1
|
Sundell GN, Tao SC. Phage Immunoprecipitation and Sequencing-a Versatile Technique for Mapping the Antibody Reactome. Mol Cell Proteomics 2024; 23:100831. [PMID: 39168282 PMCID: PMC11417174 DOI: 10.1016/j.mcpro.2024.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Characterizing the antibody reactome for circulating antibodies provide insight into pathogen exposure, allergies, and autoimmune diseases. This is important for biomarker discovery, clinical diagnosis, and prognosis of disease progression, as well as population-level insights into the immune system. The emerging technology phage display immunoprecipitation and sequencing (PhIP-seq) is a high-throughput method for identifying antigens/epitopes of the antibody reactome. In PhIP-seq, libraries with sequences of defined lengths and overlapping segments are bioinformatically designed using naturally occurring proteins and cloned into phage genomes to be displayed on the surface. These libraries are used in immunoprecipitation experiments of circulating antibodies. This can be done with parallel samples from multiple sources, and the DNA inserts from the bound phages are barcoded and subjected to next-generation sequencing for hit determination. PhIP-seq is a powerful technique for characterizing the antibody reactome that has undergone rapid advances in recent years. In this review, we comprehensively describe the history of PhIP-seq and discuss recent advances in library design and applications.
Collapse
Affiliation(s)
- Gustav N Sundell
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Pal S, Banerjee S, Kumar A, Prabhakaran EN. H-Bond Surrogate-Stabilized Shortest Single-Turn α-Helices: sp 2 Constraints and Residue Preferences for the Highest α-Helicities. ACS OMEGA 2020; 5:13902-13912. [PMID: 32566857 PMCID: PMC7301546 DOI: 10.1021/acsomega.0c01277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/24/2020] [Accepted: 05/20/2020] [Indexed: 05/08/2023]
Abstract
Short α-helical sequences of proteins fail to maintain their native conformation when taken out of their protein context. Several covalent constraints have been designed, including the covalent H-bond surrogate (HBS)-where a peptide backbone i + 4 → i H-bond is replaced by a covalent surrogate-to nucleate α-helix in short sequences (>7 < 15 amino acids). But constraining the shortest sequences (four amino acids) into a single α-helical turn is still a significant challenge. Here, we introduce an HBS model that can be placed in unstructured tetrapeptides without excising any of its residues, and that biases them predominantly into remarkably stable single α-helical turns in varying solvents, pH values, and temperatures. Circular dichroism (CD), Fourier transform infrared (FT-IR) absorption, one-dimensional (1D)-NMR, two-dimensional (2D)-NMR spectral and computational analyses of the HBS-constrained tetrapeptide analogues reveal that (a) the number of sp2 atoms in the HBS-constrained backbone influences their predominance and rigidity in the α-helical conformation; and (b) residue preferences at the unnatural HBS-constrained positions influence their α-helicities, with Moc[GFA]G-OMe (1a) showing the highest known α-helicity (θn→π*MRE ∼-25.3 × 103 deg cm2 dmol-1 at 228 nm) for a single α-helical turn. Current findings benefit chemical biological applications desiring predictable access to single α-helical turns in tetrapeptides.
Collapse
|
3
|
Cholesterol-conjugated stapled peptides inhibit Ebola and Marburg viruses in vitro and in vivo. Antiviral Res 2019; 171:104592. [PMID: 31473342 DOI: 10.1016/j.antiviral.2019.104592] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023]
Abstract
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Collapse
|
4
|
Abstract
Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Linear peptide drugs, however, can be applied therapeutically as protein recognition motifs only to a limited extent because of their poor permeability, decreased receptor selectivity, and proteolytic stability. A major strategy in peptide chemistry is directed toward chemical modification and macrocyclization in order to limit a peptide's conformational possibilities, to increase its chemical and enzymatic stability, to prolong the time of action, and to increase activity and selectivity toward the receptor.
Collapse
Affiliation(s)
- Ye Che
- Discovery Sciences, Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
5
|
Barrera NF, Melgarejo LM, Cruz-Gallego M, Cortés LJ, Guzmán F, Calvo JC. Conformationally Restricted Peptides from Rice Proteins Elicit Antibodies That Recognize the Corresponding Native Protein in ELISA Assays. Molecules 2018; 23:molecules23092262. [PMID: 30189617 PMCID: PMC6225240 DOI: 10.3390/molecules23092262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2018] [Revised: 08/29/2018] [Accepted: 09/01/2018] [Indexed: 01/13/2023] Open
Abstract
The rice hoja blanca virus (RHBV), transmitted by the planthopper insect Tagosodes orizicolus, is a disease that attacks rice and generates significant production losses in Colombia. Fedearroz 2000 and Colombia I commercial rice varieties, which have different resistance levels to the disease, were selected in this study. To identify proteins associated to the insect and virus signaling, a comparative proteomics study was performed. By comparing proteomic profiles, between virus-infected and control group plants in two-dimensional electrophoresis, proteins exhibiting significant changes in abundance were found. In another test, peptide dendrimers containing sequences conformationally restricted to α-helix from four of those rice proteins were synthesized. In the experiment, sera from mice inoculated with peptide dendrimers could recognize the corresponding native protein in ELISA assays. Reported comparative proteomic results provide new insights into the molecular mechanisms of plant response to the RHBV and comprehensive tools for the analysis of new crop varieties. Besides, results from conformational peptide dendrimer approach are promising and show that it is feasible to detect proteins as markers, and may have biological applications by decreasing the susceptibility to proteolytic degradation.
Collapse
Affiliation(s)
- Nubia F Barrera
- Doctorado en Biotecnología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 224, Bogotá 110111, Colombia.
- Grupo Proteoma UD, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Carrera 4 No. 26B-54, Bogotá 110111, Colombia.
| | - Luz M Melgarejo
- Laboratorio de Fisiología y Bioquímica Vegetal, Departamento de Biología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Edificio 421, Bogotá 110111, Colombia.
| | - Maribel Cruz-Gallego
- Centro Internacional de Agricultura Tropical, CIAT, Fondo Latinoamericano para Arroz de Riego, FLAR, Palmira, Valle 763537, Colombia.
| | - Lina Jimena Cortés
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Fanny Guzmán
- Núcleo de Biotecnología de Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile.
| | - Julio C Calvo
- Grupo Proteoma UD, Facultad de Ciencias y Educación, Universidad Distrital Francisco José de Caldas, Carrera 4 No. 26B-54, Bogotá 110111, Colombia.
| |
Collapse
|
6
|
Abstract
The suite of currently used drugs can be divided into two categories - traditional 'small molecule' drugs with typical molecular weights of <500 Da but with oral bioavailability, and much larger 'biologics' typically >5000 Da that are not orally bioavailable and need to be delivered via injection. Due to their small size, conventional small molecule drugs may suffer from reduced target selectivity that often ultimately manifests in human side-effects, whereas protein therapeutics tend to be exquisitely specific for their targets due to many more interactions with them, but this comes at a cost of low bioavailability, poor membrane permeability, and metabolic instability. The time has now come to reinvestigate new drug leads that fit between these two molecular weight extremes, with the goal of combining advantages of small molecules (cost, conformational restriction, membrane permeability, metabolic stability, oral bioavailability) with those of proteins (natural components, target specificity, high potency). This article uses selected examples of peptides to highlight the importance of peptide drugs, some potential new opportunities for their exploitation, and some difficult challenges ahead in this field.
Collapse
Affiliation(s)
- David J Craik
- Division of Chemistry & Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia.
| | | | | | | |
Collapse
|
7
|
Hurevich M, Ratner-Hurevich M, Tal-Gan Y, Shalev DE, Ben-Sasson SZ, Gilon C. Backbone cyclic helix mimetic of chemokine (C-C motif) receptor 2: a rational approach for inhibiting dimerization of G protein-coupled receptors. Bioorg Med Chem 2013; 21:3958-66. [PMID: 23706536 DOI: 10.1016/j.bmc.2013.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
The transmembrane helical bundle of G protein-coupled receptors (GPCRs) dimerize through helix-helix interactions in response to inflammatory stimulation. A strategy was developed to target the helical dimerization site of GPCRs by peptidomimetics with drug like properties. The concept was demonstrated by selecting a potent backbone cyclic helix mimetic from a library that derived from the dimerization region of chemokine (C-C motif) receptor 2 (CCR2) that is a key player in Multiple Sclerosis. We showed that CCR2 based backbone cyclic peptide having a stable helix structure inhibits specific CCR2-mediated chemotactic migration.
Collapse
Affiliation(s)
- Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The first ratiometric fluorescent reporter was designed for the detection of cardiac troponin I (cTnI), a key protein elicited during cardiac muscle cell death. In designing this abiotic fluorescent probe, docking simulation studies were performed to predict the probe/protein interactions along the solvent exposed regions of cTnI. Simple cuvette titration experiments in aqueous buffered solution indicate remarkable selectivity for cardiac troponin in the clinically relevant nM region versus skeletal troponin.
Collapse
Affiliation(s)
- Premchendar Nandhikonda
- Department of Chemistry, New Mexico Institute of Mining & Technology, Socorro, New Mexico 87801, United States
| | | |
Collapse
|
9
|
Abstract
BACKGROUND Protein-protein interactions dominate molecular recognition in biologic systems. One major challenge for drug discovery arises from the very large surfaces that are characteristic of many protein-protein interactions. OBJECTIVES To identify 'drug-like' small molecule leads capable of modulating protein-protein interactions based on common protein-recognition motifs, such as alpha-helices, beta-strands, reverse-turns and polyproline motifs for example. OVERVIEW Many proteins/peptides are unstructured under physiologic conditions and only fold into ordered structures on binding to their cellular targets. Therefore, preorganization of an inhibitor into its protein-bound conformation reduces the entropy of binding and enhances the relative affinity of the inhibitor. Accordingly, this review describes a general strategy to address the challenge based on the 'privileged structure hypothesis' [Che, PhD thesis, Washington University, 2003] that chemical templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as small-molecule inhibitors of protein-protein interactions. The authors highlight recent advances in the design of privileged scaffolds targeting reverse-turn and helical recognition. CONCLUSIONS Privileged scaffolds targeting common protein-recognition motifs are useful to help elucidate the receptor-bound conformation and to provide non-peptidic, bioavailable substructures suitable for optimization to modulate protein-protein interactions.
Collapse
Affiliation(s)
- Ye Che
- Washington University, Center for Computational Biology and Department of Biochemistry and Molecular Biophysics, St. Louis, MO 63110, USA
| | | |
Collapse
|
10
|
Che Y, Brooks BR, Marshall GR. Development of small molecules designed to modulate protein-protein interactions. J Comput Aided Mol Des 2006; 20:109-30. [PMID: 16622794 DOI: 10.1007/s10822-006-9040-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2005] [Accepted: 02/13/2006] [Indexed: 01/25/2023]
Abstract
Protein-protein interactions are ubiquitous, essential to almost all known biological processes, and offer attractive opportunities for therapeutic intervention. Developing small molecules that modulate protein-protein interactions is challenging, owing to the large size of protein-complex interface, the lack of well-defined binding pockets, etc. We describe a general approach based on the "privileged-structure hypothesis" [Che, Ph.D. Thesis, Washington University, 2003] - that any organic templates capable of mimicking surfaces of protein-recognition motifs are potential privileged scaffolds as protein-complex antagonists--to address the challenges inherent in the discovery of small-molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
- Ye Che
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
11
|
Urquiza M, Guevara T, Espejo F, Bravo MM, Rivera Z, Patarroyo ME. Two L1-peptides are excellent tools for serological detection of HPV-associated cervical carcinoma lesions. Biochem Biophys Res Commun 2005; 332:224-32. [PMID: 15896321 DOI: 10.1016/j.bbrc.2005.04.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2005] [Accepted: 04/19/2005] [Indexed: 11/29/2022]
Abstract
A persistent high risk human papillomavirus (HR-HPV) infection causes cervical intraepithelial lesions and cervical carcinoma. There is evidence that detecting anti-L1 antibodies could be successfully used for discriminating between cervical lesion patients and women having normal cytology. It was found that peptides 18283 (55PNNNKILVPKVSGLQYRVFR74) and 18294 (284LYIKGSGSTANLASSNYFPT300) from the L1-surface exposed regions were specifically recognised by antibodies from the cervical lesion patient sera. These peptides were tested against 165 womens' normal cytology sera and 148 cervical lesion or cervical cancer patients' sera. Less than 3.6% of women's normal cytology sera recognised peptides 18283 or 18294; on the contrary, 91% to 96% of the cervical lesion (CIN I to CIN III) or cervical cancer patient sera recognised peptides 18283 and 18294. These data show that anti-peptide 18283 and 18294 antibodies in the patients' sera are strongly associated with the presence of HR-HPV associated cervical lesions, showing 92-97% sensitivity and 89-95% specificity in recognising precancerous and cervical cancer patients. These two peptides could be excellent tools for use in large-scale serological screening of women populations at risk of developing cervical carcinoma.
Collapse
Affiliation(s)
- Mauricio Urquiza
- Fundación Instituto de Inmunología de Colombia, Cra 50 #26-00, Bogota, Colombia
| | | | | | | | | | | |
Collapse
|
12
|
Shepherd NE, Hoang HN, Abbenante G, Fairlie DP. Single turn peptide alpha helices with exceptional stability in water. J Am Chem Soc 2005; 127:2974-83. [PMID: 15740134 DOI: 10.1021/ja0456003] [Citation(s) in RCA: 269] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Cyclic pentapeptides are not known to exist in alpha-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapeptides, Ac-(cyclo-1,5) [KxxxD]-NH(2) and Ac-(cyclo-2,6)-R[KxxxD]-NH(2), are highly alpha-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest alpha-helical peptides in water.
Collapse
Affiliation(s)
- Nicholas E Shepherd
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
13
|
Baggio R, Carven GJ, Chiulli A, Palmer M, Stern LJ, Arenas JE. Induced Fit of an Epitope Peptide to a Monoclonal Antibody Probed with a Novel Parallel Surface Plasmon Resonance Assay. J Biol Chem 2005; 280:4188-94. [PMID: 15556932 DOI: 10.1074/jbc.m410687200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Class II major histocompatibility complex proteins bind peptides for presentation to T-cells as part of the immune response process. Monoclonal antibody MEM-265 recognizes the peptide-free conformation of the major histocompatibility complex class II protein HLA-DR1 through specific binding to an epitope contained between residues 50-67 of the beta-chain. In previous work using alanine scanning (1), we identified residues Leu-53, Asp-57, Tyr-60, Trp-61, Ser-63, and Leu-67 as essential for specific recognition by MEM-265. The spacing of these residues approximates a 3.5-residue repeat, suggesting that MEM-265 may recognize the epitope in an alpha-helical conformation. In the folded, peptide-loaded DR1 structure, the beta-chain residues 50-67 contain a kinked alpha-helical segment spanning Glu-52-Ser-63 (2). However, the conformation of this segment in the peptide-free form is unknown. We have used a new surface plasmon resonance approach in a SpotMatrix format to compare the kinetic rates and affinities for 18 alanine scanning mutants comprising epitope residues 50-67. In addition to the six essential residues described previously, we found two additional residues, Glu-52 and Gln-64, that contribute by enhancing MEM-265 binding. By contrast, mutation of either Gly-54 or Pro-56 to an alanine actually improved binding to MEM-265. In essentially all cases peptide substitutions that either improve or reduce MEM-265 recognition could be traced to differences in the dissociation rate (k off). The kinetic details of the present study support the presence of a structural component in the antigenic epitope recognized by MEM-265 in the peptide-free form of major histocompatibility complex II DR1 beta-chain.
Collapse
Affiliation(s)
- Rick Baggio
- HTS Biosystems, East Hartford, Connecticut 06108, USA
| | | | | | | | | | | |
Collapse
|
14
|
Dakappagari NK, Lute KD, Rawale S, Steele JT, Allen SD, Phillips G, Reilly RT, Kaumaya PTP. Conformational HER-2/neu B-cell epitope peptide vaccine designed to incorporate two native disulfide bonds enhances tumor cell binding and antitumor activities. J Biol Chem 2004; 280:54-63. [PMID: 15507452 DOI: 10.1074/jbc.m411020200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022] Open
Abstract
Cancer vaccines designed to elicit an antibody response that target antigenic sites on a tumor antigen must closely mimic the three-dimensional structure of the corresponding region on the antigen. We have designed a complex immunogen derived from the extracellular domain of human HER-2/neu-(626-649) that represents a three-dimensional epitope. We have successfully introduced two disulfide bonds into this sequence, thereby recapitulating the natural disulfide pairings observed in the native protein. To evaluate the immunogenicity of the doubly cyclized disulfide-linked peptide versus the free uncyclized peptide we examined the induction of antibody responses in both inbred and outbred mice strains, with both constructs eliciting high titered antibodies. The disulfide-paired specific antibodies exhibited enhanced cross-reactivity to HER-2/neu expressed on BT-474 cell line as determined by flow cytometry. The antitumor activities of the disulfidepaired specific antibodies did not improve the in vitro growth inhibition of human breast cancer cells overexpressing HER-2, but showed superior antitumor responses in the context of ADCC and interferon-gamma induction. Inbred mice (FVB/n) vaccinated with the disulfide-paired epitope exhibited a statistically significant reduction in the development of exogenously administered tumors in vivo compared with mice receiving either the free uncyclized or the promiscuous T-cell epitope (MVF) control peptide (p = 0.001). This study demonstrates the feasibility and importance of designing conformational epitopes that mimic the tertiary structure of the native protein for eliciting biologically relevant anti-tumor antibodies. Such approaches are a prerequisite to the design of effective peptide vaccines.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Neoplasm/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Cancer Vaccines/chemistry
- Cancer Vaccines/immunology
- Disulfides
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Epitopes, B-Lymphocyte/metabolism
- Female
- Humans
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Mice
- Mice, Inbred ICR
- Molecular Sequence Data
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/prevention & control
- Peptide Fragments/chemistry
- Peptide Fragments/immunology
- Protein Conformation
- Receptor, ErbB-2/chemistry
- Receptor, ErbB-2/immunology
- Vaccines, Synthetic/chemistry
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Naveen K Dakappagari
- Departments of Obstetrics and Gynecology, Integrated Biomedical Sciences Graduate Program, Ohio State Biochemistry Program, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|