1
|
Óvári L, Farkas AP, Palotás K, Vári G, Szenti I, Berkó A, Kiss J, Kónya Z. Hexagonal boron nitride on metal surfaces as a support and template. SURFACE SCIENCE REPORTS 2024; 79:100637. [DOI: 10.1016/j.surfrep.2024.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
2
|
Chesnyak V, Cuxart MG, Baranowski D, Seufert K, Cojocariu I, Jugovac M, Feyer V, Auwärter W. Stripe-Like hBN Monolayer Template for Self-Assembly and Alignment of Pentacene Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304803. [PMID: 37821403 DOI: 10.1002/smll.202304803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Metallic surfaces with unidirectional anisotropy are often used to guide the self-assembly of organic molecules along a particular direction. Such supports thus offer an avenue for the fabrication of hybrid organic-metal interfaces with tailored morphology and precise elemental composition. Nonetheless, such control often comes at the expense of detrimental interfacial interactions that might quench the pristine properties of molecules. Here, hexagonal boron nitride grown on Ir(100) is introduced as a robust platform with several coexisting 1D stripe-like moiré superstructures that effectively guide unidirectional self-assemblies of pentacene molecules, concomitantly preserving their pristine electronic properties. In particular, highly-aligned longitudinal arrays of equally-oriented molecules are formed along two perpendicular directions, as demonstrated by comprehensive scanning tunneling microscopy and photoemission characterization performed at the local and non-local scale, respectively. The functionality of the template is demonstrated by photoemission tomography, a surface-averaging technique requiring a high degree of orientational order of the probed molecules. The successful identification of pentacene's pristine frontier orbitals underlines that the template induces excellent long-range molecular ordering via weak interactions, preventing charge transfer.
Collapse
Affiliation(s)
- Valeria Chesnyak
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
- Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, 34127, Italy
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, S.S. 14 km 163.5 in AREA Science Park, Basovizza, Trieste, 34149, Italy
| | - Marc G Cuxart
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), 28049, Madrid, Spain
| | - Daniel Baranowski
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Knud Seufert
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
| | - Iulia Cojocariu
- Dipartimento di Fisica, Università degli Studi di Trieste, via A. Valerio 2, Trieste, 34127, Italy
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Elettra-Sincrotrone, S.C.p.A. S.S 14 - km 163.5, Trieste, 34149, Italy
| | - Matteo Jugovac
- Elettra-Sincrotrone, S.C.p.A. S.S 14 - km 163.5, Trieste, 34149, Italy
| | - Vitaliy Feyer
- Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
- Fakultät für Physik and Center for Nanointegration Duisburg-Essen (CENIDE), Universität Duisburg-Essen, 47048, Duisburg, Germany
| | - Willi Auwärter
- Physics Department, TUM School of Natural Sciences, Technical University of Munich, 85747, Garching, Germany
| |
Collapse
|
3
|
Omambac KM, Kriegel MA, Petrović M, Finke B, Brand C, Meyer Zu Heringdorf FJ, Horn-von Hoegen M. Interplay of Kinetic Limitations and Disintegration: Selective Growth of Hexagonal Boron Nitride and Borophene Monolayers on Metal Substrates. ACS NANO 2023; 17:17946-17955. [PMID: 37676975 DOI: 10.1021/acsnano.3c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The CVD growth of bielemental 2D-materials by using molecular precursors involves complex formation kinetics taking place at the surface and sometimes also subsurface regions of the substrate. Competing microscopic processes fundamentally limit the parameter space for optimal growth of the desired material. Kinetic limitations for diffusion and nucleation cause a high density of small domains and grain boundaries. These are usually overcome by increasing the growth temperature and decreasing the growth rate. In contrast, the nature of molecular precursors with limited thermal stability can result in dissociation and preferential desorption, leading to an undesired or ill-defined composition of the 2D-material. Here we demonstrate these constraints in a combined low-energy electron diffraction and low-energy electron microscopy study by examining the selective formation of single-layer hexagonal boron nitride (hBN) and borophene on Ir(111) using a borazine precursor. We derive a temperature-pressure phase diagram and apply classical nucleation theory to describe our results. By considering the competing processes, we find an optimum growth temperature for hBN of 950 °C. At lower temperatures, the hBN island density is increased, while at higher temperatures the precursor disintegrates and borophene is formed. Our results introduce an additional aspect that must be considered in any high-temperature growth of bielemental 2D-materials from single molecular precursors.
Collapse
Affiliation(s)
- Karim M Omambac
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Marko A Kriegel
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Marin Petrović
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000 Zagreb, Croatia
| | - Birk Finke
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Christian Brand
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| | - Frank J Meyer Zu Heringdorf
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN), Carl-Benz-Str. 199, 47057 Duisburg, Germany
| | - Michael Horn-von Hoegen
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Lotharstraße 1, 47057 Duisburg, Germany
| |
Collapse
|
4
|
Islam MS, Mazumder AAM, Sohag MU, Sarkar MMH, Stampfl C, Park J. Growth mechanisms of monolayer hexagonal boron nitride ( h-BN) on metal surfaces: theoretical perspectives. NANOSCALE ADVANCES 2023; 5:4041-4064. [PMID: 37560434 PMCID: PMC10408602 DOI: 10.1039/d3na00382e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
Two-dimensional hexagonal boron nitride (h-BN) has appeared as a promising material in diverse areas of applications, including as an excellent substrate for graphene devices, deep-ultraviolet emitters, and tunneling barriers, thanks to its outstanding stability, flat surface, and wide-bandgap. However, for achieving such exciting applications, controllable mass synthesis of high-quality and large-scale h-BN is a precondition. The synthesis of h-BN on metal surfaces using chemical vapor deposition (CVD) has been extensively studied, aiming to obtain large-scale and high-quality materials. The atomic-scale growth process, which is a prerequisite for rationally optimizing growth circumstances, is a key topic in these investigations. Although theoretical investigations on h-BN growth mechanisms are expected to reveal numerous new insights and understandings, different growth methods have completely dissimilar mechanisms, making theoretical research extremely challenging. In this article, we have summarized the recent cutting-edge theoretical research on the growth mechanisms of h-BN on different metal substrates. On the frequently utilized Cu substrate, h-BN development was shown to be more challenging than a simple adsorption-dehydrogenation-growth scenario. Controlling the number of surface layers is also an important challenge. Growth on the Ni surface is controlled by precipitation. An unusual reaction-limited aggregation growth behavior has been seen on interfaces having a significant lattice mismatch to h-BN. With intensive theoretical investigations employing advanced simulation approaches, further progress in understanding h-BN growth processes is predicted, paving the way for guided growth protocol design.
Collapse
Affiliation(s)
- Md Sherajul Islam
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
| | | | - Minhaz Uddin Sohag
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Md Mosarof Hossain Sarkar
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology Khulna 9203 Bangladesh
| | - Catherine Stampfl
- School of Physics, The University of Sydney New South Wales 2006 Australia
| | - Jeongwon Park
- Department of Electrical and Biomedical Engineering, University of Nevada Reno NV 89557 USA
- School of Electrical Engineering and Computer Science, University of Ottawa Ottawa ON K1N 6N5 Canada
| |
Collapse
|
5
|
Vári G, Vass C, Halasi G, Szabó L, Palotás K, Dombi P, Berkó A, Óvári L, Kónya Z. New insights into thermal processes of metal deposits on h-BN/Rh(1 1 1): A comparison of Au and Rh. APPLIED SURFACE SCIENCE 2023; 623:157041. [DOI: 10.1016/j.apsusc.2023.157041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
6
|
Naclerio AE, Kidambi PR. A Review of Scalable Hexagonal Boron Nitride (h-BN) Synthesis for Present and Future Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207374. [PMID: 36329667 DOI: 10.1002/adma.202207374] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Hexagonal boron nitride (h-BN) is a layered inorganic synthetic crystal exhibiting high temperature stability and high thermal conductivity. As a ceramic material it has been widely used for thermal management, heat shielding, lubrication, and as a filler material for structural composites. Recent scientific advances in isolating atomically thin monolayers from layered van der Waals crystals to study their unique properties has propelled research interest in mono/few layered h-BN as a wide bandgap insulating support for nanoscale electronics, tunnel barriers, communications, neutron detectors, optics, sensing, novel separations, quantum emission from defects, among others. Realizing these futuristic applications hinges on scalable cost-effective high-quality h-BN synthesis. Here, the authors review scalable approaches of high-quality mono/multilayer h-BN synthesis, discuss the challenges and opportunities for each method, and contextualize their relevance to emerging applications. Maintaining a stoichiometric balance B:N = 1 as the atoms incorporate into the growing layered crystal and maintaining stacking order between layers during multi-layer synthesis emerge as some of the main challenges for h-BN synthesis and the development of processes to address these aspects can inform and guide the synthesis of other layered materials with more than one constituent element. Finally, the authors contextualize h-BN synthesis efforts along with quality requirements for emerging applications via a technological roadmap.
Collapse
Affiliation(s)
- Andrew E Naclerio
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, 37212, USA
- Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, TN, 37212, USA
| |
Collapse
|
7
|
Ruckhofer A, Sacchi M, Payne A, Jardine AP, Ernst WE, Avidor N, Tamtögl A. Evolution of ordered nanoporous phases during h-BN growth: controlling the route from gas-phase precursor to 2D material by in situ monitoring. NANOSCALE HORIZONS 2022; 7:1388-1396. [PMID: 36205333 PMCID: PMC9590587 DOI: 10.1039/d2nh00353h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Large-area single-crystal monolayers of two-dimensional (2D) materials such as graphene and hexagonal boron nitride (h-BN) can be grown by chemical vapour deposition (CVD). However, the high temperatures and fast timescales at which the conversion from a gas-phase precursor to the 2D material appears, make it extremely challenging to simultaneously follow the atomic arrangements. We utilise helium atom scattering to discover and control the growth of novel 2D h-BN nanoporous phases during the CVD process. We find that prior to the formation of h-BN from the gas-phase precursor, a metastable (3 × 3) structure is formed, and that excess deposition on the resulting 2D h-BN leads to the emergence of a (3 × 4) structure. We illustrate that these nanoporous structures are produced by partial dehydrogenation and polymerisation of the borazine precursor upon adsorption. These steps are largely unexplored during the synthesis of 2D materials and we unveil the rich phases during CVD growth. Our results provide significant foundations for 2D materials engineering in CVD, by adjusting or carefully controlling the growth conditions and thus exploiting these intermediate structures for the synthesis of covalent self-assembled 2D networks.
Collapse
Affiliation(s)
- Adrian Ruckhofer
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Marco Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Anthony Payne
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Andrew P Jardine
- Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| | - Nadav Avidor
- Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE, UK.
| | - Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, Graz, Austria.
| |
Collapse
|
8
|
Curcio D, Sierda E, Pozzo M, Bignardi L, Sbuelz L, Lacovig P, Lizzit S, Alfè D, Baraldi A. Unusual reversibility in molecular break-up of PAHs: the case of pentacene dehydrogenation on Ir(111). Chem Sci 2021; 12:170-178. [PMID: 34168740 PMCID: PMC8179676 DOI: 10.1039/d0sc03734f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, we characterise the adsorption of pentacene molecules on Ir(111) and their dissociation behaviour as a function of temperature.
Collapse
Affiliation(s)
- Davide Curcio
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Emil Sierda
- Department of Physics, University of Hamburg, Jungiusstrasse 11, D-20355 Hamburg, Germany
- Institute of Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznan, Poland
| | - Monica Pozzo
- Department of Earth Sciences, Thomas Young Center, University College London, 5 Gower Place, London WC1E 6BS, UK
- London Centre for Nanotechnology, Thomas Young Centre, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
| | - Luca Bignardi
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Luca Sbuelz
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| | - Dario Alfè
- Department of Earth Sciences, Thomas Young Center, University College London, 5 Gower Place, London WC1E 6BS, UK
- London Centre for Nanotechnology, Thomas Young Centre, University College London, 17-19 Gordon Street, London WC1H 0AH, UK
- Dipartimento di Fisica “Ettore Pancini”, Università di Napoli “Federico II”, Monte S. Angelo, 80126 Napoli, Italy
| | - Alessandro Baraldi
- Department of Physics, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
- IOM-CNR, Laboratorio TASC, Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Trieste, Italy
| |
Collapse
|
9
|
Nguyen VL, Duong DL, Lee SH, Avila J, Han G, Kim YM, Asensio MC, Jeong SY, Lee YH. Layer-controlled single-crystalline graphene film with stacking order via Cu-Si alloy formation. NATURE NANOTECHNOLOGY 2020; 15:861-867. [PMID: 32719494 DOI: 10.1038/s41565-020-0743-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Multilayer graphene and its stacking order provide both fundamentally intriguing properties and technological engineering applications. Several approaches to control the stacking order have been demonstrated, but a method of precisely controlling the number of layers with desired stacking sequences is still lacking. Here, we propose an approach for controlling the layer thickness and crystallographic stacking sequence of multilayer graphene films at the wafer scale via Cu-Si alloy formation using direct chemical vapour deposition. C atoms are introduced by tuning the ultra-low-limit CH4 concentration to form a SiC layer, reaching one to four graphene layers at the wafer scale after Si sublimation. The crystallographic structure of single-crystalline or uniformly oriented bilayer (AB), trilayer (ABA) and tetralayer (ABCA) graphene are determined via nano-angle-resolved photoemission spectroscopy, which agrees with theoretical calculations, Raman spectroscopy and transport measurements. The present study takes a step towards the layer-controlled growth of graphite and other two-dimensional materials.
Collapse
Affiliation(s)
- Van Luan Nguyen
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Inorganic Materials Laboratory, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon, Korea
| | - Dinh Loc Duong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, Korea
| | - Sang Hyub Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, Korea
| | - José Avila
- Synchrotron SOLEIL, Université Paris-Saclay, L'Orme des Merisiers Saint-Aubin, Gif sur Yvette, France
| | - Gyeongtak Han
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea
| | - Young-Min Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, Korea
| | - Maria C Asensio
- Materials Science Institute of Madrid (ICMM), Spanish Scientific Research Council (CSIC), Cantoblanco, Madrid, Spain.
- MATINÉE: CSIC Associated Unit (ICMM-ICMUV Valencia University), Cantoblanco, Madrid, Spain.
| | - Se-Young Jeong
- Department of Cogno-mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan, Republic of Korea.
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, Republic of Korea.
- Department of Energy Science, Department of Physics, Sungkyunkwan University, Suwon, Korea.
| |
Collapse
|
10
|
Arias P, Ebnonnasir A, Ciobanu CV, Kodambaka S. Growth Kinetics of Two-Dimensional Hexagonal Boron Nitride Layers on Pd(111). NANO LETTERS 2020; 20:2886-2891. [PMID: 32130016 DOI: 10.1021/acs.nanolett.0c00704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Using in situ variable-temperature scanning tunneling microscopy (300-673 K) during chemical vapor deposition of two-dimensional hexagonal boron nitride (hBN) on Pd(111) from borazine precursor at pressures up to 10-6 mbar, we identify the mechanisms leading to carpetlike uphill or downhill growth across the Pd steps. Deposition at a higher rate and lower temperature promotes uphill growth via preferential attachment at the ascending and descending step-edges, whereas a lower deposition rate and higher temperature lead to downhill growth via nucleation and growth of islands on Pd terraces. We attribute this unusual growth behavior to differences in temperature-dependent rates of hBN deposition at the steps versus on the Pd terraces. Our results illustrate how growth mechanisms can be activated by a pair of parameters (substrate temperature and partial pressure of borazine) and provide new insights into the mechanisms underlying carpetlike growth of hBN and other layered materials.
Collapse
Affiliation(s)
- Pedro Arias
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Abbas Ebnonnasir
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Cristian V Ciobanu
- Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 United States
| | - Suneel Kodambaka
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| |
Collapse
|
11
|
Improvements in structural and optical properties of wafer-scale hexagonal boron nitride film by post-growth annealing. Sci Rep 2019; 9:10590. [PMID: 31332250 PMCID: PMC6646322 DOI: 10.1038/s41598-019-47093-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/05/2019] [Indexed: 11/09/2022] Open
Abstract
Remarkable improvements in both structural and optical properties of wafer-scale hexagonal boron nitride (h-BN) films grown by metal-organic chemical vapor deposition (MOCVD) enabled by high-temperature post-growth annealing is presented. The enhanced crystallinity and homogeneity of the MOCVD-grown h-BN films grown at 1050 °C is attributed to the solid-state atomic rearrangement during the thermal annealing at 1600 °C. In addition, the appearance of the photoluminescence by excitonic transitions as well as enlarged optical band gap were observed for the post-annealed h-BN films as direct consequences of the microstructural improvement. The post-growth annealing is a very promising strategy to overcome limited crystallinity of h-BN films grown by typical MOCVD systems while maintaining their advantage of multiple wafer scalability for practical applications towards two-dimensional electronics and optoelectronics.
Collapse
|
12
|
Wang S, Dearle AE, Maruyama M, Ogawa Y, Okada S, Hibino H, Taniyasu Y. Catalyst-Selective Growth of Single-Orientation Hexagonal Boron Nitride toward High-Performance Atomically Thin Electric Barriers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900880. [PMID: 31034137 DOI: 10.1002/adma.201900880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
The ability to control the crystal orientation of 2D van der Waals (vdW) layered materials grown on large-scale substrates is crucial for tailoring their electrical properties, as well as for integration of functional 2D devices. In general, multiple orientations, i.e., two or four orientations, appear through the crystal rotational symmetry matching between the material and its substrate. Here, it is reported that hexagonal boron nitride (h-BN), an ideal electric barrier in the family of 2D materials, has a single orientation on inclined Cu (1 0 1) surfaces, where the Cu planes are tilted from the (1 0 1) facet around specific in-plane axes. Density functional theory (DFT) calculation indicates that this is a manifestation of only one favored h-BN orientation with the minimum vdW energy on the inclined Cu (1 0 1) surface. Moreover, thanks to the high interfacial strength with the underlying Cu, the single-orientation h-BN is free of thermal wrinkles, and exhibits a spatially homogeneous morphology and tunnel conductance. The findings point to a feasible approach to direct growth of single-orientation, wrinkle-free h-BN thin film for high-performance 2D electrical devices, and will be of benefit for controllable synthesis of other vdW materials.
Collapse
Affiliation(s)
- Shengnan Wang
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Alice E Dearle
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Mina Maruyama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yui Ogawa
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| | - Susumu Okada
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hiroki Hibino
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
- Department of Nanotechnology for Sustainable Energy, School of Science and Technology, Kwansei Gakuin University, 2-1 Sanda, Hyogo, 669-1337, Japan
| | - Yoshitaka Taniyasu
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
13
|
Schwarz M, Riss A, Garnica M, Ducke J, Deimel PS, Duncan DA, Thakur PK, Lee TL, Seitsonen AP, Barth JV, Allegretti F, Auwärter W. Corrugation in the Weakly Interacting Hexagonal-BN/Cu(111) System: Structure Determination by Combining Noncontact Atomic Force Microscopy and X-ray Standing Waves. ACS NANO 2017; 11:9151-9161. [PMID: 28872822 DOI: 10.1021/acsnano.7b04022] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Atomically thin hexagonal boron nitride (h-BN) layers on metallic supports represent a promising platform for the selective adsorption of atoms, clusters, and molecular nanostructures. Specifically, scanning tunneling microscopy (STM) studies revealed an electronic corrugation of h-BN/Cu(111), guiding the self-assembly of molecules and their energy level alignment. A detailed characterization of the h-BN/Cu(111) interface including the spacing between the h-BN sheet and its support-elusive to STM measurements-is crucial to rationalize the interfacial interactions within these systems. To this end, we employ complementary techniques including high-resolution noncontact atomic force microscopy, STM, low-energy electron diffraction, X-ray photoelectron spectroscopy, the X-ray standing wave method, and density functional theory. Our multimethod study yields a comprehensive, quantitative structure determination including the adsorption height and the corrugation of the sp2 bonded h-BN layer on Cu(111). Based on the atomic contrast in atomic force microscopy measurements, we derive a measurable-hitherto unrecognized-geometric corrugation of the h-BN monolayer. This experimental approach allows us to spatially resolve minute height variations in low-dimensional nanostructures, thus providing a benchmark for theoretical modeling. Regarding potential applications, e.g., as a template or catalytically active support, the recognition of h-BN on Cu(111) as a weakly bonded and moderately corrugated overlayer is highly relevant.
Collapse
Affiliation(s)
- Martin Schwarz
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Alexander Riss
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Manuela Garnica
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Jacob Ducke
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - Peter S Deimel
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | - David A Duncan
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Pardeep Kumar Thakur
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Tien-Lin Lee
- Diamond Light Source , Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Ari Paavo Seitsonen
- Département de Chimie, École Normale Supérieure , 24 rue Lhomond, F-75005 Paris, France
| | - Johannes V Barth
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| | | | - Willi Auwärter
- Technical University of Munich , Department of Physics, 85748 Garching, Germany
| |
Collapse
|
14
|
|
15
|
Bayer BC, Caneva S, Pennycook TJ, Kotakoski J, Mangler C, Hofmann S, Meyer JC. Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films. ACS NANO 2017; 11:4521-4527. [PMID: 28410557 PMCID: PMC5444048 DOI: 10.1021/acsnano.6b08315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/14/2017] [Indexed: 05/30/2023]
Abstract
We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes.
Collapse
Affiliation(s)
- Bernhard C. Bayer
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Sabina Caneva
- Department
of Engineering, University of Cambridge, 9 J.J. Thomson Avenue, CB3 0FA, Cambridge, U.K.
| | - Timothy J. Pennycook
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Jani Kotakoski
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Clemens Mangler
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, 9 J.J. Thomson Avenue, CB3 0FA, Cambridge, U.K.
| | - Jannik C. Meyer
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria
| |
Collapse
|
16
|
Meng J, Zhang X, Wang Y, Yin Z, Liu H, Xia J, Wang H, You J, Jin P, Wang D, Meng XM. Aligned Growth of Millimeter-Size Hexagonal Boron Nitride Single-Crystal Domains on Epitaxial Nickel Thin Film. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604179. [PMID: 28266795 DOI: 10.1002/smll.201604179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Atomically thin hexagonal boron nitride (h-BN) is gaining significant attention for many applications such as a dielectric layer or substrate for graphene-based devices. For these applications, synthesis of high-quality and large-area h-BN layers with few defects is strongly desirable. In this work, the aligned growth of millimeter-size single-crystal h-BN domains on epitaxial Ni (111)/sapphire substrates by ion beam sputtering deposition is demonstrated. Under the optimized growth conditions, single-crystal h-BN domains up to 0.6 mm in edge length are obtained, the largest reported to date. The formation of large-size h-BN domains results mainly from the reduced Ni-grain boundaries and the improved crystallinity of Ni film. Furthermore, the h-BN domains show well-aligned orientation and excellent dielectric properties. In addition, the sapphire substrates can be repeatedly used with almost no limit. This work provides an effective approach for synthesizing large-scale high-quality h-BN layers for electronic applications.
Collapse
Affiliation(s)
- Junhua Meng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ye Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Heng Liu
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Xia
- Key Lab of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haolin Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingbi You
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng Jin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Denggui Wang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang-Min Meng
- Key Lab of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
17
|
Zhao R, Zhao X, Liu Z, Ding F, Liu Z. Controlling the orientations of h-BN during growth on transition metals by chemical vapor deposition. NANOSCALE 2017; 9:3561-3567. [PMID: 28244523 DOI: 10.1039/c6nr09368j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hexagonal boron nitride (h-BN) is crucial for many applications, and its synthesis over a large area with high quality is strongly desired. A promising approach to synthesize h-BN is chemical vapor deposition on transition metal catalysts, in which the alignments of BN clusters in the initial growth determine both the types and the amounts of defects in h-BN. In the search for a better catalyst, we systematically studied the interactions between h-BN clusters and various metal surfaces. Our results show that the clusters on nearly all catalyst surfaces, no matter whether the (111) facets of face-centered cubic (FCC) metals or the (0001) facets of hexagonal close packed (HCP) metals, have two local minima with opposite orientations. During the initial growth, h-BN clusters adopt the energy-favored sites, whose registry is well preserved upon further growth owing to the strong interaction between the edge atoms of h-BN and the underlying substrates. On FCC(111), the h-BN domains are always aligned in parallel orientations, while on HCP(0001) they are parallel on the same terrace and anti-parallel on neighboring terraces. Beyond this, on the (111) surfaces of Ir and Rh, the BhNt configuration is much more energy favorable than BfNt, where, the subscripts h, t, and f represent the adsorption sites, hcp, top and fcc, respectively. Thus, Ir(111) and Rh(111) might promote the growth of h-BN domains with the same alignments, which will greatly improve the quality of h-BN by reducing the possibility of formation of grain boundaries.
Collapse
Affiliation(s)
- Ruiqi Zhao
- School of Materials Science and Engineering, Henan Polytechnic University, Henan 454003, China and Beijing Computational Science Research Center, Beijing 100084, China and College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xiaolei Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Henan 454003, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Feng Ding
- Beijing Computational Science Research Center, Beijing 100084, China and Institute of Textiles and Clothing, Hong Kong Polytechnic University, Kowloon, Hong Kong, China.
| | - Zhongfan Liu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Uchida Y, Iwaizako T, Mizuno S, Tsuji M, Ago H. Epitaxial chemical vapour deposition growth of monolayer hexagonal boron nitride on a Cu(111)/sapphire substrate. Phys Chem Chem Phys 2017; 19:8230-8235. [DOI: 10.1039/c6cp08903h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly oriented, epitaxial growth of monolayer h-BN on Cu(111)/sapphire substrate by ambient pressure chemical vapour deposition.
Collapse
Affiliation(s)
- Yuki Uchida
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Fukuoka 816-8580
- Japan
| | - Tasuku Iwaizako
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Fukuoka 816-8580
- Japan
| | - Seigi Mizuno
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Fukuoka 816-8580
- Japan
| | - Masaharu Tsuji
- Research and Education Center of Carbon Resources
- Kyushu University
- Fukuoka 816-8580
- Japan
| | - Hiroki Ago
- Interdisciplinary Graduate School of Engineering Sciences
- Kyushu University
- Fukuoka 816-8580
- Japan
- Global Innovation Center (GIC)
| |
Collapse
|
19
|
Farwick Zum Hagen FH, Zimmermann DM, Silva CC, Schlueter C, Atodiresei N, Jolie W, Martínez-Galera AJ, Dombrowski D, Schröder UA, Will M, Lazić P, Caciuc V, Blügel S, Lee TL, Michely T, Busse C. Structure and Growth of Hexagonal Boron Nitride on Ir(111). ACS NANO 2016; 10:11012-11026. [PMID: 28024332 DOI: 10.1021/acsnano.6b05819] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.
Collapse
Affiliation(s)
| | - Domenik M Zimmermann
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
| | - Caio C Silva
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | | | - Nicolae Atodiresei
- Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA , 52425 Jülich, Germany
| | - Wouter Jolie
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
| | | | - Daniela Dombrowski
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Ulrike A Schröder
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
| | - Moritz Will
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
| | - Predrag Lazić
- Institut Ruđer Bošković , Bijenička 54, 10000 Zagreb, Croatia
| | - Vasile Caciuc
- Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA , 52425 Jülich, Germany
| | - Stefan Blügel
- Peter Grünberg Institut (PGI) and Institute for Advanced Simulation (IAS), Forschungszentrum Jülich and JARA , 52425 Jülich, Germany
| | | | - Thomas Michely
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
| | - Carsten Busse
- II. Physikalisches Institut, Universität zu Köln , Zülpicher Straße 77, 50937 Köln, Germany
- Institut für Materialphysik, Westfälische Wilhelms-Universität Münster , Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
20
|
Li J, Li Y, Yin J, Ren X, Liu X, Jin C, Guo W. Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3645-3650. [PMID: 27240098 DOI: 10.1002/smll.201600681] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Suppressing the oppositely orientated hexagonal boron nitride (h-BN) domains during the growth is of great challenge due to its bipolar structure. It is found that h-BN domains grown on onefold symmetric Cu(102) or (103) share a unique orientation, with one zigzag edge of the h-BN triangles perpendicular to the symmetry axis of the substrate surface.
Collapse
Affiliation(s)
- Jidong Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yao Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jun Yin
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xibiao Ren
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofei Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chuanhong Jin
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education and Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
21
|
Yin J, Li J, Hang Y, Yu J, Tai G, Li X, Zhang Z, Guo W. Boron Nitride Nanostructures: Fabrication, Functionalization and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2942-68. [PMID: 27073174 DOI: 10.1002/smll.201600053] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/26/2016] [Indexed: 05/26/2023]
Abstract
Boron nitride (BN) structures are featured by their excellent thermal and chemical stability and unique electronic and optical properties. However, the lack of controlled synthesis of quality samples and the electrically insulating property largely prevent realizing the full potential of BN nanostructures. A comprehensive overview of the current status of the synthesis of two-dimensional hexagonal BN sheets, three dimensional porous hexagonal BN materials and BN-involved heterostructures is provided, highlighting the advantages of different synthetic methods. In addition, structural characterization, functionalizations and prospective applications of hexagonal BN sheets are intensively discussed. One-dimensional BN nanoribbons and nanotubes are then discussed in terms of structure, fabrication and functionality. In particular, the existing routes in pursuit of tunable electronic and magnetic properties in various BN structures are surveyed, calling upon synergetic experimental and theoretical efforts to address the challenges for pioneering the applications of BN into functional devices. Finally, the progress in BN superstructures and novel B/N nanostructures is also briefly introduced.
Collapse
Affiliation(s)
- Jun Yin
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jidong Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Yang Hang
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Jin Yu
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Guoan Tai
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Xuemei Li
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| | - Wanlin Guo
- State Key Laboratory of Mechanics and Control of Mechanical Structures Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Institute of Nanoscience, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China
| |
Collapse
|
22
|
Li Q, Liu M, Zhang Y, Liu Z. Hexagonal Boron Nitride-Graphene Heterostructures: Synthesis and Interfacial Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:32-50. [PMID: 26439677 DOI: 10.1002/smll.201501766] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/31/2015] [Indexed: 06/05/2023]
Abstract
Research on in-plane and vertically-stacked heterostructures of graphene and hexagonal boron nitride (h-BN) have attracted intense attentions for energy band engineering and device performance optimization of graphene. In this review article, recent advances in the controlled syntheses, interfacial structures, and electronic properties, as well as novel device constructions of h-BN and graphene heterostructures are highlighted. Firstly, diverse synthesis approaches for in-plane h-BN and graphene (h-BN-G) heterostructures are reviewed, and their applications in nanoelectronics are briefly introduced. Moreover, the interfacial structures and electronic properties of h-BN-G heterojunctions are discussed, and a zigzag type interface is found to preferentially evolve at the linking edge of the two structural analogues. Secondly, several synthetic routes for the vertically-stacked graphene/h-BN (G/h-BN) heterostructures are also reviewed. The role of h-BN as perfect dielectric layers in promoting the device performance of graphene is presented. Finally, future research directions in the synthesis and application of such heterostructures are discussed.
Collapse
Affiliation(s)
- Qiucheng Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Mengxi Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanfeng Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
23
|
Wang D, Chen L, Wang X, Cui G, Zhang P. The effect of substrate and external strain on electronic structures of stanene film. Phys Chem Chem Phys 2016; 17:26979-87. [PMID: 26407092 DOI: 10.1039/c5cp04322k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From first-principles calculations, the effects of h-BN and AlN substrates on the topological nontrivial properties of stanene are studied with different strains. We find that the quantum spin Hall phase can be induced in stanene film on a h-BN substrate under a tensile strain of between 6.0% and 9.3% with a stable state confirmed by the phonon spectrum, while for stanene on 5 × 5 h-BN, the quantum spin Hall phase can be preserved without strain. However, for stanene on a AlN substrate, the quantum spin Hall phase cannot be found under compressive or tensile strains less than 10%, while for 2 × 2 stanene on 3 × 3 AlN, the compressive strain needed to induce the quantum spin Hall phase is just 2%. These theoretical results will be helpful in understanding the effect of substrate and strain on stanene and in further realizing the quantum spin Hall effect in stanene on semiconductor substrates.
Collapse
Affiliation(s)
- Dongchao Wang
- Institute of Condensed Matter Physics, Linyi University, Shandong 276000, China.
| | | | | | | | | |
Collapse
|
24
|
Bernard S, Salameh C, Miele P. Boron nitride ceramics from molecular precursors: synthesis, properties and applications. Dalton Trans 2016; 45:861-73. [DOI: 10.1039/c5dt03633j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexagonal boron nitride (h-BN) attracts considerable interest particularly when it is prepared from borazine-based single-source precursors through chemical routes suitable for the shaping and the nanostructuration of the final ceramic.
Collapse
Affiliation(s)
- Samuel Bernard
- Institut Européen des membranes
- IEM
- UMR-5635
- Université de Montpellier
- 34095 Montpellier cedex 5
| | - Chrystelle Salameh
- Institut Européen des membranes
- IEM
- UMR-5635
- Université de Montpellier
- 34095 Montpellier cedex 5
| | - Philippe Miele
- Institut Européen des membranes
- IEM
- UMR-5635
- Université de Montpellier
- 34095 Montpellier cedex 5
| |
Collapse
|
25
|
Zhao W, Dong L, Huang C, Win ZM, Lin N. Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer. Chem Commun (Camb) 2016; 52:13225-13228. [DOI: 10.1039/c6cc05029h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study demonstrates that Cu and Pd can efficiently activate Ullmann reactions on inert h-BN with two distinctive reaction paths.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong
- China
| | - Lei Dong
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong
- China
| | - Chao Huang
- Department of Physics and Materials Science
- City University of Hong Kong
- Hong Kong
- China
| | - Zaw Myo Win
- Department of Physics and Materials Science
- City University of Hong Kong
- Hong Kong
- China
| | - Nian Lin
- Department of Physics
- The Hong Kong University of Science and Technology
- Clear Water Bay
- Hong Kong
- China
| |
Collapse
|