1
|
Khalil NY, Bakheit AH, Alkahtani HM, Al-Muhanna T. Vinpocetine (A comprehensive profile). PROFILES OF DRUG SUBSTANCES, EXCIPIENTS, AND RELATED METHODOLOGY 2022; 47:1-54. [PMID: 35396012 DOI: 10.1016/bs.podrm.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vinpocetine (VIN) is a herbal supplement extracted from the periwinkle plant. It is a multi-action agent, which is used to treat various neurological disorders such as Alzheimer's and Parkinson's disease. Vinpocetine has also anti-inflammatory, analgesic, antioxidant property and treats various thinking and memory problems. Currently, vinpocetine is also available in the market as a dietary supplement to enhance cognition and memory. This profile explains the physicochemical properties, methods of preparation, content of related impurities and different spectroscopical behavior of vinpocetine. It also discusses the reported methods of analysis of the drug, which include Compendial Methods, Electrochemical Methods, Spectrophotometric Methods and Chromatographic Methods of analysis. Furthermore, this profile explains the stability of the drug subjected to stress conditions of acid, alkaline and photolytic degradation. In addition, the clinical applications of the drug, its uses, side effects, dosing information, pharmacokinetics and mechanism of action are also discussed.
Collapse
Affiliation(s)
- Nasr Y Khalil
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Turki Al-Muhanna
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Gutiérrez-Farfán I, Reyes-Legorreta C, Solís-Olguín M, Alatorre-Miguel E, Verduzco-Mendoza A, Durand-Rivera A. Evaluation of vinpocetine as a therapy in patients with sensorineural hearing loss: A phase II, open-label, single-center study. J Pharmacol Sci 2021; 145:313-318. [PMID: 33712282 DOI: 10.1016/j.jphs.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/07/2021] [Accepted: 01/27/2021] [Indexed: 10/22/2022] Open
Abstract
The progressive degeneration of the excitable cells of the ear depends on the sustained excitation of the voltage-sensitive sodium channels, so the negative pharmacological modulation could be a rational therapeutic strategy against the damage of these cells. The objective was to demonstrate the effectiveness of Vinpocetine (VPC), a potent sodium channel blocker, as a treatment for acquired sensorineural hearing loss. A phase II, longitudinal and prospective open clinical study, was conducted over a period of 12 months with patients older than 18 years, to demonstrate the effectiveness of Vinpocetine (VPC) as a treatment for acquired sensorineural hearing loss, using evoked potentials, otoacoustic emissions, audiometry and logoaudiometry, analyzing the results at 6 and 12 months of treatment with Vinpocetine (30 mg/day in 3 doses). It was observed that from 0 to 6 months there was hearing impairment (which was already expected due to the age of the patients). From 6 to 12 months and from 0 to 12 months there were significant differences with a tendency towards improvement, indicating that the aforementioned deterioration not only stopped, but that with the use of vinpocetine, the hearing capacity improved. It is concluded that Vinpocetine helps to stop hearing impairment and even improve hearing.
Collapse
Affiliation(s)
| | - Celia Reyes-Legorreta
- División de Neurociencias, Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación LGII (INR-SSA) CDMX, Mexico
| | - Mauricio Solís-Olguín
- División de Neurociencias, Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación LGII (INR-SSA) CDMX, Mexico
| | - Efrén Alatorre-Miguel
- División de Neurociencias, Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación LGII (INR-SSA) CDMX, Mexico
| | - Antonio Verduzco-Mendoza
- Subdirección de Investigación Biotecnológica. Instituto Nacional de Rehabilitación LGII (INR-SSA) CDMX, Mexico
| | - Alfredo Durand-Rivera
- División de Neurociencias, Laboratorio de Neuroprotección, Instituto Nacional de Rehabilitación LGII (INR-SSA) CDMX, Mexico.
| |
Collapse
|
3
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
4
|
Ayoub S, Melzig MF. Induction Effects of Apigenin, Luteolin and Vinpocetin on Neutral Endopeptidase (NEP) and Angiotensin-Converting Enzyme Activity (ACE) of SK-N-SH Cells. Nat Prod Commun 2019. [DOI: 10.1177/1934578x0600100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The long-term effects of a number of flavonoids (such as apigenin, luteolin and amentoflavone) and vinpocetine on the neutral endopeptidase (NEP) and angiotensin-converting enzyme (ACE) were investigated. It was shown that apigenin, luteolin and vinpocetin are able to induce the activity of both NEP and ACE associated with the inhibition of the proliferation of the neuroblastoma cell line SK-N-SH. Amentoflavone has no effect on either NEP or ACE activity. An additional enhancement of cellular NEP activity could be detected after the treatment of the cells with a combination of both arabinosylcytosine and either apigenin or luteolin. This effect supports the assumption that apigenin and luteolin influence directly the gene expression of NEP. Taking into account the significant role of NEP and ACE in the degradation of amyloid beta peptides, the induction of both enzymes by long-term treatment with apigenin, luteolin and vinpocetine may have a beneficial effect regarding the prevention of the formation of amyloid plaques and the effect of these substances may be discussed as neuroprotective.
Collapse
Affiliation(s)
- Shereen Ayoub
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Matthias F. Melzig
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| |
Collapse
|
5
|
Vinpocetine protects inner retinal neurons with functional NMDA glutamate receptors against retinal ischemia. Exp Eye Res 2018; 167:1-13. [DOI: 10.1016/j.exer.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/31/2017] [Accepted: 10/08/2017] [Indexed: 11/21/2022]
|
6
|
An update on vinpocetine: New discoveries and clinical implications. Eur J Pharmacol 2017; 819:30-34. [PMID: 29183836 DOI: 10.1016/j.ejphar.2017.11.041] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/06/2017] [Accepted: 11/24/2017] [Indexed: 01/02/2023]
Abstract
Vinpocetine, a derivative of the alkaloid vincamine, has been clinically used in many countries for treatment of cerebrovascular disorders such as stroke and dementia for more than 30 years. Currently, vinpocetine is also available in the market as a dietary supplement to enhance cognition and memory. Due to its excellent safety profile, increasing efforts have been put into exploring the novel therapeutic effects and mechanism of actions of vinpocetine in various cell types and disease models. Recent studies have revealed a number of novel functions of vinpocetine, including anti-inflammation, antagonizing injury-induced vascular remodeling and high-fat-diet-induced atherosclerosis, as well as attenuating pathological cardiac remodeling. These novel findings may facilitate the repositioning of vinpocetine for preventing or treating relevant disorders in humans.
Collapse
|
7
|
Affiliation(s)
- Mamede de Carvalho
- a Instituto de Medicina Molecular and Institute of Physiology, Faculty of Medicine , University of Lisbon , Portugal and.,b Department Neurosciences and Mental Health , CHLN-H Santa Maria , Lisbon , Portugal
| |
Collapse
|
8
|
Sitges M, Aldana BI, Reed RC. Effect of the Anti-depressant Sertraline, the Novel Anti-seizure Drug Vinpocetine and Several Conventional Antiepileptic Drugs on the Epileptiform EEG Activity Induced by 4-Aminopyridine. Neurochem Res 2016; 41:1365-74. [PMID: 26830290 DOI: 10.1007/s11064-016-1840-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/18/2016] [Accepted: 01/20/2016] [Indexed: 11/25/2022]
Abstract
Seizures are accompanied by an exacerbated activation of cerebral ion channels. 4-aminopyridine (4-AP) is a pro-convulsive agent which mechanism of action involves activation of Na(+) and Ca(2+) channels, and several antiepileptic drugs control seizures by reducing these channels permeability. The antidepressant, sertraline, and the anti-seizure drug vinpocetine are effective inhibitors of cerebral presynaptic Na(+) channels. Here the effectiveness of these compounds to prevent the epileptiform EEG activity induced by 4-AP was compared with the effectiveness of seven conventional antiepileptic drugs. For this purpose, EEG recordings before and at three intervals within the next 30 min following 4-AP (2.5 mg/kg, i.p.) were taken in anesthetized animals; and the EEG-highest peak amplitude values (HPAV) calculated. In control animals, the marked increase in the EEG-HPAV observed near 20 min following 4-AP reached its maximum at 30 min. Results show that this epileptiform EEG activity induced by 4-AP is prevented by sertraline and vinpocetine at a dose of 2.5 mg/kg, and by carbamazepine, phenytoin, lamotrigine and oxcarbazepine at a higher dose (25 mg/kg). In contrast, topiramate (25 mg/kg), valproate (100 mg/kg) and levetiracetam (100 mg/kg) failed to prevent the epileptiform EEG activity induced by 4-AP. It is concluded that 4-AP is a useful tool to elicit the mechanism of action of anti-seizure drugs at clinical meaningful doses. The particular efficacy of sertraline and vinpocetine to prevent seizures induced by 4-AP is explained by their high effectiveness to reduce brain presynaptic Na(+) and Ca(2+) channels permeability.
Collapse
Affiliation(s)
- Maria Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, Ciudad Universitaria, 04510, Mexico, DF, Mexico.
| | - Blanca Irene Aldana
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronald Charles Reed
- Department of Pharmacy Practice, Husson University, One College Circle, Bangor, ME, 04401-2999, USA
| |
Collapse
|
9
|
Vinpocetine reduces carrageenan-induced inflammatory hyperalgesia in mice by inhibiting oxidative stress, cytokine production and NF-κB activation in the paw and spinal cord. PLoS One 2015; 10:e0118942. [PMID: 25822523 PMCID: PMC4379066 DOI: 10.1371/journal.pone.0118942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022] Open
Abstract
Vinpocetine is a safe nootropic agent used for neurological and cerebrovascular diseases. The anti-inflammatory activity of vinpocetine has been shown in cell based assays and animal models, leading to suggestions as to its utility in analgesia. However, the mechanisms regarding its efficacy in inflammatory pain treatment are still not completely understood. Herein, the analgesic effect of vinpocetine and its anti-inflammatory and antioxidant mechanisms were addressed in murine inflammatory pain models. Firstly, we investigated the protective effects of vinpocetine in overt pain-like behavior induced by acetic acid, phenyl-p-benzoquinone (PBQ) and formalin. The intraplantar injection of carrageenan was then used to induce inflammatory hyperalgesia. Mechanical and thermal hyperalgesia were evaluated using the electronic von Frey and the hot plate tests, respectively, with neutrophil recruitment to the paw assessed by a myeloperoxidase activity assay. A number of factors were assessed, both peripherally and in the spinal cord, including: antioxidant capacity, reduced glutathione (GSH) levels, superoxide anion, tumor necrosis factor alpha (TNF-α) and interleukin 1 beta (IL-1β) levels, as well as nuclear factor kappa B (NF-κB) activation. Vinpocetine inhibited the overt pain-like behavior induced by acetic acid, PBQ and formalin (at both phases), as well as the carrageenan-induced mechanical and thermal hyperalgesia and associated neutrophil recruitment. Both peripherally and in the spinal cord, vinpocetine also inhibited: antioxidant capacity and GSH depletion; increased superoxide anion; IL-1β and TNF-α levels; and NF-κB activation. As such, vinpocetine significantly reduces inflammatory pain by targeting oxidative stress, cytokine production and NF-κB activation at both peripheral and spinal cord levels.
Collapse
|
10
|
Vinpocetine regulates cation channel permeability of inner retinal neurons in the ischaemic retina. Neurochem Int 2014; 66:1-14. [DOI: 10.1016/j.neuint.2014.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/09/2013] [Accepted: 01/04/2014] [Indexed: 11/23/2022]
|
11
|
Herrera-Mundo N, Sitges M. Vinpocetine and α-tocopherol prevent the increase in DA and oxidative stress induced by 3-NPA in striatum isolated nerve endings. J Neurochem 2012; 124:233-40. [DOI: 10.1111/jnc.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/28/2022]
Affiliation(s)
- Nieves Herrera-Mundo
- Departamento de Biología Celular y Fisiología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; México
| | - María Sitges
- Departamento de Biología Celular y Fisiología; Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; México
| |
Collapse
|
12
|
Alfred SE, Surendra A, Le C, Lin K, Mok A, Wallace IM, Proctor M, Urbanus ML, Giaever G, Nislow C. A phenotypic screening platform to identify small molecule modulators of Chlamydomonas reinhardtii growth, motility and photosynthesis. Genome Biol 2012; 13:R105. [PMID: 23158586 PMCID: PMC3580497 DOI: 10.1186/gb-2012-13-11-r105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 11/18/2012] [Indexed: 12/12/2022] Open
Abstract
Chemical biology, the interfacial discipline of using small molecules as probes to investigate biology, is a powerful approach of developing specific, rapidly acting tools that can be applied across organisms. The single-celled alga Chlamydomonas reinhardtii is an excellent model system because of its photosynthetic ability, cilia-related motility and simple genetics. We report the results of an automated fitness screen of 5,445 small molecules and subsequent assays on motility/phototaxis and photosynthesis. Cheminformatic analysis revealed active core structures and was used to construct a naïve Bayes model that successfully predicts algal bioactive compounds.
Collapse
|
13
|
Tárnok K, Kiss E, Luiten PGM, Nyakas C, Tihanyi K, Schlett K, Eisel ULM. Effects of Vinpocetine on mitochondrial function and neuroprotection in primary cortical neurons. Neurochem Int 2008; 53:289-95. [PMID: 18793690 DOI: 10.1016/j.neuint.2008.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Accepted: 08/21/2008] [Indexed: 10/21/2022]
Abstract
Vinpocetine (ethyl apovincaminate), a synthetic derivative of the Vinca minor alkaloid vincamine, is widely used for the treatment of cerebrovascular-related diseases. One of the proposed mechanisms underlying its action is to protect against the cytotoxic effects of glutamate overexposure. Glutamate excitotoxicity leads to the disregulation of mitochondrial function and neuronal metabolism. As Vinpocetine has a binding affinity to the peripheral-type benzodiazepine receptor (PBR) involved in the mitochondrial transition pore complex, we investigated whether neuroprotection can be at least partially due to Vinpocetine's effects on PBRs. Neuroprotective effects of PK11195 and Ro5-4864, two drugs with selective and high affinity to PBR, were compared to Vinpocetine in glutamate excitotoxicity assays on primary cortical neuronal cultures. Vinpocetine exerted a neuroprotective action in a 1-50microM concentration range while PK11195 and Ro5-4864 were only slightly neuroprotective, especially in high (>25microM) concentrations. Combined pretreatment of neuronal cultures with Vinpocetine and PK11195 or Ro5-4864 showed increased neuroprotection in a dose-dependent manner, indicating that the different drugs may have different targets. To test this hypothesis, mitochondrial membrane potential (MMP) of cultured neurons was measured by flow cytometry. 25microM Vinpocetine reduced the decrease of mitochondrial inner membrane potential induced by glutamate exposure, but Ro5-4864 in itself was found to be more potent to block glutamate-evoked changes in MMP. Combination of Ro5-4864 and Vinpocetine treatment was found to be even more effective. In summary, the present results indicate that the neuroprotective action of vinpocetine in culture can not be explained by its effect on neuronal PBRs alone and that additional drug targets are involved.
Collapse
Affiliation(s)
- K Tárnok
- Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary.
| | | | | | | | | | | | | |
Collapse
|
14
|
Characterization of Phenytoin, Carbamazepine, Vinpocetine and Clorgyline Simultaneous Effects on Sodium Channels and Catecholamine Metabolism in Rat Striatal Nerve Endings. Neurochem Res 2008; 34:470-9. [DOI: 10.1007/s11064-008-9805-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 07/07/2008] [Indexed: 01/05/2023]
|
15
|
Sitges M, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, valproic acid, oxcarbazepine, lamotrigine, topiramate and vinpocetine on the presynaptic Ca2+ channel-mediated release of [3H]glutamate: Comparison with the Na+ channel-mediated release. Neuropharmacology 2007; 53:854-62. [PMID: 17904592 DOI: 10.1016/j.neuropharm.2007.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/03/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The effect of carbamazepine, phenytoin, valproate, oxcarbazepine, lamotrigine and topiramate, that are among the most widely used antiepileptic drugs (AEDs), and of the new putative AED vinpocetine on the Ca(2+) channel-mediated release of [(3)H]Glu evoked by high K(+) in hippocampal isolated nerve endings was investigated. Results show that carbamazepine, oxcarbazepine and phenytoin reduced [(3)H]Glu release to high K(+) to about 30% and 55% at concentrations of 500 microM and 1500 microM, respectively; lamotrigine and topiramate to about 27% at 1500 microM; while valproate failed to modify it. Vinpocetine was the most potent and effective; 50 microM vinpocetine practically abolished the high K(+) evoked release of [(3)H]Glu. Comparison of the inhibition exerted by the AEDs on [(3)H]Glu release evoked by high K(+) with the inhibition exerted by the AEDs on [(3)H]Glu release evoked by the Na(+) channel opener, veratridine, shows that all the AEDs are in general more effective blockers of the presynaptic Na(+) than of the presynaptic Ca(2+) channel-mediated response. The high doses of AEDs required to control seizures are frequently accompanied by adverse secondary effects. Therefore, the higher potency and efficacy of vinpocetine to reduce the permeability of presynaptic ionic channels controlling the release of the most important excitatory neurotransmitter in the brain must be advantageous in the treatment of epilepsy.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, México D.F., Mexico.
| | | | | |
Collapse
|
16
|
Knyihar-Csillik E, Vecsei L, Mihaly A, Fenyo R, Farkas I, Krisztin-Peva B, Csillik B. Effect of vinpocetine on retrograde axoplasmic transport. Ann Anat 2007; 189:39-45. [PMID: 17319607 DOI: 10.1016/j.aanat.2006.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vinpocetine, a derivate of vincamine, is widely used in the clinical pharmacotherapy of cerebral circulatory diseases. Herewith we report on a novel effect of vinpocetine: inhibition of retrograde axoplasmic transport of nerve growth factor (NGF) in the peripheral nerve. Blockade of retrograde transport of NGF results in transganglionic degenerative atrophy (TDA) in the segmentally related ipsilateral superficial spinal dorsal horn, which is characterized by depletion of the marker enzymes fluoride-resistant acid phosphatase (FRAP) and thiamine monophosphatase (TMP). At the same time, pain-related neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP), are depleted from lamina I-III from the segmentally related, ipsitateral Rolando substance of the spinal cord. On the basis of these experiments it is suggested that vinpocetine may result in a locally restricted decrease of nociception, that might be useful in clinical treatment of intractable pain. Pilot self-experiments support this assumption.
Collapse
|
17
|
Sitges M, Nekrassov V. Acute and chronic effects of carbamazepine, phenytoin, valproate and vinpocetine on BAEP parameters and threshold in the guinea pig. Clin Neurophysiol 2007; 118:420-6. [PMID: 17157555 DOI: 10.1016/j.clinph.2006.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 10/02/2006] [Accepted: 10/16/2006] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To characterize the acute and chronic effects of the antiepileptic drugs (AEDs): carbamazepine (CBZ), phenytoin (PHT), valproic acid (VPA) and vinpocetine (VPC), at doses 20, 6, 30 and 2mg/kg, respectively, on the latencies and amplitudes of the waves of brainstem auditory evoked potentials (BAEPs) elicited by a supra-threshold stimulus alongside BAEP threshold. METHODS BAEPs elicited by a stimulus of high (100dB nHL) intensity and BAEP thresholds were obtained at 4 and 8kHz: before, after the start of treatment, and following 28 days of a daily injection of the AEDs. RESULTS After the start of treatment BAEPs were unchanged. After the long term treatment, CBZ and PHT increased P3 and P4 wave peak latencies and reduced P4 amplitude. Chronic VPA did not modify BAEP waves, and chronic VPC reduced P3 and P4 latencies. P1 and P2 were unchanged. BAEP thresholds at 4 and 8kHz were increased by CBZ, PHT and VPA, and decreased by VPC. CONCLUSIONS The chronic administration of several AEDs modifies BAEP waves of retro-cochlear origin. SIGNIFICANCE Alterations in the generators of the later waves of BAEPs underlie, in most cases, the changes in hearing sensitivity produced by the long term treatment with AEDs at therapeutic relevant doses.
Collapse
Affiliation(s)
- María Sitges
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| | | |
Collapse
|
18
|
Sitges M, Chiu LM, Guarneros A, Nekrassov V. Effects of carbamazepine, phenytoin, lamotrigine, oxcarbazepine, topiramate and vinpocetine on Na+ channel-mediated release of [3H]glutamate in hippocampal nerve endings. Neuropharmacology 2006; 52:598-605. [PMID: 17070874 DOI: 10.1016/j.neuropharm.2006.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/14/2006] [Accepted: 09/05/2006] [Indexed: 11/22/2022]
Abstract
Several of the most effective antiepileptic drugs are believed to stop the paroxysmal neuronal activity acting as Na(+) channel blockers. However, no single study comparing in parallel the potency and efficacy of the most commonly used antiepileptic drugs on brain Na(+) channel-mediated responses is available. In the present study the effects of increasing concentrations of carbamazepine, phenytoin, lamotrigine, oxcarbazepine and topiramate, which are among the most frequently used antiepileptic drugs, and of the new putative antiepileptic drug, vinpocetine, on the release of glutamate (Glu) elicited by the Na(+) channel opener, veratridine were investigated in hippocampal isolated nerve endings preloaded with the labeled excitatory amino acid neurotransmitter. The present results show that carbamazepine, phenytoin, lamotrigine and oxcarbazepine, in the range from 150 to 1500 microM, progressively inhibit [(3)H]Glu release induced by veratridine. Also vinpocetine progressively inhibits the veratridine-induced response, but in a much lower range of concentrations (from 1.5 to 15 microM), whereas topiramate only exerts a modest inhibition (20%) of Glu release to veratridine at the highest dose tested (1500 microM). These results indicate that the mechanism of action of several of the most widely used antiepileptic drugs involves reduction in cerebral presynaptic voltage sensitive Na(+) channels permeability. Considering that the high doses of antiepileptic drugs required to control seizures are frequently accompanied by adverse secondary effects, the higher potency of vinpocetine to reduce Na(+) channels permeability might be advantageous.
Collapse
Affiliation(s)
- María Sitges
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, México D.F., Mexico.
| | | | | | | |
Collapse
|
19
|
Nekrassov V, Sitges M. Additive effects of antiepileptic drugs and pentylenetetrazole on hearing. Neurosci Lett 2006; 406:276-80. [PMID: 16930834 DOI: 10.1016/j.neulet.2006.07.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/04/2006] [Accepted: 07/21/2006] [Indexed: 11/26/2022]
Abstract
The long-term effect of three of the most widely used antiepileptic drugs at relevant doses on the hearing decline that accompanies pentylenetetrazole (PTZ)-induced experimental epilepsy was investigated here, and compared with the effect of vinpocetine (VPC), which is a drug with antiepileptic potential. For this purpose, cortical activity (monitored by the EEG) and auditory sensitivity, as indicated by brainstem auditory evoked potential (BAEP) threshold at 4 and 8 kHz tone frequencies, were determined in guinea pigs daily injected for 28 days with vehicle (control), 20 mg/kg carbamazepine (CBZ), 6 mg/kg phenytoin (PHT), 30 mg/kg valproate (VPA) or 2 mg/kg vinpocetine (VPC) before and after the administration of PTZ at a convulsing dose (100 mg/kg). Results show that all the antiepileptic drugs tested were more or less effective in preventing PTZ-induced seizures. The long-term treatment with VPC decreased the auditory threshold, whereas the long-term treatment with CBZ, PHT or VPA increased the auditory threshold to a similar extent as the convulsing agent, PTZ. The combined effects of the antiepileptic drugs and PTZ on auditory threshold were additive. Therefore, only VPC prevented the increase in the auditory threshold induced by PTZ. It is concluded that the hearing loss produced by the long-term treatment with the most commonly used antiepileptic drugs could be aggravated by the illness. The prevention exerted by VPC on the hearing decline that accompanies experimental epilepsy, along with its capacity to control seizures at low doses in this and other animal models of epilepsy, would make VPC a valid candidate for the treatment of epilepsy.
Collapse
Affiliation(s)
- Vladimir Nekrassov
- División de Investigación Básica y Aplicada, Instituto Nacional de Rehabilitación, SSA, México
| | | |
Collapse
|
20
|
Sitges M, Chiu LM, Nekrassov V. Single and combined effects of carbamazepine and vinpocetine on depolarization-induced changes in Na+, Ca2+ and glutamate release in hippocampal isolated nerve endings. Neurochem Int 2006; 49:55-61. [PMID: 16621162 DOI: 10.1016/j.neuint.2005.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 12/21/2005] [Indexed: 11/22/2022]
Abstract
The single and combined effects of carbamazepine and vinpocetine on the release of the excitatory amino acid neurotransmitter glutamate, on the rise in internal Na+ (Na(i), as determined with SBFI), and on the rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by an increased permeability of presynaptic Na+ channels, with veratridine, or by an increased permeability of presynaptic Ca2+ channels with high K+, were investigated in isolated hippocampal nerve endings. The present study shows that carbamazepine and vinpocetine, both inhibit dose dependently the release of preloaded [3H]Glu induced by veratridine. However, carbamazepine is two orders of magnitude less potent than vinpocetine. The calculated IC(50)'s for carbamazepine and vinpocetine to inhibit veratridine-induced [3H]Glu release are 200 and 2 microM, respectively. Consistently 150 microM carbamazepine and 1.5 microM vinpocetine reduce the veratridine-induced rise in Na(i) in a similar extent. The single effects of carbamazepine and of vinpocetine on the presynaptic Na+ channel mediated responses, namely the rise in Na(i) and the release of Glu induced by veratridine, are additive. Responses that depend on the entrance of external Ca2+ via presynaptic Ca2+ channels, such as the release of [3H]Glu and the rise in Ca(i) induced by high K+, are insensitive to 300 microM carbamazepine and slightly reduced by 5 microM vinpocetine. It is concluded that the additive effects of carbamazepine, which is one of the most common antiepileptic drugs, and vinpocetine that besides its known neuroprotective action and antiepileptic potential is a memory enhancer, may perhaps be advantageous in the treatment of epileptic patients.
Collapse
Affiliation(s)
- María Sitges
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Univeresitaria, 04510 México D.F., Mexico.
| | | | | |
Collapse
|
21
|
Abstract
The Apocynaceae plant family contains a great number of so called eburnamine-vincamine alkaloids. Quite a few of these alkaloids exert varied pharmacological activities on the cell multiplication, cardiovascular system, and brain functions. Many derivatives were also synthesized to find pharmacologically active compounds better characterized and safer to be administered than the natural plant alkaloids themselves. We concentrate on the eburnamine structures with cerebral activities in this review. Vincamine, vinburnine, vindeburnol, apovincaminate, and vinpocetine (cis-ethyl-apovincaminate) all share modulatory effects on brain circulation and neuronal homeostasis, bear antihypoxic and neuroprotective potencies to various degrees. The most eminent compound of this class of alkaloids is vinpocetine. Since its introduction to the market as a neuroprotective agent many non clinical and clinical studies proved vinpocetine's effects on calmodulin dependent phosphodiesterase E1, on sodium, calcium channels, peripheral benzodiazepine receptor, and glutamate receptors as well as its clinical usefulness in the treatment of post-ischaemic stroke disease states and various disorders of cerebrovascular origin. Lately, positron emission tomography studies proved that vinpocetine has a rapid uptake in the primate and human brain with a heterogeneous distribution pattern (preference areas: thalamus, basal ganglia, and visual cortex) both after intravenous and oral administration. Vinpocetine exerts beneficial effects in cerebral glucose metabolism and regional cerebral blood flow in chronic post-stroke patients.
Collapse
Affiliation(s)
- Adám Vas
- Chemical Works of Gedeon Richter Ltd., Budapest, Hungary.
| | | |
Collapse
|
22
|
Lerner A, Epstein P. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393:21-41. [PMID: 16336197 PMCID: PMC1383661 DOI: 10.1042/bj20051368] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway has emerged as a key regulator of haematopoietic cell proliferation, differentiation and apoptosis. In parallel, general understanding of the biology of cyclic nucleotide PDEs (phosphodiesterases) has advanced considerably, revealing the remarkable complexity of this enzyme system that regulates the amplitude, kinetics and location of intracellular cAMP-mediated signalling. The development of therapeutic inhibitors of specific PDE gene families has resulted in a growing appreciation of the potential therapeutic application of PDE inhibitors to the treatment of immune-mediated illnesses and haematopoietic malignancies. This review summarizes the expression and function of PDEs in normal haematopoietic cells and the evidence that family-specific inhibitors will be therapeutically useful in myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Adam Lerner
- *Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA 02118, U.S.A
- †Department of Pathology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Paul M. Epstein
- ‡Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
23
|
Sitges M, Nekrassov V. Vinpocetine prevents 4-aminopyridine-induced changes in the EEG, the auditory brainstem responses and hearing. Clin Neurophysiol 2004; 115:2711-7. [PMID: 15546779 DOI: 10.1016/j.clinph.2004.06.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate if the sodium channel blocker and memory enhancer, vinpocetine, was capable to overcome the epileptic cortical activity, the abnormalities in the later waves of the auditory brainstem responses (ABRs) and the hearing loss induced by 4-AP at a convulsing dose in the guinea pig in vivo. METHODS EEG and ABR recordings before and at specific times within 2h after the injection of 4-AP (2 mg/kg, i.p.) were taken in animals pre-injected i.p. with vehicle or with vinpocetine (2 mg/kg) 1 h before 4-AP. The amplitude and latency of the ABR waves induced by a monoaural stimulus of high intensity (100 dB nHL) at 4 and 8 kHz pure tone frequencies and the ABR threshold were determined in the animals exposed to the different experimental conditions. RESULTS Vinpocetine inhibited the EEG changes induced by 4-AP for the ictal and post-ictal periods as well as the alterations in amplitude and latency of P3 and P4 and the increase in the ABR threshold induced by 4-AP. CONCLUSIONS Vinpocetine prevents the retro-cochlear alterations and the hearing decline that accompany the epileptic cortical activity. SIGNIFICANCE Vinpocetine could be a promising alternative for the treatment of epilepsy.
Collapse
Affiliation(s)
- Maria Sitges
- Depto. de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, UNAM, Apartado Postal 70228, Ciudad Universitaria 04510, Mexico City, DF, Mexico.
| | | |
Collapse
|
24
|
Galindo CA, Sitges M. Dihydropiridines mechanism of action in striatal isolated nerve endings: comparison with omega-agatoxin IVA. Neurochem Res 2004; 29:659-69. [PMID: 15098927 DOI: 10.1023/b:nere.0000018836.82122.23] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relative contribution of Ca2+ and Na+ channels to the mechanism underlying the action of the dihydropiridines (DHPs), nimodipine, nitrendipine and nifedipine was investigated in rat striatum synaptosomes. The rise in internal Ca2+ (Ca(i), as determined with fura-2) induced by high K+ was unchanged by the DHPs, which like tetrodotoxin (TTX) inhibited both the rise in internal Na+ (Na(i), as determined with the Na+ selective indicator dye, SBFI) and the rise in Ca(i) induced by veratridine. Nimodipine and nitrendipine were much more potent than nifedipine. Oppositely to TTX and to the DHPs, the P/Q type Ca2+ channel blocker, omega-agatoxin IVA did not inhibit the rise in Ca(i) induced by veratridine, but inhibited the rise in Ca(i) induced by high K+. Veratridine-evoked release of dopamine, GABA, Glu, and Asp (detected by HPLC) was inhibited by nimodipine, nitrendipine, and TTX, while high K+-evoked release was unchanged by the DHPs or TTX. It is concluded that the reduction in presynaptic Na+ channel permeability might contribute to the cerebral effects of DHPs.
Collapse
Affiliation(s)
- C A Galindo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México
| | | |
Collapse
|
25
|
Nekrassov V, Sitges M. Vinpocetine inhibits the epileptic cortical activity and auditory alterations induced by pentylenetetrazole in the guinea pig in vivo. Epilepsy Res 2004; 60:63-71. [PMID: 15279871 DOI: 10.1016/j.eplepsyres.2004.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2004] [Revised: 04/16/2004] [Accepted: 05/15/2004] [Indexed: 11/16/2022]
Abstract
Here we investigate the effect of the neuroprotective drug, vinpocetine on the epileptic cortical activity, on the alterations of the later waves of brainstem auditory evoked potentials (BAEPs) and on the hearing decline induced by the convulsing agent, pentylenetetrazole (PTZ). Vinpocetine at doses from 2 to 10 mg/kg inhibits the tonic-clonic convulsions induced by PTZ (100 mg/kg). Vinpocetine injected at a dose of 2 mg/kg 4 h before PTZ completely prevents the characteristic electroencephalogram (EEG) changes induced by PTZ for the ictal and post-ictal periods. Vinpocetine also abolished the PTZ-induced changes in the amplitude and latency of the later waves of the BAEPs in response to pure tone burst monoaural stimuli (frequency 8 or 4 kHz intensity 100 dB), and the PTZ-induced increase in the BAEP threshold. These results show the antiepileptic potential of vinpocetine and indicate the capability of vinpocetine to prevent the changes in the BAEP waves associated with the hearing loss observed during generalized epilepsy.
Collapse
Affiliation(s)
- Vladimir Nekrassov
- Instituto de la Comunicación Humana, Centro Nacional de Rehabilitación, SSA, Mexico
| | | |
Collapse
|
26
|
Galván E, Sitges M. Characterization of the participation of sodium channels on the rise in Na+ induced by 4-aminopyridine (4-AP) in synaptosomes. Neurochem Res 2004; 29:347-55. [PMID: 15002730 DOI: 10.1023/b:nere.0000013737.17288.ce] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The participation of voltage-sensitive Na+ channels (VSSC) on the changes on internal (i) Na+, K+, Ca2+, and on DA, Glu, and GABA release caused by different concentrations of 4-AP was investigated in striatum synaptosomes. TTX, which abolished the increase in Na(i) (as determined with SBFI), induced by 0.1 mM 4-AP only inhibited by 30% the rise in Na(i) induced by 1 mM 4-AP. One millimolar 4-AP markedly decreased the fluorescence of the K+ indicator dye PBFI but 0.1 mM 4-AP did not. Like 1 mM 4-AP, ouabain decreased PBFI fluorescence and increased a considerable fraction of Na(i) in a TTX-insensitive manner. In contrast with the different TTX sensitivity of the rise in Na(i) induced by 0.1 and 1 mM 4-AP, the rise in Ca(i) (as determined with fura-2) induced by the two concentrations of 4-AP was markedly inhibited by TTX, as well as by omega-agatoxin in combination with omega-conotoxin GVIA, indicating that only the TTX-sensitive fraction of the rise in Na(i) induced by 4-AP is linked with the activation of presynaptic Ca2+ channels. It is concluded that the TTX-sensitive fraction of neurotransmitter release evoked by 4-AP is released by exocytosis, and the TTX insensitive fraction involves reversal of the neurotransmitters transporters. This contrasts with the exocytosis evoked by high K+ that is unchanged by TTX and with the neurotransmitter-transporter-mediated release evoked by veratridine, which is highly TTX sensitive and does not require activation of Ca2+ channels.
Collapse
Affiliation(s)
- Emilio Galván
- Departmento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | |
Collapse
|
27
|
Horvath B, Marton Z, Halmosi R, Alexy T, Szapary L, Vekasi J, Biro Z, Habon T, Kesmarky G, Toth K. In vitro antioxidant properties of pentoxifylline, piracetam, and vinpocetine. Clin Neuropharmacol 2002; 25:37-42. [PMID: 11852295 DOI: 10.1097/00002826-200201000-00007] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxygen-free radicals play an important role in several physiologic and pathophysiologic processes. In pathologic circumstances, they can modify and damage biologic systems. Because oxygen-free radicals are involved in a wide range of diseases (cerebrovascular, cardiovascular, etc.), scavenging these radicals should be considered as an important therapeutic approach. In our in vitro study, we investigated the antioxidant capacity of three drugs: pentoxiphylline (Sigma Aldrich, St. Louis, MO, USA) piracetam (Sigma Aldrich), and vinpocetine (Richter Gedeon RT, Budapest, Hungary). Phenazine methosulphate was applied to generate free radicals, increasing red blood cell rigidity. Filtration technique and potassium leaking were used to detect the cellular damage and the scavenging effect of the examined drugs. According to our results, at human therapeutic serum concentration, only vinpocetine (Richter Gedeon RT) had significant (p < 0.01) scavenging activity with a protective effect that increased further at higher concentrations. Pentoxiphylline (Sigma Aldrich) and piracetam (Sigma Aldrich) did not have significant antioxidant capacity at therapeutic concentrations, but increasing their concentrations (pentoxiphylline at 100-times, and piracetam at 10-times higher concentrations) led to a significant (p < 0.01) scavenger effect. Our findings suggest that this pronounced antioxidant effect of vinpocetine and even the milder scavenging capacity of pentoxiphylline and piracetam may be of value in the treatment of patients with cerebrovascular disorders, but merits further investigations.
Collapse
Affiliation(s)
- Beata Horvath
- First Department of Medicine, Division of Cardiology, University of Pecs' School of Medicine, Pecs, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zelles T, Franklin L, Koncz I, Lendvai B, Zsilla G. The nootropic drug vinpocetine inhibits veratridine-induced [Ca2+]i increase in rat hippocampal CA1 pyramidal cells. Neurochem Res 2001; 26:1095-100. [PMID: 11699936 DOI: 10.1023/a:1012365408215] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The alkaloid derivative vinpocetine (14-ethoxycarbonyl-(3alpha,16alpha-ethyl)-14,15-eburnamine; Cavinton) has a well known beneficial effect on brain function in hypoxic and ischemic conditions. While it increases CNS blood flow and improves cellular metabolism, relatively little is known about vinpocetine's underlying molecular mechanisms on the single cell level. Since apoptotic and necrotic cell damage is always preceded by an increase in [Ca2+]i, this study investigated the effect of vinpocetine on [Ca2+]i increases in acute brain slices. Sodium influx is an early event in the biochemical cascade that takes place during ischemia. The alkaloid veratridine can activate this Na+ influx, causing depolarization and increasing [Ca2+]i in the cells. Therefore, it can be used to simulate an ischemic attack in brain cells. Using a cooled CCD camera-based ratio imaging system and cell loading with fura 2/AM, the effect of vinpocetine on [Ca2+]i changes in single pyramidal neurons in the vulnerable CA1 region of rat hippocampal slices was investigated. Preperfusion and continuous administration of vinpocetine (10 microM) significantly inhibited the elevation in [Ca2+]i induced by veratridine (10 microM). When the drug was administered after veratridine, it could accelerate the recovery of cellular calcium levels. Piracetam, another nootropic used in clinical practice, could attenuate the elevation of [Ca2+]i only at a high, 1 mM, concentration. We have concluded that vinpocetine, at a pharmacologically relevant concentration, can decrease pathologically high [Ca2+]i levels in individual rat hippocampal CA1 pyramidal neurons; this effect might contribute to the neuroprotective property of the drug.
Collapse
Affiliation(s)
- T Zelles
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest.
| | | | | | | | | |
Collapse
|
29
|
Trejo F, Nekrassov V, Sitges M. Characterization of vinpocetine effects on DA and DOPAC release in striatal isolated nerve endings. Brain Res 2001; 909:59-67. [PMID: 11478921 DOI: 10.1016/s0006-8993(01)02621-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effect of vinpocetine, a nootropic drug with anti-ischemic potential, on the release of DA and its main metabolite, DOPAC, was investigated in striatum isolated nerve endings under resting and depolarized conditions. Vinpocetine does not modify the baseline release of DA or the exocytotic release of DA evoked by high K(+), but inhibits the release of DA evoked by veratridine reversal of the DA transporter. In addition to these results, which confirm the vinpocetine selective blockade of voltage-sensitive presynaptic Na(+) channels (VSSC) previously reported [Neurochem. Res. 24 (1999) 1585], vinpocetine increases DOPAC release either under resting, veratridine or high K(+) depolarized conditions. This latter effect, which does not involve VSSC, was characterized. The parallel determination of the released and retained catecholamine concentrations revealed that vinpocetine increases DOPAC release at the expense of internal DA in a dose-dependent manner (low microM range). In contrast to vinpocetine, the selective MAO-A inhibitor, clorgyline, increases DA and decreases DOPAC formation. The combined action of vinpocetine and clorgyline does not indicate, however, that the activation of MAO is the mechanism responsible for the increase in DOPAC caused by vinpocetine. Reserpine, although more potent and efficient than vinpocetine, qualitatively exerts the same pattern of changes on DA and DOPAC concentrations. It is concluded that, in addition to the inhibition of presynaptic VSSC permeability, which selectively inhibits the transporter-mediated release of all neurotransmitters, vinpocetine increases DOPAC by impairing the vesicular storage of DA. Our results indicate that the cytoplasm extravesicular DA is metabolized by MAO to DOPAC. Most of the DOPAC formed is exported to the extracellular medium.
Collapse
Affiliation(s)
- F Trejo
- Instituto de Investigaciones Biomédicas, Apartado Postal 70228, Ciudad 04510, D.F., Universitaria, Mexico
| | | | | |
Collapse
|
30
|
Bönöczk P, Gulyás B, Adam-Vizi V, Nemes A, Kárpáti E, Kiss B, Kapás M, Szántay C, Koncz I, Zelles T, Vas A. Role of sodium channel inhibition in neuroprotection: effect of vinpocetine. Brain Res Bull 2000; 53:245-54. [PMID: 11113577 DOI: 10.1016/s0361-9230(00)00354-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vinpocetine (ethyl apovincaminate) discovered during the late 1960s has successfully been used in the treatment of central nervous system disorders of cerebrovascular origin for decades. The increase in the regional cerebral blood flow in response to vinpocetine administration is well established and strengthened by new diagnostical techniques (transcranial Doppler, near infrared spectroscopy, positron emission tomography). The latest in vitro studies have revealed the effect of the compound on Ca(2+)/calmodulin dependent cyclic guanosine monophosphate-phosphodiesterase 1, voltage-operated Ca(2+) channels, glutamate receptors and voltage dependent Na(+)-channels; the latest being especially relevant to the neuroprotective action of vinpocetine. The good brain penetration profile and heterogenous brain distribution pattern (mainly in the thalamus, basal ganglia and visual cortex) of labelled vinpocetin were demonstrated by positron emission tomography in primates and man. Multicentric, randomized, placebo-controlled clinical studies proved the efficacy of orally administered vinpocetin in patients with organic psychosyndrome. Recently positron emission tomography studies have proved that vinpocetine is able to redistribute regional cerebral blood flow and enhance glucose supply of brain tissue in ischemic post-stroke patients.
Collapse
Affiliation(s)
- P Bönöczk
- Chemical Works of Gedeon Richter Ltd., Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Nekrassov V, Sitges M. Vinpocetine protects from aminoglycoside antibiotic-induced hearing loss in guinea pig in vivo. Brain Res 2000; 868:222-9. [PMID: 10854574 DOI: 10.1016/s0006-8993(00)02333-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The principal objective of this study is to explore the hypothesis that a blockade of Na(+) channels can prevent some of the mechanisms involved in ototoxicity. For this purpose, the potential action of the voltage sensitive Na(+) channel antagonist, vinpocetine, on the ototoxicity induced by the representative aminoglycoside antibiotic, amikacin, in guinea pigs was tested for almost half a year. Amikacin (450 mg/kg) administered daily (i.m.) for 5 days increases the thresholds of the auditory brainstem response (ABR) to the two frequencies tested (4 and 8 kHz). These threshold increases are permanent or at least long-lived, as after 40 days they are already established and are maintained until the end of the experiment (160 days after the antibiotic administration). Amikacin decreases the amplitude of ABR waves, particularly P1, and after 160 days increases the latency of ABR waves, particularly at the higher frequency tested (8 kHz). When the above amikacin regimen is followed by a daily (i.p.) vinpocetine (2 mg/kg) administration for 13 days the increase in ABR threshold and latency caused by amikacin alone is prevented. Moreover, the animals treated with amikacin alone show a decreased weight gain and a remarkable increased mortality in comparison with the group of animals post-treated with vinpocetine. We hope that the multiple beneficial effects exerted by the Na(+) channel blocker, vinpocetine, against aminoglycoside antibiotics-induced side effects could help to solve the serious limitations of the use of this type of antibiotic.
Collapse
Affiliation(s)
- V Nekrassov
- División de Investigación, Instituto Nacional de la Comunicación Humana, SSA, Mexico, D.F., Mexico
| | | |
Collapse
|