1
|
Elsaid HO, Furriol J, Blomqvist M, Diswall M, Leh S, Gharbi N, Anonsen JH, Babickova J, Tøndel C, Svarstad E, Marti HP, Krause M. Reduced α-galactosidase A activity in zebrafish ( Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep 2022; 31:100851. [PMID: 35242583 PMCID: PMC8857658 DOI: 10.1016/j.ymgmr.2022.100851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 10/28/2022] Open
Abstract
Fabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current in vivo models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish. Zebrafish GLA gene encoding α-GAL enzyme presents a high (>70%) homology with its human counterpart, and the corresponding protein has a similar tissue distribution, as evaluated by immunohistochemistry. Moreover, a similar enzymatic activity in different life stages could be demonstrated. By using CRISPR/Cas9 technology, we generated a mutant zebrafish with decreased GLA gene expression, and decreased expression of the specific gene product in the kidney. Mutant animals showed higher plasma creatinine levels and proteinuria. Transmission electron microscopy (TEM) studies documented an increased podocyte foot process width (FPW) in mutant, as compared to wild type zebrafish. This zebrafish model reliably mirrors distinct features of human FD and could be advantageously used for the identification of novel biomarkers and for an effective screening of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mette Diswall
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Naouel Gharbi
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Jan Haug Anonsen
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars Centre for Molecular Marine Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Oliveira JP, Ferreira S. Multiple phenotypic domains of Fabry disease and their relevance for establishing genotype- phenotype correlations. APPLICATION OF CLINICAL GENETICS 2019; 12:35-50. [PMID: 30881085 PMCID: PMC6407513 DOI: 10.2147/tacg.s146022] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fabry disease (FD) is a rare X-linked glycosphingolipidosis resulting from deficient α-galactosidase A (AGAL) activity, caused by pathogenic mutations in the GLA gene. In males, the multisystemic involvement and the severity of tissue injury are critically dependent on the level of AGAL residual enzyme activity (REA) and on the metabolic load of the disease, but organ susceptibility to damage varies widely, with heart appearing as the most vulnerable to storage pathology, even with relatively high REA. The expression of FD can be conceived as a multidomain phenotype, where each of the component domains is the laboratory or clinical expression of the causative GLA mutation along a complex pathophysiologic cascade pathway. The AGAL enzyme activity is the most clinically useful marker of the protein phenotype. The metabolic phenotype and the pathologic phenotype are diverse expressions of the storage pathology, respectively, assessed by biochemical and histological/ultrastructural methods. The storage phenotypes are the direct consequences of enzyme deficiency and hence, together with the enzymatic phenotype, constitute the more specific diagnostic markers of FD. In the pathophysiology cascade, the clinical phenotypes are most distantly linked to the underlying genetic causation, being critically influenced by the patients’ gender and age, and modulated by the effects of variation in other genetic loci, of polygenic inheritance and of environmental risk factors. A major challenge in the clinical phenotyping of patients with FD is the differential diagnosis between its nonspecific, later-onset complications, particularly the cerebrovascular, cardiac and renal, and similar chronic illnesses that are common in the general population. Comprehensive phenotyping, whenever possible performed in hemizygous males, is therefore crucial for grading the severity of pathogenic GLA variants, to clarify the phenotypic correlations of hypomorphic alleles, to define benign polymorphisms, as well as to establish the pathogenicity of variants of uncertain significance.
Collapse
Affiliation(s)
- João Paulo Oliveira
- Department of Genetics, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal, .,Service of Medical Genetics, São João University Hospital Centre, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal.,i3S - Institute for Research and Innovation in Health / [Instituto de Investigação e Inovação em Saúde], University of Porto, 4200-135 Porto, Portugal,
| | - Susana Ferreira
- Department of Genetics, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319 Porto, Portugal, .,i3S - Institute for Research and Innovation in Health / [Instituto de Investigação e Inovação em Saúde], University of Porto, 4200-135 Porto, Portugal,
| |
Collapse
|
3
|
Abstract
Cardiorenal syndrome type 5 (CRS-5) includes conditions where there is a simultaneous involvement of the heart and kidney from a systemic disorder. This is a bilateral organ cross talk. Fabry's disease (FD) is a devastating progressive inborn error of metabolism with lysosomal glycosphingolipid deposition in variety of cell types, capillary endothelial cells, renal, cardiac and nerve cells. Basic effect is absent or deficient activity of lysosomal exoglycohydrolase a-galactosidase A. Renal involvement consists of proteinuria, isosthenuria, altered tubular function, presenting in second or third decade leading to azotemia and end-stage renal disease in third to fifth decade mainly due to irreversible changes to glomerular, tubular and vascular structures, especially highlighted by podocytes foot process effacement. Cardiac involvement consists of left ventricular hypertrophy, right ventricular hypertrophy, arrhythmias (sinus node and conduction system impairment), diastolic dysfunction, myocardial ischemia, infarction, transmural replacement fibrosis, congestive heart failure and cardiac death. Management of FD is based on enzymatic replacement therapy and control of renal (with anti-proteinuric agents such as angiotensin-converting enzyme inhibitors-and/or angiotensin II receptor blockers), brain (coated aspirin, clopidogrel and statin to prevent strokes) and heart complications (calcium channel blockers for ischemic cardiomyopathy, warfarin and amiodarone or cardioverter device for arrhythmias).
Collapse
|
4
|
The Modulatory Effects of the Polymorphisms in GLA 5'-Untranslated Region Upon Gene Expression Are Cell-Type Specific. JIMD Rep 2015; 23:27-34. [PMID: 25772321 DOI: 10.1007/8904_2015_424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/01/2014] [Accepted: 02/13/2015] [Indexed: 03/02/2023] Open
Abstract
Lysosomal α-galactosidase A (αGal) is the enzyme deficient in Fabry disease (FD). The 5'-untranslated region (5'UTR) of the αGal gene (GLA) shows a remarkable degree of variation with three common single nucleotide polymorphisms at nucleotide positions c.-30G>A, c.-12G>A and c.-10C>T. We have recently identified in young Portuguese stroke patients a fourth polymorphism, at c.-44C>T, co-segregating in cis with the c.-12A allele. In vivo, the c.-30A allele is associated with higher enzyme activity in plasma, whereas c.-10T is associated with moderately decreased enzyme activity in leucocytes. Limited data suggest that c.-44T might be associated with increased plasma αGal activity. We have used a luciferase reporter system to experimentally assess the relative modulatory effects on gene expression of the different GLA 5'UTR polymorphisms, as compared to the wild-type sequence, in four different human cell lines. Group-wise, the relative luciferase expression patterns of the various GLA variant isoforms differed significantly in all four cell lines, as evaluated by non-parametric statistics, and were cell-type specific. Some of the post hoc pairwise statistical comparisons were also significant, but the observed effects of the GLA 5'UTR polymorphisms upon the luciferase transcriptional activity in vitro did not consistently replicate the in vivo observations.These data suggest that the GLA 5'UTR polymorphisms are possible modulators of the αGal expression. Further studies are needed to elucidate the biological and clinical implications of these observations, particularly to clarify the effect of these polymorphisms in individuals carrying GLA variants associated with high residual enzyme activity, with no or mild FD clinical phenotypes.
Collapse
|
5
|
Ferri L, Guido C, la Marca G, Malvagia S, Cavicchi C, Fiumara A, Barone R, Parini R, Antuzzi D, Feliciani C, Zampetti A, Manna R, Giglio S, Della Valle CM, Wu X, Valenzano KJ, Benjamin R, Donati MA, Guerrini R, Genuardi M, Morrone A. Fabry disease: polymorphic haplotypes and a novel missense mutation in the GLA gene. Clin Genet 2011; 81:224-33. [PMID: 21517827 DOI: 10.1111/j.1399-0004.2011.01689.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fabry disease: polymorphic haplotypes and a novel missense mutation in the GLA gene. Fabry disease (FD) is an X-linked lysosomal storage disorder with a heterogeneous spectrum of clinical manifestations that are caused by the deficiency of α-galactosidase A (α-Gal-A) activity. Although useful for diagnosis in males, enzyme activity is not a reliable biochemical marker in heterozygous females due to random X-chromosome inactivation, thus rendering DNA sequencing of the α-Gal-A gene, alpha-galactosidase gene (GLA), the most reliable test for the confirmation of diagnosis in females. The spectrum of GLA mutations is highly heterogeneous. Many polymorphic GLA variants have been described, but it is unclear if haplotypes formed by combinations of such variants correlate with FD, thus complicating molecular diagnosis in females with normal α-Gal-A activity. We tested 67 female probands with clinical manifestations that may be associated with FD and 110 control males with normal α-Gal-A activity. Five different combinations of GLA polymorphic variants were identified in 14 of the 67 females, whereas clearcut pathogenetic alterations, p.Met51Ile and p.Met290Leu, were identified in two cases. The latter has not been reported so far, and both mutant forms were found to be responsive to the pharmacological chaperone deoxygalactonojirimycin (DGJ; migalastat hydrochloride). Analysis of the male control population, as well as male relatives of a suspected FD female proband, permitted the identification of seven different GLA gene haplotypes in strong linkage disequilibrium. The identification of haplotypes in control males provides evidence against their involvement in the development of FD phenotypic manifestations.
Collapse
Affiliation(s)
- L Ferri
- Department of Sciences for Woman and Child's Health, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Fabry disease (FD) is a progressive, X-linked inherited disorder of glycosphingolipid metabolism due to deficient or absent lysosomal α-galactosidase A activity. FD is pan-ethnic and the reported annual incidence of 1 in 100,000 may underestimate the true prevalence of the disease. Classically affected hemizygous males, with no residual α-galactosidase A activity may display all the characteristic neurological (pain), cutaneous (angiokeratoma), renal (proteinuria, kidney failure), cardiovascular (cardiomyopathy, arrhythmia), cochleo-vestibular and cerebrovascular (transient ischemic attacks, strokes) signs of the disease while heterozygous females have symptoms ranging from very mild to severe. Deficient activity of lysosomal α-galactosidase A results in progressive accumulation of globotriaosylceramide within lysosomes, believed to trigger a cascade of cellular events. Demonstration of marked α-galactosidase A deficiency is the definitive method for the diagnosis of hemizygous males. Enzyme analysis may occasionnally help to detect heterozygotes but is often inconclusive due to random X-chromosomal inactivation so that molecular testing (genotyping) of females is mandatory. In childhood, other possible causes of pain such as rheumatoid arthritis and 'growing pains' must be ruled out. In adulthood, multiple sclerosis is sometimes considered. Prenatal diagnosis, available by determination of enzyme activity or DNA testing in chorionic villi or cultured amniotic cells is, for ethical reasons, only considered in male fetuses. Pre-implantation diagnosis is possible. The existence of atypical variants and the availability of a specific therapy singularly complicate genetic counseling. A disease-specific therapeutic option - enzyme replacement therapy using recombinant human α-galactosidase A - has been recently introduced and its long term outcome is currently still being investigated. Conventional management consists of pain relief with analgesic drugs, nephroprotection (angiotensin converting enzyme inhibitors and angiotensin receptors blockers) and antiarrhythmic agents, whereas dialysis or renal transplantation are available for patients experiencing end-stage renal failure. With age, progressive damage to vital organ systems develops and at some point, organs may start to fail in functioning. End-stage renal disease and life-threatening cardiovascular or cerebrovascular complications limit life-expectancy of untreated males and females with reductions of 20 and 10 years, respectively, as compared to the general population. While there is increasing evidence that long-term enzyme therapy can halt disease progression, the importance of adjunctive therapies should be emphasized and the possibility of developing an oral therapy drives research forward into active site specific chaperones.
Collapse
Affiliation(s)
- Dominique P Germain
- University of Versailles - St Quentin en Yvelines, Faculté de Médecine Paris - Ile de France Ouest (PIFO), 78035 Versailles, France.
| |
Collapse
|
7
|
Oliveira JP, Ferreira S, Reguenga C, Carvalho F, Månsson JE. The g.1170C>T polymorphism of the 5' untranslated region of the human alpha-galactosidase gene is associated with decreased enzyme expression--evidence from a family study. J Inherit Metab Dis 2008; 31 Suppl 2:S405-13. [PMID: 18979178 DOI: 10.1007/s10545-008-0972-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 09/07/2008] [Accepted: 09/09/2008] [Indexed: 10/21/2022]
Abstract
Subnormal leukocyte α-galactosidase (α-Gal) activity was found during evaluation of an adolescent male with cryptogenic cerebrovascular small-vessel disease. The only molecular abnormality found was the g.1170C>T single-nucleotide polymorphism (SNP) in the 5' untranslated region of exon 1 in the α-Gal gene (GLA). Historically, this polymorphism has been considered to be biologically neutral. To test the hypothesis that the g.1170T allele might be associated with lower α-Gal expression, we genotyped GLA exon 1 and measured leukocyte and plasma α-Gal in the parents, brother and sister of the index case. The g.1170T allele co-segregated with a subnormal leukocyte α-Gal activity in the three siblings. Although plasma enzyme activities were within the normal range in all five relatives, the ranking of their values suggested a dosage effect of the g.1170T allele. Western blotting assays of leukocyte protein extracts showed that the relative expression of α-Gal in both the patient and his sister was significantly lower than in sex-matched hemizygous or homozygous controls for the g.1170C allele, either normalized to the β-actin immunoblot expression or standardized to a known amount of recombinant human α-Gal. These family data, in combination with results from a recent GLA SNP screening study among healthy Portuguese individuals, suggest that the g.1170C>T SNP may be co-dominantly associated with a relatively decreased GLA expression at the transcription and/or translation level. Larger population studies are needed to confirm these findings and to test the hypothesis that the GLA g.1170C>T may contribute to the multifactorial risk of ischaemic small-vessel cerebrovascular disease.
Collapse
Affiliation(s)
- J P Oliveira
- Department of Medical Genetics, Faculty of Medicine, University of Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal.
| | | | | | | | | |
Collapse
|
8
|
Oliveira JP, Ferreira S, Barceló J, Gaspar P, Carvalho F, Sá Miranda MC, Månsson JE. Effect of single-nucleotide polymorphisms of the 5' untranslated region of the human α-galactosidase gene on enzyme activity, and their frequencies in Portuguese caucasians. J Inherit Metab Dis 2008; 31 Suppl 2:S247-53. [PMID: 18979223 DOI: 10.1007/s10545-008-0818-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 07/28/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
Abstract
BACKGROUND The α-galactosidase gene (GLA) has three single-nucleotide polymorphisms in the 5' untranslated region of exon 1, respectively g.1150G>A, g.1168G>A, g.1170C>T. The g.1150A allele is associated with increased plasma α-galactosidase (α-Gal) activity in hemizygotes, while the others are regarded as biologically neutral. The primary goal of this investigation was to test the hypothesis, raised by a clinical observation and results of a family study, that the g.1170T allele polymorphism is associated with lower α-Gal expression. SUBJECTS AND METHODS Plasma and leukocyte α-Gal activities were assayed in unrelated healthy young adults of both sexes, who had been genotyped for GLA exon 1, and enzyme activity values in carriers of any of the polymorphisms were compared to those of individuals with the standard genotype; GLA exon 1 was genotyped in males who had α-Gal activity in dried blood spots lower than 2 SD below the cohort average. RESULTS AND CONCLUSIONS Mean α-Gal leukocyte activity was ∼ 25% higher in subjects with the g.1170C or CC genotype than in those with the alternative genotypes (p < 0.05). The frequency of the g.1170T allele in subjects with low α-Gal activity in dried blood spots was 4-fold higher (p < 0.05) than in the general population. As in hemizygotes, the g.1150A heterozygote identified in this study had plasma α-Gal activity more than 2-fold above the normal mean. The g.1168A allele did not affect enzyme activity. Surprisingly, females with the standard GLA exon 1 genotype had significantly higher plasma α-Gal activity than genetically comparable males.
Collapse
Affiliation(s)
- J P Oliveira
- Serviço de Genética, Faculdade de Medicina, Universidade do Porto, Alameda Hernâni Monteiro, 4200-319, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
9
|
Shabbeer J, Yasuda M, Benson SD, Desnick RJ. Fabry disease: identification of 50 novel alpha-galactosidase A mutations causing the classic phenotype and three-dimensional structural analysis of 29 missense mutations. Hum Genomics 2006; 2:297-309. [PMID: 16595074 PMCID: PMC3500179 DOI: 10.1186/1479-7364-2-5-297] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Fabry disease, an X-linked recessive inborn error of glycosphingolipid catabolism, results from the deficient activity of the lysosomal exoglycohydrolase, α-galactosidase A (EC 3.2.1.22; α-Gal A). The molecular lesions in the α-Gal A gene causing the classic phenotype of Fabry disease in 66 unrelated families were determined. In 49 families, 50 new mutations were identified, including: 29 missense mutations (N34K, T41I, D93V, R112S, L166G, G171D, M187T, S201Y, S201F, D234E, W236R, D264Y, M267R, V269M, G271S, G271V, S276G, Q283P, A285P, A285D, M290I, P293T, Q312H, Q321R, G328V, E338K, A348P, E358A, Q386P); nine nonsense mutations (C56X, E79X, K127X, Y151X, Y173X, L177X, W262X, Q306X, E338X); five splicing defects (IVS4-1G > A, IVS5-2A > G, IVS5 + 3A > G, IVS5 + 4A > G, IVS6-1G > C); four small deletions (18delA, 457delGAC, 567delG, 1096delACCAT); one small insertion (996insC); one 3.1 kilobase Alu-Alu deletion (which included exon 2); and one complex mutation (K374R, 1124delGAG). In 18 families, 17 previously reported mutations were identified, with R112C occurring in two families. In two classically affected families, affected males were identified with two mutations: one with two novel mutations, D264Y and V269M and the other with one novel (Q312H) and one previously reported (A143T) mutation. Transient expression of the individual mutations revealed that D264Y and Q312H were localised in the endoplasmic reticulum and had no detectable or markedly reduced activity, whereas V269M and A143T were localised in lysosomes and had approximately 10 per cent and approximately 35 per cent of expressed wild-type activity, respectively. Structural analyses based on the enzyme's three-dimensional structure predicted the effect of the 29 novel missense mutations on the mutant glycoprotein's structure. Of note, three novel mutations (approximately 10 per cent) were predicted not to significantly alter the glycoprotein's structure; however, they were disease causing. These studies further define the molecular heterogeneity of the α-Gal A mutations in classical Fabry disease, permit precise heterozygote detection and prenatal diagnosis, and provide insights into the structural alterations of the mutant enzymes that cause the classic phenotype.
Collapse
Affiliation(s)
- Junaid Shabbeer
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | - Makiko Yasuda
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | - Stacy D Benson
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA
| | - Robert J Desnick
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| |
Collapse
|
10
|
Ashley GA, Desnick RJ, Gordon RE, Gordon JW. High overexpression of the human alpha-galactosidase A gene driven by its promoter in transgenic mice: implications for the treatment of Fabry disease. J Investig Med 2002; 50:185-92. [PMID: 12033283 DOI: 10.2310/6650.2002.33432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Human alpha-galactosidase A (alpha-Gal A) is the lysosomal enzyme that cleaves alpha-galactosyl residues from glycoconjugates and is the deficient enzyme in Fabry disease. To date, there have been no studies on the regulation of this "housekeeping" gene. METHODS Transgenic mice were established with either 1) a 13.3-kilobase (kb) human genomic fragment that contained 246 bp of 5'- and approximately 2.8 kb of 3'- untranslated sequences, or 2) an "intronless" construct derived from the genomic sequence with the 5' and 3' flanking regions intact. Tissues that expressed high levels of alpha-Gal A activity were examined by light and electron microscopy. RESULTS Transgenic mice were generated with 2 and 12 copies of the genomic sequence (Lines 1 and 2) or about 60 copies of the intronless construct (Lines 3 and 4). In mice hemizygous for the genomic transgene (Lines 1 and 2), tissue alpha-Gal A activities were 12 to 155 times higher than those in the respective wild-type tissue, depending on tissue and transgene copy number. Of note, the high overexpression did not alter the cellular or subcellular cytoarchitecture. In contrast, alpha-Gal A activities expressed by mice that carried the intronless construct were only two- to sixfold more than in wild-type tissues in which the genomic transgene was highly expressed. CONCLUSIONS The remarkably high levels of alpha-Gal A expression in transgenic mice carrying the intact genomic sequence versus the intronless construct suggested that the genomic sequence contained a strong intronic enhancer element. Identification of this regulatory element or elements may be useful in efforts to overexpress human alpha-Gal A for gene therapy endeavors. In addition, overexpression of human alpha-Gal A did not affect cellular morphology, which indicates that its overexpression in gene therapy endeavors should be safe.
Collapse
Affiliation(s)
- Grace A Ashley
- Department of Human Genetics, Mount Sinai School of Medicine of New York University, NY 10029, USA
| | | | | | | |
Collapse
|