1
|
Hosamani KR, K H, Pal R, Matada GSP, B K, I A, Aishwarya NVSS. Pyrazole, Pyrazoline, and Fused Pyrazole Derivatives: New Horizons in EGFR-Targeted Anticancer Agents. Chem Biodivers 2024; 21:e202400880. [PMID: 39056888 DOI: 10.1002/cbdv.202400880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Pyrazole and its derivatives remain popular heterocycles in drug research, design, and development. Several drugs include the pyrazole scaffold, such as ramifenazone, ibipinabant, antipyrine, and axitinib, etc. They have been extensively studied by the scientific community and are said to have a wide range of biological activity, especially anticancer agents targeting EGFR. Overexpression of EGFR signalling promotes tumor growth by inhibiting apoptosis. EGFR dysfunction has been described in multiple cancers, including colon, head and neck, NSCLC, colon, liver, breast, and ovarian cancer. As a result, EGFR represents a prospective target for cancer treatment. Several anti-EGFR drugs are thriving, notably dacomitinib, afatinib, erlotinib, gefitinib, and osimertinib. However, almost all currently available anti-EGFR drugs have limited therapeutic effectiveness due to a lack of selectivity as well as substantial side effects. Furthermore, aberrant EGFR signalling across numerous human malignancies/carcinomas is impeded by gene amplification, protein overexpression, mutations, or in-frame deletions, making EGFR-induced cancer treatment challenging. To overcome such, novel therapeutic anti-EGFR drugs with high efficacy and minimal toxicity are required. To battle cancer and therapeutic resistance to EGFR inhibitors, pyrazole, pyrazoline, and their derivatives have been investigated as a viable pharmacophore for the development of new drugs with better potency, lesser toxicity, and favourable pharmacokinetic characteristics. The present investigation covers the examination of progress toward anti-cancer therapies targeting EGFR via pyrazole, pyrazoline, and fused pyrazole-based compounds. The current study also represents inclusive data on pyrazole-based marketed drugs as well as therapeutic candidates undergoing preclinical and clinical development. Lastly, we have discussed recent advances in the medicinal chemistry of pyrazole-based derivatives with their anti-EGFR significance for the eradication of various cancers and provide the direction toward structure-activity relationship (SAR), including mechanistic studies.
Collapse
Affiliation(s)
- Ketan R Hosamani
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Hemalatha K
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Kumaraswamy B
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - Aayishamma I
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | | |
Collapse
|
2
|
Zuo Y, Liu M, Du J, Zhang T, Wang X, Wang C. Ir(iii)/Ag(i)-catalyzed directly C-H amidation of arenes with OH-free hydroxyamides as amidating agents. RSC Adv 2024; 14:5975-5980. [PMID: 38362076 PMCID: PMC10867557 DOI: 10.1039/d4ra00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
A versatile Ir(iii)-catalyzed C-H amidation of arenes by employing readily available and stable OH-free hydroxyamides as a novel amidation source. The reaction occurred with high efficiency and tolerance of a range of functional groups. A wide scope of aryl OH-free hydroxyzamides, including conjugated and challenging non-conjugated OH-free hydroxyzamides, were capable of this transformation and no addition of an external oxidant is required. This protocol provided a simple, straightforward and economic method to a variety N-(2-(1H-pyrazol-1-yl)alkyl)amide derivates with good to excellent yield. Mechanistic study demonstrated that reversible C-H bond functionalisation might be involved in this reaction.
Collapse
Affiliation(s)
- Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Meijun Liu
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Tianren Zhang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Xiaoqing Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| | - Cong Wang
- School of Chemistry and Chemical Engineering, Suzhou University Suzhou 234000 P. R. China
| |
Collapse
|
3
|
Ali El-Remaily MAEAA, El-Dabea T, Alsawat M, Mahmoud MHH, Alfi AA, El-Metwaly N, Abu-Dief AM. Development of New Thiazole Complexes as Powerful Catalysts for Synthesis of Pyrazole-4-Carbonitrile Derivatives under Ultrasonic Irradiation Condition Supported by DFT Studies. ACS OMEGA 2021; 6:21071-21086. [PMID: 34423215 PMCID: PMC8375103 DOI: 10.1021/acsomega.1c02811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/23/2021] [Indexed: 05/17/2023]
Abstract
In this study, we are interested in preparing Fe(III), Pd(II), and Cu(II) complexes from new thiazole derivatives. All syntheses were elaborately elucidated to estimate their molecular and structural formulae, which agreed with those of mononuclear complexes. The square-planer geometry of Pd(II) complex (MATYPd) was the starting point for its use as a heterocatalyst in preparing pyrazole-4-carbonitrile derivatives 4a-o using ultrasonic irradiation through a facile one-pot reaction. The simple operation, short-time reaction (20 min), and high efficiency (97%) were the special advantages of this protocol. Furthermore, this green synthesis strategy was advanced by examination of the reusability of the catalyst in four consecutive cycles without significant loss of catalytic activity. The new synthesis strategy presented remarkable advantages in terms of safety, simplicity, stability, mild conditions, short reaction time, excellent yields, and use of a H2O solvent. This catalytic protocol was confirmed by the density functional theory (DFT) study, which reflected the specific characteristics of such a complex. Logical mechanisms have been suggested for the successfully exerted essential physical parameters that confirmed the superiority of the Pd(II) complex in the catalytic role. Optical band gap, electrophilicity, and electronegativity features, which are essential parameters for the catalytic behavior of the Pd(II) complex, are based mainly on the unsaturated valence shell of Pd(II).
Collapse
Affiliation(s)
| | - Tarek El-Dabea
- Department
of Chemistry, Faculty of Science, Sohag
University, 82524 Sohag, Egypt
| | - Mohammed Alsawat
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed H. H. Mahmoud
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alia Abdulaziz Alfi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
| | - Nashwa El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, 715, Makkah, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, 35516, Mansoura, Egypt
| | - Ahmed M. Abu-Dief
- Department
of Chemistry, Faculty of Science, Sohag
University, 82524 Sohag, Egypt
- Department
of Chemistry, College of Science, Taibah
University, P.O. Box 344, 344, Madinah, Saudi Arabia
| |
Collapse
|
4
|
Mitra B, Ghosh P. Humic acid: A Biodegradable Organocatalyst for Solvent‐free Synthesis of Bis(indolyl)methanes, Bis(pyrazolyl)methanes, Bis‐coumarins and Bis‐lawsones. ChemistrySelect 2021. [DOI: 10.1002/slct.202004245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
5
|
Rivara M, Zuliani V. Novel sodium channel antagonists in the treatment of neuropathic pain. Expert Opin Investig Drugs 2015; 25:215-26. [PMID: 26576738 DOI: 10.1517/13543784.2016.1121992] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Effective and safe drugs for the treatment of neuropathic pain are still an unmet clinical need. Neuropathic pain, caused by a lesion or disease that affects the somatosensory system, is a debilitating and hampering condition that has a great economic cost and, above all, a tremendous impact on the quality of life. Sodium channels are one of the major players in generating and propagating action potentials. They represent an appealing target for researchers involved in the development of new and safer drugs useful in the treatment of neuropathic pain. The actual goal for researchers is to target sodium channels selectively to stop the abnormal signaling that characterizes neuropathic pain while leaving normal somatosensory functions intact. AREAS COVERED This review covers the most recent publications regarding sodium channel blockers and their development as new treatments for neuropathic pain. The main areas discussed are the natural sources of new blockers, such as venom extracts and the recent efforts from many pharmaceutical companies in the field. EXPERT OPINION There have been serious efforts by both the pharmaceutical industry and academia to develop new and safer therapeutic options for neuropathic pain. A number of different strategies have been undertaken; the main efforts directed towards the identification of selective blockers starting from both natural products or screening chemical libraries. At this time, researchers have identified and characterized selective compounds against NaV1.7 or NaV1.8 voltage-gated sodium channels but only time will tell if they reach the market.
Collapse
Affiliation(s)
- Mirko Rivara
- a Dipartimento di Farmacia , Università degli Studi di Parma , Via Area delle Scienze 27/A, I-43124 Parma , Italy
| | - Valentina Zuliani
- a Dipartimento di Farmacia , Università degli Studi di Parma , Via Area delle Scienze 27/A, I-43124 Parma , Italy
| |
Collapse
|
6
|
Maddila S, Rana S, Pagadala R, Kankala S, Maddila S, Jonnalagadda SB. Synthesis of pyrazole-4-carbonitrile derivatives in aqueous media with CuO/ZrO2 as recyclable catalyst. CATAL COMMUN 2015. [DOI: 10.1016/j.catcom.2014.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
7
|
Lynch SM, Tafesse L, Carlin K, Ghatak P, Kyle DJ. Dibenzazepines and dibenzoxazepines as sodium channel blockers. Bioorg Med Chem Lett 2015; 25:43-7. [DOI: 10.1016/j.bmcl.2014.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 12/24/2022]
|
8
|
Lynch SM, Tafesse L, Carlin K, Ghatak P, Shao B, Abdelhamid H, Kyle DJ. N-Aryl azacycles as novel sodium channel blockers. Bioorg Med Chem Lett 2015; 25:48-52. [DOI: 10.1016/j.bmcl.2014.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
9
|
Phatangare KR, Padalkar VS, Gupta VD, Patil VS, Umape PG, Sekar N. Phosphomolybdic Acid: An Efficient and Recyclable Solid Acid Catalyst for the Synthesis of 4,4′-(Arylmethylene)bis(1H-pyrazol-5-ols). SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2010.539759] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
| | | | | | | | | | - N. Sekar
- a Institute of Chemical Technology , Mumbai , India
| |
Collapse
|
10
|
Obermayer D, Glasnov TN, Kappe CO. Microwave-Assisted and Continuous Flow Multistep Synthesis of 4-(Pyrazol-1-yl)carboxanilides. J Org Chem 2011; 76:6657-69. [DOI: 10.1021/jo2009824] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- David Obermayer
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Toma N. Glasnov
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - C. Oliver Kappe
- Christian Doppler Laboratory for Microwave Chemistry (CDLMC) and Institute of Chemistry, Karl-Franzens-University Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| |
Collapse
|
11
|
Lenkey N, Karoly R, Epresi N, Vizi E, Mike A. Binding of sodium channel inhibitors to hyperpolarized and depolarized conformations of the channel. Neuropharmacology 2010; 60:191-200. [PMID: 20713065 DOI: 10.1016/j.neuropharm.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/23/2010] [Accepted: 08/07/2010] [Indexed: 12/13/2022]
Abstract
Sodium channels are inhibited by a chemically diverse group of compounds. In the last decade entirely new structural classes with superior properties have been discovered, and novel therapeutic uses of sodium channel inhibitors (SCIs) have been suggested. Many promising novel drug candidates have been described and characterized. Published structure-activity relationship studies, pharmacophore models, and mutagenesis studies seem to lag behind, dealing with only a limited group of inhibitor compounds. The abundance of novel compounds requires an organized comparison of drug potencies. The affinity of sodium channel inhibitors can vary typically ten- to thousand-fold depending on the voltage protocol; therefore comparison of electrophysiology data is difficult. In this study we describe a method for standardization of these data with the help of a simple model of state-dependence. We derived hyperpolarized (resting) and depolarized (generally termed "inactivated") state affinities for the studied drugs, which made the measurements comparable. We show a rank order of SCIs based on resting and inactivated affinity values. In an attempt to define basic chemical requirements for sodium channel inhibitor activity we investigated the dependence of both resting and inactivated state affinities on individual chemical descriptors. Lipophilicity (most often expressed by the logP value) is the single most important determinant of SCI potency. We investigated the independent impact of several other calculated chemical properties by standardizing drug potencies for logP values. By combining these two approaches: standardization of affinity values, and standardization of potencies, we concluded that while resting affinity is mostly determined by lipophilicity, inactivated state affinity is determined by a more complex interaction of chemical properties, including hydrogen bond acceptors, aromatic rings, and molecular weight.
Collapse
Affiliation(s)
- N Lenkey
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
12
|
Tyagarajan S, Chakravarty PK, Zhou B, Taylor B, Fisher MH, Wyvratt MJ, Lyons K, Klatt T, Li X, Kumar S, Williams B, Felix J, Priest BT, Brochu RM, Warren V, Smith M, Garcia M, Kaczorowski GJ, Martin WJ, Abbadie C, McGowan E, Jochnowitz N, Parsons WH. Substituted biaryl pyrazoles as sodium channel blockers. Bioorg Med Chem Lett 2010; 20:5480-3. [PMID: 20709545 DOI: 10.1016/j.bmcl.2010.07.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 11/18/2022]
Abstract
Voltage-gated sodium channels have been shown to play a critical role in neuropathic pain. A series of low molecular weight biaryl substituted pyrazole carboxamides were identified with good in-vitro potency and in-vivo efficacy. Compound 26, a Nav1.7 blocker has excellent efficacy in the Chung model of neuropathic pain.
Collapse
Affiliation(s)
- Sriram Tyagarajan
- Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kemp MI. Structural trends among second-generation voltage-gated sodium channel blockers. PROGRESS IN MEDICINAL CHEMISTRY 2010; 49:81-111. [PMID: 20855039 DOI: 10.1016/s0079-6468(10)49003-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mark I Kemp
- Pfizer Global Research & Development, Sandwich, Kent, UK
| |
Collapse
|
14
|
Graham SR, Brown PJ, Ford JG. Practical and Scalable Process for the Preparation of 4-Amino-1,3-dimethylpyrazole Hydrochloride. Org Process Res Dev 2009. [DOI: 10.1021/op900296p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen R. Graham
- SAFC Pharma, Synergy House, Manchester Science Park, Manchester, U.K. M15 6SY, and Process R&D, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, U.K. SK10 2NA
| | - Peter J. Brown
- SAFC Pharma, Synergy House, Manchester Science Park, Manchester, U.K. M15 6SY, and Process R&D, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, U.K. SK10 2NA
| | - J. Gair Ford
- SAFC Pharma, Synergy House, Manchester Science Park, Manchester, U.K. M15 6SY, and Process R&D, AstraZeneca, Silk Road Business Park, Charter Way, Macclesfield, U.K. SK10 2NA
| |
Collapse
|
15
|
Maddry JA, Ananthan S, Goldman RC, Hobrath JV, Kwong CD, Maddox C, Rasmussen L, Reynolds RC, Secrist JA, Sosa MI, White EL, Zhang W. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis (Edinb) 2009; 89:354-63. [PMID: 19783214 DOI: 10.1016/j.tube.2009.07.006] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 07/17/2009] [Accepted: 07/20/2009] [Indexed: 11/27/2022]
Abstract
There is an urgent need for the discovery and development of new antitubercular agents that target novel biochemical pathways and treat drug-resistant forms of the disease. One approach to addressing this need is through high-throughput screening of drug-like small molecule libraries against the whole bacterium in order to identify a variety of new, active scaffolds that will stimulate additional biological research and drug discovery. Through the Molecular Libraries Screening Center Network, the NIAID Tuberculosis Antimicrobial Acquisition and Coordinating Facility tested a 215,110-compound library against Mycobacterium tuberculosis strain H37Rv. A medicinal chemistry survey of the results from the screening campaign is reported herein.
Collapse
Affiliation(s)
- Joseph A Maddry
- Southern Research Institute, 2000 Ninth Avenue South, Birmingham, AL 35205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kort ME, Drizin I, Gregg RJ, Scanio MJC, Shi L, Gross MF, Atkinson RN, Johnson MS, Pacofsky GJ, Thomas JB, Carroll WA, Krambis MJ, Liu D, Shieh CC, Zhang X, Hernandez G, Mikusa JP, Zhong C, Joshi S, Honore P, Roeloffs R, Marsh KC, Murray BP, Liu J, Werness S, Faltynek CR, Krafte DS, Jarvis MF, Chapman ML, Marron BE. Discovery and biological evaluation of 5-aryl-2-furfuramides, potent and selective blockers of the Nav1.8 sodium channel with efficacy in models of neuropathic and inflammatory pain. J Med Chem 2008; 51:407-16. [PMID: 18176998 DOI: 10.1021/jm070637u] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nav1.8 (also known as PN3) is a tetrodotoxin-resistant (TTx-r) voltage-gated sodium channel (VGSC) that is highly expressed on small diameter sensory neurons and has been implicated in the pathophysiology of inflammatory and neuropathic pain. Recent studies using an Nav1.8 antisense oligonucleotide in an animal model of chronic pain indicated that selective blockade of Nav1.8 was analgesic and could provide effective analgesia with a reduction in the adverse events associated with nonselective VGSC blocking therapeutic agents. Herein, we describe the preparation and characterization of a series of 5-substituted 2-furfuramides, which are potent, voltage-dependent blockers (IC50 < 10 nM) of the human Nav1.8 channel. Selected derivatives, such as 7 and 27, also blocked TTx-r sodium currents in rat dorsal root ganglia (DRG) neurons with comparable potency and displayed >100-fold selectivity versus human sodium (Nav1.2, Nav1.5, Nav1.7) and human ether-a-go-go (hERG) channels. Following systemic administration, compounds 7 and 27 dose-dependently reduced neuropathic and inflammatory pain in experimental rodent models.
Collapse
Affiliation(s)
- Michael E Kort
- Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL 60064-6100, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yogeeswari P, Ragavendran JV, Sriram D, Kavya R, Vanitha K, Neelakantan H. Newer N-Phthaloyl GABA Derivatives with Antiallodynic and Antihyperalgesic Activities in Both Sciatic Nerve and Spinal Nerve Ligation Models of Neuropathic Pain. Pharmacology 2007; 81:21-31. [PMID: 17785996 DOI: 10.1159/000107711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/17/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND There is considerable research evidence supporting a palliative role for gamma-aminobutyric acid (GABA)-ergic neurotransmission and voltage-gated sodium channel blockade in neuropathic pain conditions. Hence, the present study was undertaken to assess the peripheral analgesic, antiallodynic and antihyperalgesic activities of the synthesized structural analogues of GABA. METHODS The screening study included acute tissue injury, chronic constriction injury (CCI), and spinal nerve ligation (SNL) models of neuropathic pain. RESULTS All of the tested compounds sup-pressed the acetic acid-induced writhing response significantly in comparison to the control. In particular, compound JVP-8 was observed to be the most active compound with percent inhibition greater than that of the standard drug aspirin (97.8% inhibition of writhing response as against 97.0% shown by aspirin). In neuropathic pain studies, compound JVP-5 (100 mg/kg i.p.) emerged as the most active compound affording maximum protection against dynamic allodynia and mechanical hyperalgesia in the CCI model, and against spontaneous pain and mechanical hyperalgesia in SNL rats. CONCLUSION In this study, we have demonstrated that combining phthalimide pharmacophore with GABA has evolved compounds effective for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Perumal Yogeeswari
- Pharmacy Group, Birla Institute of Technology and Science, Pilani, Rajasthan, India.
| | | | | | | | | | | |
Collapse
|
18
|
Yogeeswari P, Ragavendran JV, Sriram D. Neuropathic pain: strategies in drug discovery and treatment. Expert Opin Drug Discov 2007; 2:169-84. [DOI: 10.1517/17460441.2.2.169] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Benjamin ER, Pruthi F, Olanrewaju S, Shan S, Hanway D, Liu X, Cerne R, Lavery D, Valenzano KJ, Woodward RM, Ilyin VI. Pharmacological characterization of recombinant N-type calcium channel (Cav2.2) mediated calcium mobilization using FLIPR. Biochem Pharmacol 2006; 72:770-82. [PMID: 16844100 DOI: 10.1016/j.bcp.2006.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 06/04/2006] [Accepted: 06/06/2006] [Indexed: 11/24/2022]
Abstract
The N-type voltage-gated calcium channel (Ca(v)2.2) functions in neurons to regulate neurotransmitter release. It comprises a clinically relevant target for chronic pain. We have validated a calcium mobilization approach to assessing Ca(v)2.2 pharmacology in two stable Ca(v)2.2 cell lines: alpha1(B), alpha2delta, beta(3)-HEK-293 and alpha1(B), beta(3)-HEK-293. Ca(v)2.2 channels were opened by addition of KCl and Ca(2+) mobilization was measured by Fluo-4 fluorescence on a fluorescence imaging plate reader (FLIPR(96)). Ca(v)2.2 expression and biophysics were confirmed by patch-clamp electrophysiology (EP). Both cell lines responded to KCl with adequate signal-to-background. Signals from both cell lines were inhibited by omega-conotoxin (ctx)-MVIIa and omega-conotoxin (ctx)-GVIa with IC(50) values of 1.8 and 1nM, respectively, for the three-subunit stable, and 0.9 and 0.6nM, respectively, for the two-subunit stable. Other known Ca(v)2.2 blockers were characterized including cadmium, flunarizine, fluspirilene, and mibefradil. IC(50) values correlated with literature EP-derived values. Novel Ca(v)2.2 pharmacology was identified in classes of compounds with other primary pharmacological activities, including Na(+) channel inhibitors and antidepressants. Novel Na(+) channel compounds with high potency at Ca(v)2.2 were identified in the phenoxyphenyl pyridine, phenoxyphenyl pyrazole, and other classes. The highest potency at Ca(v)2.2 tricyclic antidepressant identified was desipramine.
Collapse
Affiliation(s)
- Elfrida R Benjamin
- Purdue Pharma Discovery Research, 6 Cedarbrook Drive, Cranbury, NJ 08512, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Eckert-Maksic M, Zrinski I, Juribasic M. Microwave-Assisted Synthesis of Pyrazoles by 1,3-Dipolar Cycloaddition of Diazo Compounds to Acetylene Derivatives. HETEROCYCLES 2006. [DOI: 10.3987/com-06-10803] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Novel Sodium Channel Blockers for the Treatment of Neuropathic Pain. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2006. [DOI: 10.1016/s0065-7743(06)41004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
22
|
Gribkoff VK, Winquist RJ. Modulators of peripheral voltage-gated sodium channels for the treatment of neuropathic pain. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.12.1751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|