1
|
Polivanovskaia DA, Abdulaeva IA, Birin KP, Gorbunova YG, Tsivadze AY. Phosphonate-Substituted Pyrazinoporphyrin - a General Photocatalyst for Efficient Sulfoxidation. Chempluschem 2025; 90:e202400469. [PMID: 39259034 DOI: 10.1002/cplu.202400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/12/2024]
Abstract
An exceptional efficiency of pyrazine-annelated porphyrin as a general photocatalyst for the oxidation of organic sulfides is demonstrated. It is shown that phosphonate-substituted pyrazinoporphyrin 2H-1 brings together sufficient photostability and high efficiency in the aerobic photooxidation of a series of various sulfides. The influence of the reaction conditions onto the efficiency of homogeneous sulfide photooxidation in the presence of the photosensitizer (PS) was investigated and strong dependence on the solvent system was observed. The use of methanol is required for the photocatalytic sulfoxidation and the ratio of the alcohol/other solvent can significantly affect the conversion and selectivity of the reaction. The application of the prepared PS in 0.001 mol % loading allowed achieving complete conversion (97-100 %, turnover number up to 1,00,000, turnover frequency up to 6250 h-1) of substrates bearing substituents of different nature, namely aromatic and aliphatic sulfides with donor or acceptor substituents and substituents prone to oxidation, as well as cyclic sulfides. The selectivity of the of the corresponding sulfoxides formation of 96-100 % was revealed. Finally, a gram-scale synthesis of several sulfoxides was successfully performed with the PS under investigation, providing desired products in 66-96 % yield with over 98 % purity.
Collapse
Affiliation(s)
- Daria A Polivanovskaia
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Inna A Abdulaeva
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Kirill P Birin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninsky pr., 31, bldg. 4, Moscow, 119071, Russia
- Kurnakov Institute of General and Inorganic Chemistry RAS, Leninsky pr., 31, Moscow, 119991, Russia
| |
Collapse
|
2
|
Skolia E, Gkizis PL, Kokotos CG. Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. Chempluschem 2022; 87:e202200008. [PMID: 35199489 DOI: 10.1002/cplu.202200008] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/14/2022] [Indexed: 12/19/2022]
Abstract
Sulfoxides constitute one of the most important functional groups in organic chemistry found in numerous pharmaceuticals and natural products. Sulfoxides are usually obtained from the oxidation of the corresponding sulfides. Among various oxidants, oxygen or air are considered the greenest and most sustainable reagent. Photochemistry and photocatalysis is increasingly applied in new, as well as traditional, yet demanding, reaction, like the aerobic oxidation of sulfides to sulfoxides, since photocatalysis has provided the means to access them in mild and effective ways. In this review, we will summarize the photochemical protocols that have been developed for the oxidation of sulfides to sulfoxides, employing air or oxygen as the oxidant. The aim of this review is to present: i) a historical overview, ii) the key mechanistic studies and proposed mechanisms and iii) categorize the different catalytic systems in literature.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| | - Chistoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis 15771, Athens, Greece
| |
Collapse
|
3
|
Monsour CG, Decosto CM, Tafolla-Aguirre BJ, Morales LA, Selke M. Singlet Oxygen Generation, Quenching, and Reactivity with Metal Thiolates. Photochem Photobiol 2021; 97:1219-1240. [PMID: 34242405 DOI: 10.1111/php.13487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
Metal thiolate complexes can act as photosensitizers for the generation of singlet oxygen, quenchers of singlet oxygen, and they may undergo chemical reactions with singlet oxygen leading to oxidized thiolate ligands. This review covers all of the chemical reactions of thiolate ligands with singlet oxygen (through early 2021). Since some of these reactions are self-sensitized photooxidations, singlet oxygen generation by metal complexes is also discussed. Mechanistic features such as the effects of protic vs. aprotic conditions are presented and compared with the comparatively well-understood photooxidation of organic sulfides. In general, the total rate of singlet oxygen removal correlates with the nucleophilicity of the thiolate ligand which in turn can be influenced by the metal. Some interesting patterns of reactivity have been noted as a result of this survey: Metal thiolate complexes bearing arylthiolate ligands appear to exclusively produce sulfinate (metal-bound sulfone) products upon reaction with singlet oxygen. In contrast, metal thiolate complexes bearing alkylthiolate ligands may produce sulfinate and/or sulfenate (metal-bound sulfoxide) products. Several mechanistic pathways have been proposed for these reactions, but the exact nature of any intermediates remains unknown at this time.
Collapse
Affiliation(s)
- Charlotte G Monsour
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Cassandra M Decosto
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | | | - Luis A Morales
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| | - Matthias Selke
- Department of Chemistry and Biochemistry, California State University, Los Angeles
| |
Collapse
|
4
|
Acid catalyzed alcoholysis of sulfinamides: unusual stereochemistry, kinetics and a question of mechanism involving sulfurane intermediates and their pseudorotation. Molecules 2015; 20:2949-72. [PMID: 25679053 PMCID: PMC6272183 DOI: 10.3390/molecules20022949] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/03/2015] [Indexed: 11/17/2022] Open
Abstract
The synthesis of optically active sulfinic acid esters has been accomplished by the acid catalyzed alcoholysis of optically active sulfinamides. Sulfinates are formed in this reaction with a full or predominant inversion of configuration at chiral sulfur or with predominant retention of configuration. The steric course of the reaction depends mainly on the size of the dialkylamido group in the sulfinamides and of the alcohols used as nucleophilic reagents. It has been found that bulky reaction components preferentially form sulfinates with retention of configuration. It has been demonstrated that the stereochemical outcome of the reaction can be changed from inversion to retention and vice versa by adding inorganic salts to the acidic reaction medium. The unusual stereochemistry of this typical bimolecular nucleophilic substitution reaction, as confirmed by kinetic measurements, has been rationalized in terms of the addition-elimination mechanism, A-E, involving sulfuranes as intermediates which undergo pseudorotations.
Collapse
|
5
|
Lamb BM, Barbas III CF. Selective arylthiolane deprotection by singlet oxygen: a promising tool for sensors and prodrugs. Chem Commun (Camb) 2015; 51:3196-9. [DOI: 10.1039/c4cc09040c] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A routine thioketal protecting group reacts rapidly and selectively with singlet oxygen to reveal ketone products in good (aryl 1,3-dithiolane) to excellent (aryl 1,3-oxathiolane) yields. Arylthiolanes are stable to biologically relevant reactive oxygen species and can be used as a light-activated gating mechanism for activating fluorescent sensors or small molecule prodrugs.
Collapse
Affiliation(s)
- Brian M. Lamb
- The Skaggs Institute for Chemical Biology
- The Scripps Research Institute
- La Jolla
- USA
- Department of Chemistry
| | - Carlos F. Barbas III
- The Skaggs Institute for Chemical Biology
- The Scripps Research Institute
- La Jolla
- USA
- Department of Chemistry
| |
Collapse
|
6
|
Lacombe S, Soumillion JP, El Kadib A, Pigot T, Blanc S, Brown R, Oliveros E, Cantau C, Saint-Cricq P. Solvent-free production of singlet oxygen at the gas-solid interface: visible light activated organic-inorganic hybrid microreactors including new cyanoaromatic photosensitizers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11168-11179. [PMID: 19735158 DOI: 10.1021/la901504q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We synthesized new cyanoaromatics, benzo[b]triphenylene-9,14-dicarbonitrile (DBTP) 1a and a graftable derivative, 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid (DBTP-COOH) 1b, easily prepared from commercial reagents. Their photosensitizing properties were investigated. Hybrid porous silica monoliths loaded with encapsulated 1a or grafted 1b were prepared, and their adsorption, spectroscopic and photosensitizing properties, as well as stability, were compared. Solvent-free, efficient oxidation of dimethylsulfide (DMS) was observed at the gas-solid interface under visible light irradiation. Quantum yields of formation of 1O2 inside the porous monoliths are comparable to those of phenalenone. Singlet oxygen lifetimes (approximately 25 micros) were found to be longer in silica monoliths than in usual polar solvents such as methanol or ethanol. This new class of hybrid materials work as porous, transparent, and highly efficient microreactors for oxidation reactions under visible light.
Collapse
Affiliation(s)
- Sylvie Lacombe
- CNRS, Université de Pau, IPREM-UMR 5254, Helioparc, 2 rue du President Angot, BP 64053, Pau cedex 9, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|