1
|
Bach RD, Schlegel HB. Mechanism of Orbital Interactions in the Sharpless Epoxidation with Ti(IV) Peroxides: A DFT Study. J Phys Chem A 2021; 125:10541-10556. [PMID: 34851654 DOI: 10.1021/acs.jpca.1c08447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The M06-2X DFT functional has been employed to examine monomeric titanium(IV) hydroperoxo catalysts that model the individual steps in the dimeric titanium(IV)-catalyzed Sharpless reaction. This is the first example of a transition structure for titanium(IV) tert-butyl hydroperoxide-catalyzed epoxidation that describes the molecular motion required for oxygen atom transfer. These epoxidation catalysts have been examined for both bimolecular reactions with E-2-butene and the intramolecular epoxidation of allyl alcohol. The transition structure for the bimolecular peroxyacetic acid epoxidation of E-2-butene has been shown to be spiro in nature, and likewise, the intramolecular epoxidation of allyl alcohol is also nearly spiro. The significance of the O-C-C═C dihedral angle of allyl alcohol is examined for the Ti(IV) tert-butyl hydroperoxide epoxidation mechanism. Evidence is presented that supports a hexacoordinate titanium peroxo environment that exists in the dimeric form of the Sharpless catalyst. The mechanism for a 1,3-rearrangement of the alkoxide ligand in a titanium hydroperoxide to the Ti center in concert with oxygen atom transfer of the proximal oxygen to the C═C bond of the substrate is presented. The dimerization of Ti(IV)-(R,R)-diethyl tartrate-diisopropoxide and its hydrolysis have been calculated. The mechanism for rapid ligand exchange with alkyl hydroperoxides involving the Ti(O-i-Pr)4 precursor is examined to show how the active epoxidation catalyst is produced.
Collapse
Affiliation(s)
- Robert D Bach
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Yang C, Zhang C, Luo X, Liu X, Cao F, Zhang YL. Isomerization and Degradation of Levoglucosan via the Photo-Fenton Process: Insights from Aqueous-Phase Experiments and Atmospheric Particulate Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11789-11797. [PMID: 32897062 DOI: 10.1021/acs.est.0c02499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
So far, studies on the conversion of stereochemistry under photo-Fenton conditions and their atmospheric implication are still rare. Here, we found that the biomass burning marker, the chiral compound levoglucosan (L), undergoes oxidative degradation under photo-Fenton conditions and can be isomerized into mannosan (M) and galactosan (G) simultaneously. Among the formic acid, acetic acid, and oxalic acid in the degradation products of levoglucosan, it was found that the yield of formation of formic acid in the photo-Fenton pathway can be as high as 86%. It is worth noting that both levoglucosan and its isomers are present in the atmosphere and their concentrations are strongly correlated. At the same time, the range of their concentration ratios, L/(G + M), measured in the photo-Fenton experiments in the laboratory was found to agree well with that measured in atmospheric PM2.5 samples. However, the sources of L, G, and M in the atmosphere are complex, and the photo-Fenton reaction may be an essential pathway for the distribution of L, G, and M in the atmosphere.
Collapse
Affiliation(s)
- Chi Yang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chunyan Zhang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaosan Luo
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaoyan Liu
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fang Cao
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
3
|
Rebilly J, Zhang W, Herrero C, Dridi H, Sénéchal‐David K, Guillot R, Banse F. Hydroxylation of Aromatics by H
2
O
2
Catalyzed by Mononuclear Non‐heme Iron Complexes: Role of Triazole Hemilability in Substrate‐Induced Bifurcation of the H
2
O
2
Activation Mechanism. Chemistry 2019; 26:659-668. [DOI: 10.1002/chem.201903239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Jean‐Noël Rebilly
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Wenli Zhang
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Christian Herrero
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Hachem Dridi
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Katell Sénéchal‐David
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| | - Frédéric Banse
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-Sud, Université Paris-Saclay 91405 Orsay cedex France
| |
Collapse
|
4
|
Bach RD. Structure and Mechanism for Alkane Oxidation and Alkene Epoxidation with Hydroperoxides, α-Hydroxy Hydroperoxides, and Peroxyacids: A Theoretical Study. J Phys Chem A 2019; 123:9520-9530. [DOI: 10.1021/acs.jpca.9b06803] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, 210 South College Avenue, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Cherrier MV, Amara P, Talbi B, Salmain M, Fontecilla-Camps JC. Crystallographic evidence for unexpected selective tyrosine hydroxylations in an aerated achiral Ru-papain conjugate. Metallomics 2018; 10:1452-1459. [PMID: 30175357 DOI: 10.1039/c8mt00160j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The X-ray structure of an aerated achiral Ru-papain conjugate has revealed the hydroxylation of two tyrosine residues found near the ruthenium ion. The most likely mechanism involves a ruthenium-bound superoxide as the reactive species responsible for the first hydroxylation and the resulting high valent Ru(iv)[double bond, length as m-dash]O species for the second one.
Collapse
Affiliation(s)
- Mickaël V Cherrier
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France.
| | - Patricia Amara
- Univ. Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins, F-38000 Grenoble, France.
| | - Barisa Talbi
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, 75005, Paris, France
| | - Michèle Salmain
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), 4 place Jussieu, 75005, Paris, France
| | | |
Collapse
|
6
|
Lopez S, Rondot L, Leprêtre C, Marchi-Delapierre C, Ménage S, Cavazza C. Cross-Linked Artificial Enzyme Crystals as Heterogeneous Catalysts for Oxidation Reactions. J Am Chem Soc 2017; 139:17994-18002. [PMID: 29148757 DOI: 10.1021/jacs.7b09343] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Designing systems that merge the advantages of heterogeneous catalysis, enzymology, and molecular catalysis represents the next major goal for sustainable chemistry. Cross-linked enzyme crystals display most of these essential assets (well-designed mesoporous support, protein selectivity, and molecular recognition of substrates). Nevertheless, a lack of reaction diversity, particularly in the field of oxidation, remains a constraint for their increased use in the field. Here, thanks to the design of cross-linked artificial nonheme iron oxygenase crystals, we filled this gap by developing biobased heterogeneous catalysts capable of oxidizing carbon-carbon double bonds. First, reductive O2 activation induces selective oxidative cleavage, revealing the indestructible character of the solid catalyst (at least 30 000 turnover numbers without any loss of activity). Second, the use of 2-electron oxidants allows selective and high-efficiency hydroxychlorination with thousands of turnover numbers. This new technology by far outperforms catalysis using the inorganic complexes alone, or even the artificial enzymes in solution. The combination of easy catalyst synthesis, the improvement of "omic" technologies, and automation of protein crystallization makes this strategy a real opportunity for the future of (bio)catalysis.
Collapse
Affiliation(s)
- Sarah Lopez
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Laurianne Rondot
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Chloé Leprêtre
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Caroline Marchi-Delapierre
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Stéphane Ménage
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| | - Christine Cavazza
- Université Grenoble-Alpes , Grenoble F-38000, France.,CEA, BIG, Laboratory of Chemistry and Biology of Metals, BioCE and BioCat group , Grenoble F-38054, France.,CNRS, UMR5249 , Grenoble F-38054, France
| |
Collapse
|
7
|
Keller J, Haase H, Koch M. Hydroxylation and dimerization of zearalenone: comparison of chemical, enzymatic and electrochemical oxidation methods. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2017.2213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Investigations of the metabolic pathway of mycotoxins by microsomal techniques are often laborious, causing an increasing demand for easy and rapid simulation methods. Thus, the non-microsomal oxidation technique of electrochemistry coupled online to mass spectrometry (EC/MS) was applied to simulate phase I biotransformation of the Fusarium mycotoxin zearalenone (ZEA). The obtained transformation products were identified by high resolution mass spectrometry (FT-ICR) and HPLC-MS/MS. Transformation products (TPs) from EC/MS were compared to those of other oxidative methods, such as Fenton-like and Ce(IV) reactions and metabolites derived from in vitro assays (human and rat liver microsomes). Electrochemical oxidisation of ZEA was achieved by applying a potential between 0 and 2,500 mV vs Pd/H2 using a flow-through cell with a boron-doped diamond working electrode. Several mono-hydroxylated TPs were generated by EC/MS and Fenton-like reaction, which could also be found in microsomal in vitro assays. EC and Ce(IV) led to the formation of structurally different ZEA dimers and dimeric quinones probably connected over covalent biaryl C-C and C-O-C bonds. Although the dimerization of phenolic compounds is often observed in natural processes, ZEA dimers have not yet been reported. This is the first report on the formation of stable ZEA dimers and their related quinones. The tested non-microsomal methods, in particular EC/MS, could be useful in order to predict the biotransformation products of mycotoxins, even in cases where one to one simulation is not always feasible.
Collapse
Affiliation(s)
- J. Keller
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straβe 11, 12489 Berlin, Germany
| | - H. Haase
- Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M. Koch
- Bundesanstalt für Materialforschung und -prüfung (BAM), Richard-Willstätter-Straβe 11, 12489 Berlin, Germany
| |
Collapse
|
8
|
Bach RD. The DMDO Hydroxylation of Hydrocarbons via the Oxygen Rebound Mechanism. J Phys Chem A 2016; 120:840-50. [DOI: 10.1021/acs.jpca.5b12086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Robert D. Bach
- Department
of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Rocha BGM, Kuznetsov ML, Kozlov YN, Pombeiro AJL, Shul'pin GB. Simple soluble Bi(iii) salts as efficient catalysts for the oxidation of alkanes with H2O2. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01651c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple soluble Bi(iii) salts exhibit pronounced catalytic activity in the oxidation of inert alkanes with H2O2via a radical mechanism with participation of the HO˙ radicals.
Collapse
Affiliation(s)
- Bruno G. M. Rocha
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Yuriy N. Kozlov
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| |
Collapse
|
10
|
Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H2O)n]2+ (M=Be, Zn, Cd). J Catal 2014. [DOI: 10.1016/j.jcat.2014.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Akopova AR, Morkovnik AS, Khrustalev VN, Bicherov AV. Electron transfer in the peroxytrifluoroacetic acid-assisted sulfoxidation and oxidative destruction of benzhydryl sulfides. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0159-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Abstract
Iron-catalyzed/mediated C–H bond oxidation has been demonstrated as one of practical and straightforward tools in synthetic chemistry.
Collapse
Affiliation(s)
- Fan Jia
- Department of Chemistry
- Renmin University of China
- Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872, China
| |
Collapse
|
13
|
Bach RD, Mattevi A. Mechanistic Aspects Regarding the Elimination of H2O2 from C(4a)-Hydroperoxyflavin. The Role of a Proton Shuttle Required for H2O2 Elimination. J Org Chem 2013; 78:8585-93. [DOI: 10.1021/jo401274u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and
Biochemistry, University of Delaware, Newark,
Delaware 19716, United States
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
14
|
Novikov AS, Kuznetsov ML, Pombeiro AJL, Bokach NA, Shul’pin GB. Generation of HO• Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H2O)n]3+ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catal 2013. [DOI: 10.1021/cs400155q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander S. Novikov
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Chemistry, Moscow State Pedagogical University, 3 Nesvizhskiy per., 119021
Moscow, Russian Federation
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Chemistry, Saint Petersburg State University, Universitetsky Pr., 26, 198504 Stary Petergof, Russian Federation
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nadezhda A. Bokach
- Department of Chemistry, Saint Petersburg State University, Universitetsky Pr., 26, 198504 Stary Petergof, Russian Federation
| | - Georgiy B. Shul’pin
- Semenov Institute of Chemical
Physics, Russian Academy of Science, Ulitsa
Kosygina, dom 4, 119991 Moscow, Russian Federation
| |
Collapse
|
15
|
Thibon A, Jollet V, Ribal C, Sénéchal-David K, Billon L, Sorokin AB, Banse F. Hydroxylation of Aromatics with the Help of a Non-Haem FeOOH: A Mechanistic Study under Single-Turnover and Catalytic Conditions. Chemistry 2012; 18:2715-24. [DOI: 10.1002/chem.201102252] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 11/12/2022]
|
16
|
Du L, Gao J, Liu Y, Zhang D, Liu C. The reaction mechanism of hydroxyethylphosphonate dioxygenase: a QM/MM study. Org Biomol Chem 2012; 10:1014-24. [DOI: 10.1039/c1ob06221b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Bach RD. Role of the Somersault Rearrangement in the Oxidation Step for Flavin Monooxygenases (FMO). A Comparison between FMO and Conventional Xenobiotic Oxidation with Hydroperoxides. J Phys Chem A 2011; 115:11087-100. [DOI: 10.1021/jp208087u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, Delaware, United States
| |
Collapse
|
18
|
Kuznetsov ML, Kozlov YN, Mandelli D, Pombeiro AJL, Shul’pin GB. Mechanism of Al3+-Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H2O2 toward O−O Homolysis in Complex [Al(H2O)4(OOH)(H2O2)]2+ Explains the Formation of HO• Radicals. Inorg Chem 2011; 50:3996-4005. [DOI: 10.1021/ic102476x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxim L. Kuznetsov
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Yuriy N. Kozlov
- Semenov Institute of Chemical Physics, Russian Academy of Science, Ulitsa Kosigina, dom 4, 119991 Moscow, Russia
| | - Dalmo Mandelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André - SP, 09210-170, Brazil
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B. Shul’pin
- Semenov Institute of Chemical Physics, Russian Academy of Science, Ulitsa Kosigina, dom 4, 119991 Moscow, Russia
| |
Collapse
|
19
|
Crystallographic snapshots of the reaction of aromatic C-H with O(2) catalysed by a protein-bound iron complex. Nat Chem 2010; 2:1069-76. [PMID: 21107372 DOI: 10.1038/nchem.841] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/16/2010] [Indexed: 01/10/2023]
Abstract
Chemical reactions inside single crystals are quite rare because crystallinity is difficult to retain owing to atomic rearrangements. Protein crystals in general have a high solvent content. This allows for some molecular flexibility, which makes it possible to trap reaction intermediates of enzymatic reactions without disrupting the crystal lattice. A similar approach has not yet been fully implemented in the field of inorganic chemistry. Here, we have combined model chemistry and protein X-ray crystallography to study the intramolecular aromatic dihydroxylation by an arene-containing protein-bound iron complex. The bound complex was able to activate dioxygen in the presence of a reductant, leading to the formation of catechol as the sole product. The structure determination of four of the catalytic cycle intermediates and the end product showed that the hydroxylation reaction implicates an iron peroxo, generated by reductive O(2) activation, an intermediate already observed in iron monooxygenases. This strategy also provided unexpected mechanistic details such as the rearrangement of the iron coordination sphere on metal reduction.
Collapse
|