequently, the two dcm gene clusters, dcmAE and dcmB1B2CD, involved in further degradation of 2,4-dichlorophenol, were successfully cloned from strain JT-3, and the functions of each gene product were identified. DcmA, a glutathione-dependent dehalogenase, was responsible for catalyzing the reductive dehalogenation of 2,4-dichlorophenol to 4-chlorophenol, which was then converted by the two-component monooxygenase DcmB1B2 to 4-chlorocatechol as the ring cleavage substrate of the dioxygenase DcmC. In this study, the overall DCM degradation pathway of the consortium L1 was proposed and, particularly, the lower part on the DCP degradation was characterized at the genetic and biochemical levels.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ting Yu
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Jie Li
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Yi-Ran Wang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Guang-Li Wang
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Feng Li
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Yuan Liu
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ming-Hua Xiong
- College of Life Sciences , Huaibei Normal University , Huaibei 235000 , China
| | - Ying-Qun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute , Nanyang Technological University , 1 Cleantech Loop , Singapore 637141 , Singapore
| |
Collapse
|
22
|
Recent insights into the microbial catabolism of aryloxyphenoxy-propionate herbicides: microbial resources, metabolic pathways and catabolic enzymes. World J Microbiol Biotechnol 2018; 34:117. [DOI: 10.1007/s11274-018-2503-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
|
23
|
Biodegradation of Pendimethalin by Paracoccus sp. P13. Curr Microbiol 2018; 75:1077-1083. [DOI: 10.1007/s00284-018-1494-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
24
|
Saha S, Majumder S, Das S, Das TK, Bhattacharyya A, Roy S. Effect of pH on the Transformation of a New Readymix Formulation of the Herbicides Bispyribac Sodium and Metamifop in Water. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:548-552. [PMID: 29427153 DOI: 10.1007/s00128-018-2269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
A laboratory experiment was conducted to investigate the effect of pH on the persistence and the dissipation of the new readymix formulation of bispyribac sodium and metamifop. The experiment was conducted in water of three different pH viz. 4.0, 7.0 and 9.2. The spiking level of both the compounds in water was 1.0 and 2.0 µg/mL. The residues were extracted by a simple, quick and reliable method and quantified by liquid chromatography tandem mass spectrometry (LC-MS/MS). The method was justified based on the recovery study, which was > 85%. The dissipation of both compounds followed first order kinetics. The half-life values ranged between 19.86-36.29 and 9.92-19.69 days for bispyribac sodium and metamifop, respectively. The pH of water has a prominent effect on degradation of both the compounds. The rate of dissipation of both the compounds was highest in water of acidic pH followed by neutral and alkaline pH.
Collapse
Affiliation(s)
- Suman Saha
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sambrita Majumder
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sushovan Das
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Tapan Kumar Das
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Anjan Bhattacharyya
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sankhajit Roy
- Department of Agricultural Chemicals, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| |
Collapse
|
25
|
Huang X, He J, Yan X, Hong Q, Chen K, He Q, Zhang L, Liu X, Chuang S, Li S, Jiang J. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 143:272-297. [PMID: 29183604 DOI: 10.1016/j.pestbp.2016.11.010] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 06/07/2023]
Abstract
Chemical herbicides are widely used to control weeds and are frequently detected as contaminants in the environment. Due to their toxicity, the environmental fate of herbicides is of great concern. Microbial catabolism is considered the major pathway for the dissipation of herbicides in the environment. In recent decades, there have been an increasing number of reports on the catabolism of various herbicides by microorganisms. This review presents an overview of the recent advances in the microbial catabolism of various herbicides, including phenoxyacetic acid, chlorinated benzoic acid, diphenyl ether, tetra-substituted benzene, sulfonamide, imidazolinone, aryloxyphenoxypropionate, phenylurea, dinitroaniline, s-triazine, chloroacetanilide, organophosphorus, thiocarbamate, trazinone, triketone, pyrimidinylthiobenzoate, benzonitrile, isoxazole and bipyridinium herbicides. This review highlights the microbial resources that are capable of catabolizing these herbicides and the mechanisms involved in the catabolism. Furthermore, the application of herbicide-degrading strains to clean up herbicide-contaminated sites and the construction of genetically modified herbicide-resistant crops are discussed.
Collapse
Affiliation(s)
- Xing Huang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jian He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qing Hong
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Qin He
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Xiaowei Liu
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shaochuang Chuang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Shunpeng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China
| | - Jiandong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, 210095 Nanjing, People's Republic of China.
| |
Collapse
|
26
|
Zhang H, Li M, Li J, Wang G, Liu Y. Purification and properties of a novel quizalofop-p-ethyl-hydrolyzing esterase involved in quizalofop-p-ethyl degradation by Pseudomonas sp. J-2. Microb Cell Fact 2017; 16:80. [PMID: 28490371 PMCID: PMC5424357 DOI: 10.1186/s12934-017-0695-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/04/2017] [Indexed: 11/22/2022] Open
Abstract
Quizalofop-p-ethyl (QPE) is a post-emergence herbicide that effectively controls grass weeds and is often detected in the environment. However, the biochemical and molecular mechanisms of QPE degradation in the environment remains unclear. In this study, a highly effective QPE-degrading bacterial strain J-2 was isolated from acclimated activated sludge and identified as a Pseudomonas sp., containing the QPE breakdown metabolite quizalofop acid (QA) identified by Liquid Chromatography-Ion Trap-Mass Spectrometry (LC-IT-MSn) analysis. A novel QPE hydrolase esterase-encoding gene qpeH was cloned from strain J-2 and functionally expressed in Escherichia coli BL21 (DE3). The specific activity of recombinant QpeH was 198.9 ± 2.7 U mg−1 for QPE with Km and Kcat values of 41.3 ± 3.6 μM and 127.3 ± 4.5 s−1. The optimal pH and temperature for the recombinant QpeH were 8.0 and 30 °C, respectively and the enzyme was activated by Ca2+, Cd2+, Li+, Fe3+ and Co2+ and inhibited by Ni2+, Fe2+, Ag+, DEPC, SDS, Tween 80, Triton X, β-mercaptoethanol, PMSF, and pCMB. In addition, the catalytic efficiency of QpeH toward different AOPP herbicides in descending order was as follows: fenoxaprop-P-ethyl > quizalofop-P-tefuryl > QPE > haloxyfop-P-methyl > cyhalofopbutyl > clodinafop-propargyl. On the basis of the phylogenetic analysis and multiple sequence alignment, the identified enzyme QpeH, was clustered with esterase family V, suggesting a new member of this family because of its low similarity of amino acid sequence with esterases reported previously.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Mengya Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Jie Li
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Guangli Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| | - Yuan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China.
| |
Collapse
|
27
|
Zhang H, Li M, Li J, Wang G, Li F, Xu D, Liu Y, Xiong M. A key esterase required for the mineralization of quizalofop-p-ethyl by a natural consortium of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9. JOURNAL OF HAZARDOUS MATERIALS 2017; 327:1-10. [PMID: 28027504 DOI: 10.1016/j.jhazmat.2016.12.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
A natural consortium, named L1, of Rhodococcus sp. JT-3 and Brevundimonas sp. JT-9 was obtained from quizalofop-p-ethyl (QE) polluted soil. The consortium was able to use QE as a sole carbon source for growth and degraded 100mgL-1 of QE in 60h. Strain JT-3 initiated the catabolism of QE to quizalofop acid (QA), which was used by strain JT-9 as carbon source for growth and to simultaneously feed strain JT-3. A novel esterase EstS-JT, which was responsible for the transformation of QE to QA and essential for the mineralization of QE by the consortium, was cloned from strain JT-3. EstS-JT showed low amino acid identity to other reported esterases from esterase family VIII and represents a new member of this family. The deduced amino acid sequence contained the esterase family VIII conserved motifs S-X-X-K, YSV and WAG. The purified recombinant EstS-JT displayed maximal esterase activity at 35°C and pH 7.5. An inhibitor assay, site-directed mutagenesis and 3D modeling analysis revealed that S64, K67 and Y175 were essential for catalysis and probably comprised the catalytic center of EstS-JT. Additionally, EstS-JT had broad substrate specificity and was capable of hydrolyzing p-nitrophenyl esters (C2-C8) and various AOPP herbicides.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Mengya Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Jie Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Guangli Wang
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| | - Feng Li
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Dayong Xu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Yuan Liu
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Minghua Xiong
- College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
28
|
Dong W, Liu K, Wang F, Xin F, Zhang W, Zhang M, Wu H, Ma J, Jiang M. The metabolic pathway of metamifop degradation by consortium ME-1 and its bacterial community structure. Biodegradation 2017; 28:181-194. [PMID: 28265780 DOI: 10.1007/s10532-017-9787-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022]
Abstract
Metamifop is universally used in agriculture as a post-emergence aryloxyphenoxy propionate herbicide (AOPP), however its microbial degradation mechanism remains unclear. Consortium ME-1 isolated from AOPP-contaminated soil can degrade metamifop completely after 6 days and utilize it as the carbon source for bacterial growth. Meanwhile, consortium ME-1 possessed the ability to degrade metamifop stably under a wide range of pH (6.0-10.0) or temperature (20-42 °C). HPLC-MS analysis shows that N-(2-fluorophenyl)-2-(4-hydroxyphenoxy)-N-methyl propionamide, 2-(4-hydroxyphenoxy)-propionic acid, 6-chloro-2-benzoxazolinone and N-methyl-2-fluoroaniline, were detected and identified as four intermediate metabolites. Based on the metabolites identified, a putative metabolic pathway of metamifop was proposed for the first time. In addition, the consortium ME-1 was also able to transform or degrade other AOPP such as fenoxaprop-p-ethyl, clodinafop-propargyl, quizalofop-p-ethyl and cyhalofop-butyl. Moreover, the community structure of ME-1 with lower microbial diversity compared with the initial soil sample was investigated by high throughput sequencing. β-Proteobacteria and Sphingobacteria were the largest class with sequence percentages of 46.6% and 27.55% at the class level. In addition, 50 genera were classified in consortium ME-1, of which Methylobacillus, Sphingobacterium, Bordetella and Flavobacterium were the dominant genera with sequence percentages of 25.79, 25.61, 14.68 and 9.55%, respectively.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Kuan Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Fei Wang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Wenming Zhang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Min Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
29
|
Identification and characterization of a novel carboxylesterase (FpbH) that hydrolyzes aryloxyphenoxypropionate herbicides. Biotechnol Lett 2017; 39:553-560. [PMID: 28058522 DOI: 10.1007/s10529-016-2276-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To identify and characterize a novel aryloxyphenoxypropionate (AOPP) herbicide-hydrolyzing carboxylesterase from Aquamicrobium sp. FPB-1. RESULTS A carboxylesterase gene, fpbH, was cloned from Aquamicrobium sp. FPB-1. The gene is 798 bp long and encodes a protein of 265 amino acids. FpbH is smaller than previously reported AOPP herbicide-hydrolyzing carboxylesterases and shares only 21-35% sequence identity with them. FpbH was expressed in Escherichia coli BL21(DE3) and the product was purified by Ni-NTA affinity chromatography. The purified FpbH hydrolyzed a wide range of AOPP herbicides with catalytic efficiency in the order: haloxyfop-P-methyl > diclofop-methyl > fenoxaprop-P-ethyl > quizalofop-P-ethyl > fluazifop-P-butyl > cyhalofop-butyl. The optimal temperature and pH for FpbH activity were 37 °C and 7, respectively. CONCLUSIONS FpbH is a novel AOPP herbicide-hydrolyzing carboxylesterase; it is a good candidate for mechanistic study of AOPP herbicide-hydrolyzing carboxylesterases and for bioremediation of AOPP herbicide-contaminated environments.
Collapse
|
30
|
Pérez M, Rueda OD, Bangeppagari M, Johana JZ, Ríos D, Rueda BB, Sikandar IM, Naga RM. Evaluation of various pesticides-degrading pure bacterial cultures isolated from pesticide-contaminated soils in Ecuador. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2016.15418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
Metabolic Pathway Involved in 6-Chloro-2-Benzoxazolinone Degradation by Pigmentiphaga sp. Strain DL-8 and Identification of the Novel Metal-Dependent Hydrolase CbaA. Appl Environ Microbiol 2016; 82:4169-4179. [PMID: 27208123 DOI: 10.1128/aem.00532-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/27/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED 6-Chloro-2-benzoxazolinone (CDHB) is a precursor of herbicide, insecticide, and fungicide synthesis and has a broad spectrum of biological activity. Pigmentiphaga sp. strain DL-8 can transform CDHB into 2-amino-5-chlorophenol (2A5CP), which it then utilizes as a carbon source for growth. The CDHB hydrolase (CbaA) was purified from strain DL-8, which can also hydrolyze 2-benzoxazolinone (BOA), 5-chloro-2-BOA, and benzamide. The specific activity of purified CbaA was 5,900 U · mg protein(-1) for CDHB, with Km and kcat values of 0.29 mM and 8,500 s(-1), respectively. The optimal pH for purified CbaA was 9.0, the highest activity was observed at 55°C, and the inactive metal-free enzyme could be reactivated by Mg(2+), Ni(2+), Ca(2+), or Zn(2+) Based on the results obtained for the CbaA peptide mass fingerprinting and draft genome sequence of strain DL-8, cbaA (encoding 339 amino acids) was cloned and expressed in Escherichia coli BL21(DE3). CbaA shared 18 to 21% identity with some metal-dependent hydrolases of the PF01499 family and contained the signature metal-binding motif Q127XXXQ131XD133XXXH137 The conserved amino acid residues His288 and Glu301 served as the proton donor and acceptor. E. coli BL21(DE3-pET-cbaA) resting cells could transform 0.2 mM CDHB into 2A5CP. The mutant strain DL-8ΔcbaA lost the ability to degrade CDHB but retained the ability to degrade 2A5CP, consistent with strain DL-8. These results indicated that cbaA was the key gene responsible for CDHB degradation by strain DL-8. IMPORTANCE 2-Benzoxazolinone (BOA) derivatives are widely used as synthetic intermediates and are also an important group of allelochemicals acting in response to tissue damage or pathogen attack in gramineous plants. However, the degradation mechanism of BOA derivatives by microorganisms is not clear. In the present study, we reported the identification of CbaA and metabolic pathway responsible for the degradation of CDHB in Pigmentiphaga sp. DL-8. This will provide microorganism and gene resources for the bioremediation of the environmental pollution caused by BOA derivatives.
Collapse
|
32
|
Ni H, Yao L, Li N, Cao Q, Dai C, Zhang J, He Q, He J. Biodegradation of pendimethalin by Bacillus subtilis Y3. J Environ Sci (China) 2016; 41:121-127. [PMID: 26969057 DOI: 10.1016/j.jes.2015.04.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/22/2015] [Accepted: 04/24/2015] [Indexed: 06/05/2023]
Abstract
A bacterium strain Y3, capable of efficiently degrading pendimethalin, was isolated from activated sludge and identified as Bacillus subtilis according to its phenotypic features and 16S rRNA phylogenetic analysis. This strain could grow on pendimethalin as a sole carbon source and degrade 99.5% of 100mg/L pendimethalin within 2.5days in batch liquid culture, demonstrating a greater efficiency than any other reported strains. Three metabolic products, 6-aminopendimethalin, 5-amino-2-methyl-3-nitroso-4-(pentan-3-ylamino) benzoic acid, and 8-amino-2-ethyl-5-(hydroxymethyl)-1,2-dihydroquinoxaline-6-carboxylic acid, were identified by HPLC-MS/MS, and a new microbial degradation pathway was proposed. A nitroreductase catalyzing nitroreduction of pendimethalin to 6-aminopendimethalin was detected in the cell lysate of strain Y3. The cofactor was nicotinamide adenine dinucleotide phosphate (NADPH) or more preferably nicotinamide adenine dinucleotide (NADH). The optimal temperature and pH for the nitroreductase were 30°C and 7.5, respectively. Hg(2+), Ni(2+), Pb(2+), Co(2+), Mn(2+) Cu(2+), Ag(+), and EDTA severely inhibited the nitroreductase activity, whereas Fe(2+), Mg(2+), and Ca(2+) enhanced it. This study provides an efficient pendimethalin-degrading microorganism and broadens the knowledge of the microbial degradation pathway of pendimethalin.
Collapse
Affiliation(s)
- Haiyan Ni
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Na Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Cao
- China National Center for Biotechnology Development, Beijing 100039, China
| | - Chen Dai
- College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin He
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China.
| | - Jian He
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China; College of Life Sciences, Laboratory Centre of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
33
|
Mantzos N, Karakitsou A, Nikolaki S, Leneti E, Konstantinou I. Dissipation and transport of quizalofop-p-ethyl herbicide in sunflower cultivation under field conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:3481-3490. [PMID: 26490927 DOI: 10.1007/s11356-015-5572-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In the present study, the field dissipation and transport of quizalofop-p-ethyl by water and sediment runoff were investigated in sunflower experimental cultivation under Mediterranean conditions. The cultivation was carried out in silty clay soil plots with two different slopes of 1 and 5%. The soil dissipation rate of quizalofop-p-ethyl was fast and can be described by both single first-order (SFO) and Gustafson and Holden (first-order multi compartment (FOMC)) kinetics. The half-life of quizalofop-p-ethyl ranged from 0.55 to 0.68 days and from 0.45 to 0.71 days when SFO and FOMC kinetics were applied, respectively. No herbicide residues were detected below the 10-cm soil layer. A single detection of quizalofop-p-ethyl was observed in runoff water (3 days after application (DAA)) at relatively low concentrations (from 1.70 to 2.04 μg L(-1)). In sediment, it was detected in the samplings of 3 and 25 DAA at concentrations that never exceeded 0.126 μg g(-1). The estimated total losses of quizalofop-p-ethyl as percentage of the initial applied active ingredient were low both in water and sediment (less than of 0.021 and 0.005%, respectively). Quizalofop-p-ethyl residues were detectable for 18 DAA in the stems and leaves of the plants and 6 DAA in the root system. No herbicide residues were detected in inflorescences and seeds of sunflower plants. Experimental data showed minimal risk for the contamination of soil and adjacent water bodies.
Collapse
Affiliation(s)
- Nikolaos Mantzos
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
- Faculty of Agricultural Technology, T.E.I. of Epirus, Arta, Greece
| | - Anastasia Karakitsou
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Sofia Nikolaki
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece
| | - Eleni Leneti
- Faculty of Agricultural Technology, T.E.I. of Epirus, Arta, Greece
| | - Ioannis Konstantinou
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Greece.
| |
Collapse
|
34
|
Mu LL, Yun YB, Park SJ, Cha JS, Kim YK. Various PathogenicPseudomonasStrains that Cause Brown Blotch Disease in Cultivated Mushrooms. ACTA ACUST UNITED AC 2015. [DOI: 10.3839/jabc.2015.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Lin-Lin Mu
- Department of Environmental and Biological Chemistry, Chungbuk National University, 52 Naesudong-ro, Cheongju, Chungbuk, Republic of Korea
| | - Yeong-Bae Yun
- Department of Environmental and Biological Chemistry, Chungbuk National University, 52 Naesudong-ro, Cheongju, Chungbuk, Republic of Korea
| | - Soo-Jin Park
- Department of Environmental and Biological Chemistry, Chungbuk National University, 52 Naesudong-ro, Cheongju, Chungbuk, Republic of Korea
| | - Jae-Soon Cha
- Department of Plant Medicine, Chungbuk National University, 52 Naesudong-ro, Cheongju, Chungbuk, Republic of Korea
| | - Young-Kee Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University, 52 Naesudong-ro, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
35
|
Hongming L, Xu L, Zhaojian G, Fan Y, Dingbin C, Jianchun Z, Jianhong X, Shunpeng L, Qing H. Isolation of an aryloxyphenoxy propanoate (AOPP) herbicide-degrading strain Rhodococcus ruber JPL-2 and the cloning of a novel carboxylesterase gene (feh). Braz J Microbiol 2015; 46:425-32. [PMID: 26273257 PMCID: PMC4507534 DOI: 10.1590/s1517-838246220140208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/15/2014] [Indexed: 11/22/2022] Open
Abstract
The strain JPL-2, capable of degrading fenoxaprop-P-ethyl (FE), was isolated from the soil of a wheat field and identified as Rhodococcus ruber. This strain could utilize FE as its sole carbon source and degrade 94.6% of 100 mg L(-1) FE in 54 h. Strain JPL-2 could also degrade other aryloxyphenoxy propanoate (AOPP) herbicides. The initial step of the degradation pathway is to hydrolyze the carboxylic acid ester bond. A novel esterase gene feh, encoding the FE-hydrolyzing carboxylesterase (FeH) responsible for this initial step, was cloned from strain JPL-2. Its molecular mass was approximately 39 kDa, and the catalytic efficiency of FeH followed the order of FE > quizalofop-P-ethyl > clodinafop-propargyl > cyhalofop-butyl > fluazifop-P-butyl > haloxyfop-P-methyl > diclofop-methy, which indicated that the chain length of the alcohol moiety strongly affected the hydrolysis activity of the FeH toward AOPP herbicides.
Collapse
Affiliation(s)
- Liu Hongming
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Lou Xu
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Ge Zhaojian
- Observation and Experimental Station of Saline
Land of Coastal Area, Institute of Agricultural Sciences in Coastal
Area of Jiangsu, Ministry of Agriculture, Yancheng, China, Observation and Experimental Station of Saline
Land of Coastal Area, Institute of Agricultural Sciences in Coastal Area of
Jiangsu, Ministry of Agriculture, Yancheng, China
| | - Yang Fan
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Chen Dingbin
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Zhu Jianchun
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Xu Jianhong
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
- Jiangsu Center for GMO Evaluation and
Detection, Jiangsu Academy of Agricultural
Sciences, Ministry of Agricultrue, Nanjing, China, Key Lab of Agro-Product Safety Risk Evaluation,
Jiangsu Center for GMO Evaluation and Detection, Jiangsu Academy of Agricultural
Sciences, Ministry of Agricultrue, Nanjing, China
| | - Li Shunpeng
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| | - Hong Qing
- Nanjing Agricultural University, College of Life Science, Nanjing Agricultural University, Ministry of Agriculture, Nanjing, China, Key Laboratory of Agricultural Environmental
Microbiology, College of Life Science, Nanjing Agricultural University, Ministry
of Agriculture, Nanjing, China
| |
Collapse
|
36
|
Dong W, Jiang S, Shi K, Wang F, Li S, Zhou J, Huang F, Wang Y, Zheng Y, Hou Y, Huang Y, Cui Z. Biodegradation of fenoxaprop-P-ethyl (FE) by Acinetobacter sp. strain DL-2 and cloning of FE hydrolase gene afeH. BIORESOURCE TECHNOLOGY 2015; 186:114-121. [PMID: 25812814 DOI: 10.1016/j.biortech.2015.03.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/04/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Fenoxaprop-P-ethyl (FE) is widely used as a post-emergence aryloxyphenoxy propionate (AOPP) herbicide in agriculture. An efficient FE-degrading strain DL-2 was isolated from the enrichment culture and identified as Acinetobacter sp. and the metabolite fenoxaprop acid (FA) was identified by HPLC/MS analysis. The strain DL-2 could also degrade a wide range of other AOPP herbicides. A novel FE hydrolase esterase gene afeH was cloned from strain DL-2 and functionally expressed in Escherichia coli BL21(DE3). The specific activities of recombinant AfeH was 216.39 U mg(-1) for FE with Km and Vmax values of 0.82 μM and 7.94 μmol min(-1) mg(-1). AfeH could also hydrolyze various AOPP herbicides, p-nitrophenyl esters and triglycerides. The optimal pH and temperature for recombinant AfeH were 9.0 and 50°C, respectively; the enzyme was activated by Co(2+) and inhibited by Ca(2+), Zn(2+), Ba(2+). AfeH was inhibited strongly by phenylmethylsulfonyl and SDS and weakly by dimethyl sulfoxide.
Collapse
Affiliation(s)
- Weiliang Dong
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Sheng Jiang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Kaiwen Shi
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Fei Wang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China; College of Bioscience and Bioengineering, Jiangxi Agriculture University, 330045 Nanchang, China
| | - Shuhuan Li
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Jie Zhou
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Fei Huang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Yicheng Wang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Yuxiao Zheng
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Ying Hou
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China; College of Food and Bioengineering, Henan University of Science and Technology, 471003 Luoyang, China
| | - Yan Huang
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China
| | - Zhongli Cui
- Key Lab of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Science, Nanjing Agriculture University, 210095 Nanjing, China.
| |
Collapse
|
37
|
Peters LP, Carvalho G, Martins PF, Dourado MN, Vilhena MB, Pileggi M, Azevedo RA. Differential responses of the antioxidant system of ametryn and clomazone tolerant bacteria. PLoS One 2014; 9:e112271. [PMID: 25380132 PMCID: PMC4224425 DOI: 10.1371/journal.pone.0112271] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/02/2014] [Indexed: 12/26/2022] Open
Abstract
The herbicides ametryn and clomazone are widely used in sugarcane cultivation, and following microbial degradation are considered as soil and water contaminants. The exposure of microorganisms to pesticides can result in oxidative damage due to an increase in the production of reactive oxygen species (ROS). This study investigated the response of the antioxidant systems of two bacterial strains tolerant to the herbicides ametryn and clomazone. Bacteria were isolated from soil with a long history of ametryn and clomazone application. Comparative analyses based on 16S rRNA gene sequences revealed that strain CC07 is phylogenetically related to Pseudomonas aeruginosa and strain 4C07 to P. fulva. The two bacterial strains were grown for 14 h in the presence of separate and combined herbicides. Lipid peroxidation, reduced glutathione content (GSH) and antioxidant enzymes activities were evaluated. The overall results indicated that strain 4C07 formed an efficient mechanism to maintain the cellular redox balance by producing reactive oxygen species (ROS) and subsequently scavenging ROS in the presence of the herbicides. The growth of bacterium strain 4C07 was inhibited in the presence of clomazone alone, or in combination with ametryn, but increased glutathione reductase (GR) and glutathione S-transferase (GST) activities, and a higher GSH concentration were detected. Meanwhile, reduced superoxide dismutase (SOD), catalase (CAT) and GST activities and a lower concentration of GSH were detected in the bacterium strain CC07, which was able to achieve better growth in the presence of the herbicides. The results suggest that the two bacterial strains tolerate the ametryn and clomazone herbicides with distinctly different responses of the antioxidant systems.
Collapse
Affiliation(s)
- Leila Priscila Peters
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Giselle Carvalho
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Paula Fabiane Martins
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Manuella Nóbrega Dourado
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Milca Bartz Vilhena
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Marcos Pileggi
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil
| | - Ricardo Antunes Azevedo
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
38
|
Sang MK, Kim EN, Han GD, Kwack MS, Jeun YC, Kim KD. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. PHYTOPATHOLOGY 2014; 104:834-42. [PMID: 24502209 DOI: 10.1094/phyto-11-13-0305-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Induced systemic resistance (ISR) can be activated by biotic agents, including root-associated beneficial bacteria to inhibit pathogen infection. We investigated priming-mediated ISR in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare (causal fungus of anthracnose). In addition, we examined whether this ISR expression was bacterial density-dependent by assessing peroxidase activity in the presence and absence of the pathogen. As a result, root treatment with the ISR-eliciting strains GC-B19 and MM-B22 or the chemical inducer DL-β-amino-n-butyric acid (positive control) significantly inhibited fungal infection process (conidial germination and appressorium formation) and disease severity compared with the non-ISR-eliciting strain, Pseudomonas aeruginosa PK-B09 (negative control), and MgSO4 solution (untreated control). These treatments effectively induced rapid elicitation of hypersensitive reaction-like cell death with H2O2 generations, and accumulation of defense-related enzymes (β-1,3-glucanase, chitinase, and peroxidase) in cucumber leaves in the "primed" state against C. orbiculare. In addition, ISR expression was dependent on the bacterial cell density in the rhizosphere. This ISR expression was derived from the presence of sustained bacterial populations ranging from 10(4) to 10(6) cells/g of potting mix over a period of time after introduction of bacteria (10(6) to 10(10) cells/g of potting mix) into the rhizosphere. Taken together, these results suggest that priming-mediated ISR against C. orbiculare in cucumber can be induced in a bacterial density-dependent manner by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22.
Collapse
|
39
|
Liu XL, Liu SL, Liu M, Kong BH, Liu L, Li YH. A primary assessment of the endophytic bacterial community in a xerophilous moss (Grimmia montana) using molecular method and cultivated isolates. Braz J Microbiol 2014; 45:163-73. [PMID: 24948927 PMCID: PMC4059291 DOI: 10.1590/s1517-83822014000100022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/01/2013] [Indexed: 11/30/2022] Open
Abstract
Investigating the endophytic bacterial community in special moss species is fundamental to understanding the microbial-plant interactions and discovering the bacteria with stresses tolerance. Thus, the community structure of endophytic bacteria in the xerophilous moss Grimmia montana were estimated using a 16S rDNA library and traditional cultivation methods. In total, 212 sequences derived from the 16S rDNA library were used to assess the bacterial diversity. Sequence alignment showed that the endophytes were assigned to 54 genera in 4 phyla (Proteobacteria, Firmicutes, Actinobacteria and Cytophaga/Flexibacter/Bacteroids). Of them, the dominant phyla were Proteobacteria (45.9%) and Firmicutes (27.6%), the most abundant genera included Acinetobacter, Aeromonas, Enterobacter, Leclercia, Microvirga, Pseudomonas, Rhizobium, Planococcus, Paenisporosarcina and Planomicrobium. In addition, a total of 14 species belonging to 8 genera in 3 phyla (Proteobacteria, Firmicutes, Actinobacteria) were isolated, Curtobacterium, Massilia, Pseudomonas and Sphingomonas were the dominant genera. Although some of the genera isolated were inconsistent with those detected by molecular method, both of two methods proved that many different endophytic bacteria coexist in G. montana. According to the potential functional analyses of these bacteria, some species are known to have possible beneficial effects on hosts, but whether this is the case in G. montana needs to be confirmed.
Collapse
Affiliation(s)
- Xiao Lei Liu
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| | - Su Lin Liu
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| | - Min Liu
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| | - Bi He Kong
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| | - Lei Liu
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| | - Yan Hong Li
- College of Life Science Capital Normal University Haidian DistrictBeijing China
| |
Collapse
|
40
|
Chen K, Liu Y, Mao DM, Liu XM, Li SP, Jiang JD. An essential esterase (BroH) for the mineralization of bromoxynil octanoate by a natural consortium of Sphingopyxis sp. strain OB-3 and Comamonas sp. strain 7D-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11550-11559. [PMID: 24224769 DOI: 10.1021/jf4037062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A natural consortium of two bacterial strains ( Sphingopyxis sp. OB-3 and Comamonas sp. 7D-2) was capable of utilizing bromoxynil octanoate as the sole source of carbon for its growth. Strain OB-3 was able to convert bromoxynil octanoate to bromoxynil but could not use the eight-carbon side chain as its sole carbon source. Strain 7D-2 could not degrade bromoxynil octanoate, although it was able to mineralize bromoxynil. An esterase (BroH) that is involved in the conversion of bromoxynil octanoate into bromoxynil and is essential for the mineralization of bromoxynil octanoate by the consortium was isolated from strain OB-3 and molecularly characterized. BroH encodes 304 amino acids and resembles α/β-hydrolase fold proteins. Recombinant BroH was overexpressed in Escherichia coli BL21 (DE3) and purified by Ni-NTA affinity chromatography. BroH was able to transform p-nitrophenyl esters (C2-C14) and showed the highest activity toward p-nitrophenyl caproate (C6) on the basis of the catalytic efficiency value (Vmax/Km). Additionally, BroH activity decreased when the aliphatic chain length increased. The optimal temperature and pH for BroH activity was found to be 35 °C and 7.5, respectively. On the basis of a phylogenetic analysis, BroH belongs to subfamily V of bacterial lipolytic enzymes.
Collapse
Affiliation(s)
- Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University , 210095 Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a qmax, Ks and Ki of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.
Collapse
|
42
|
Hou Y, Tao J, Shen W, Liu J, Li J, Li Y, Cao H, Cui Z. Isolation of the fenoxaprop-ethyl (FE)-degrading bacterium Rhodococcus sp. T1, and cloning of FE hydrolase gene feh. FEMS Microbiol Lett 2011; 323:196-203. [DOI: 10.1111/j.1574-6968.2011.02376.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Jian Tao
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Wenjing Shen
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Juan Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Jingquan Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Yongfeng Li
- Institute of Plant Protection; Jiangsu Agricultural Academy; Nanjing; China
| | - Hui Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| | - Zhongli Cui
- Key Laboratory of Microbiological Engineering of Agricultural Environment; Ministry of Agriculture; College of Life Science; Nanjing Agriculture University; Nanjing; China
| |
Collapse
|