1
|
Kumar N, Du Z, Amachawadi RG, Guo X, Zhao J, Li Y. Membrane Selectivity Mechanisms of the Antimicrobial Peptide Snakin-Z Against Prokaryotic and Eukaryotic Membrane Models. J Phys Chem B 2025; 129:4392-4409. [PMID: 40280870 DOI: 10.1021/acs.jpcb.5c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Snakin-Z, a novel cationic antimicrobial peptide (AMP) derived from Zizyphus jujuba fruits, exhibits broad-spectrum antimicrobial activity against bacteria and fungi. Importantly, it displays minimal hemolytic activity toward human red blood cells (RBCs). Elucidating the molecular basis of membrane selectivity of Snakin-Z is essential for its development as a novel antimicrobial agent. In this study, all-atom molecular dynamics (MD) simulations were employed to provide detailed molecular insights into the interactions between Snakin-Z and bacterial, fungal, and RBC membrane models. The simulations revealed a helical-coil conformation for Snakin-Z, with its amphipathic structure, polarity, and residues such as Arg, Lys, Ser, and Tyr playing crucial roles in mediating selective interactions with the microbial membrane models. Specifically, Arg28, Lys29, and Arg3 were identified as playing a crucial role in mediating membrane binding and stability. Snakin-Z was observed to be deeply embedded in the Candida albicans and Bacillus subtilis membrane models, followed by Escherichia coli and RBC membrane models. A considerable thinning and strong disordering of Candida albicans, Bacillus subtilis and Escherichia coli membranes acyl chains were observed. The presence of cholesterol in the RBC membrane contributes to its resistance to Snakin-Z-mediated disruption. This study presents the first comprehensive investigation of the selective mechanism underlying the antimicrobial activity of Snakin-Z against bacterial membrane models. Our findings provide insights into the antimicrobial properties of Snakin-Z at the molecular level, highlighting its significant potential for use in the food and biotechnology industries as a promising alternative to conventional antibiotics and preservatives.
Collapse
Affiliation(s)
- Nandan Kumar
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhenjiao Du
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Xiaolong Guo
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas 66506, United States
| | - Yonghui Li
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
2
|
Ookubo M, Tashiro Y, Asano K, Kamei Y, Tanaka Y, Honda T, Yokoyama T, Honda M. "Rich arginine and strong positive charge" antimicrobial protein protamine: From its action on cell membranes to inhibition of bacterial vital functions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184323. [PMID: 38614236 DOI: 10.1016/j.bbamem.2024.184323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Protamine, an antimicrobial protein derived from salmon sperm with a molecular weight of approximately 5 kDa, is composed of 60-70 % arginine and is a highly charged protein. Here, we investigated the mechanism of antimicrobial action of protamine against Cutibacterium acnes (C. acnes) focusing on its rich arginine content and strong positive charge. Especially, we focused on the attribution of dual mechanisms of antimicrobial protein, including membrane disruption or interaction with intracellular components. We first determined the dose-dependent antibacterial activity of protamine against C. acnes. In order to explore the interaction between bacterial membrane and protamine, we analyzed cell morphology, zeta potential, membrane permeability, and the composition of membrane fatty acid. In addition, the localization of protamine in bacteria was observed using fluorescent-labeled protamine. For investigation of the intracellular targets of protamine, bacterial translation was examined using a cell-free translation system. Based on our results, the mechanism of the antimicrobial action of protamine against C. acnes is as follows: 1) electrostatic interactions with the bacterial cell membrane; 2) self-internalization into the bacterial cell by changing the composition of the bacterial membrane; and 3) inhibition of bacterial growth by blocking translation inside the bacteria. However, owing to its strong electric charge, protamine can also interact with DNA, RNA, and other proteins inside the bacteria, and may inhibit various bacterial life processes beyond the translation process.
Collapse
Affiliation(s)
- Momoka Ookubo
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yuka Tashiro
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Kosuke Asano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan
| | - Yoshiharu Kamei
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Yoshikazu Tanaka
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Takayuki Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai 980-8577, Japan; The advanced center for innovations in next-generation medicine (INGEM), Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8573, Japan
| | - Michiyo Honda
- Graduate School of Science and Technology, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Kanagawa, Japan.
| |
Collapse
|
3
|
Zhang M, Yang B, Shi J, Wang Z, Liu Y. Host defense peptides mitigate the spread of antibiotic resistance in physiologically relevant condition. Antimicrob Agents Chemother 2024; 68:e0126123. [PMID: 38415983 PMCID: PMC10994823 DOI: 10.1128/aac.01261-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Antibiotic resistance represents a significant challenge to public health and human safety. The primary driver behind the dissemination of antibiotic resistance is the horizontal transfer of plasmids. Current conjugative transfer assay is generally performed in a standardized manner, ignoring the effect of the host environment. Host defense peptides (HDPs) possess a wide range of biological targets and play an essential role in the innate immune system. Herein, we reveal that sub-minimum inhibitory concentrations of HDPs facilitate the conjugative transfer of RP4-7 plasmid in the Luria Broth medium, and this observation is reversed in the RPMI medium, designed to simulate the host environment. Out of these HDPs, indolicidin (Ind), a cationic tridecapeptide from bovine neutrophils, significantly inhibits the conjugation of multidrug resistance plasmids in a dose-dependent manner, including blaNDM- and tet(X4)-bearing plasmids. We demonstrate that the addition of Ind to RPMI medium as the incubation substrate downregulates the expression of conjugation-related genes. In addition, Ind weakens the tricarboxylic acid cycle, impedes the electron transport chain, and disrupts the proton motive force, consequently diminishing the synthesis of adenosine triphosphate and limiting the energy supply. Our findings highlight the importance of the host-like environments for the development of horizontal transfer inhibitors and demonstrate the potential of HDPs in preventing the spread of resistance plasmids.
Collapse
Affiliation(s)
- Miao Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Bingqing Yang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Khavani M, Mehranfar A, Mofrad MRK. Antimicrobial peptide interactions with bacterial cell membranes. J Biomol Struct Dyn 2024:1-14. [PMID: 38263741 DOI: 10.1080/07391102.2024.2304683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024]
Abstract
Antimicrobial peptides (AMPs) are potential alternatives for common antibiotics because of their greater activity and efficiency against a broad range of viruses, bacteria, fungi, and parasites. In this project, two antimicrobial peptides including magainin 2 and protegrin 1 with α-helix and β-sheet secondary structures were selected to investigate their interactions with different lipid bilayers such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine (POPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), POPC/POPG (7:3), POPC/POPS (7:3), POPG/POPE(1:3), and POPG/POPE(3:1). The obtained structures of the AMPs illustrated that protegrin 1 cannot maintain its secondary structure in the solution phase in contrast to magainin 2. The head groups of the lipid units play a key role in the stability of the lipid bilayers. The head parts of the lipid membranes by increasing the internal H-bond contribute to membrane compactness. The POPG and POPS units inside the POPC/POPG and POPC/POPS membranes increase the order of the POPC units. The cationic residues of the AMPs form remarkable electrostatic interactions with the negatively charged membrane surfaces, which play a key role in the stabilization process of the peptide secondary structures. The Arg residues of protegrin 1 and the Gly1, Lys4, Lys10, Lys11, Lys14, and Glu19 of the magainin 2 have the most important roles in the complexation process. The values of Gibbs binding energies (ΔG) indicate that the complexation process between AMPs and different bacterial membranes is favorable from the thermodynamic viewpoint and AMPs could form stable complexes with the lipid bilayers. As a result of ΔG values, protegrin 1 forms a more stable complex with POPG/POPE(3:1), while the α-helix has more affinity to the POPG/POPE(1:3) bacterial membranes. Therefore, it can be considered that β-sheet and α-helix AMPs are more effective against gram-positive and gram-negative bacteria, respectively. The results of this study can provide useful details about the antimicrobial peptide interactions with the bacterial cell, which can be employed for designing new antimicrobial materials with greater efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
5
|
Clarke M, Hind CK, Ferguson PM, Manzo G, Mistry B, Yue B, Romanopulos J, Clifford M, Bui TT, Drake AF, Lorenz CD, Sutton JM, Mason AJ. Synergy between Winter Flounder antimicrobial peptides. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:8. [PMID: 38686212 PMCID: PMC11057203 DOI: 10.1038/s44259-023-00010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 05/02/2024]
Abstract
Some antimicrobial peptides (AMPs) have potent bactericidal activity and are being considered as potential alternatives to classical antibiotics. In response to an infection, such AMPs are often produced in animals alongside other peptides with low or no perceivable antimicrobial activity, whose role is unclear. Here we show that six AMPs from the Winter Flounder (WF) act in synergy against a range of bacterial pathogens and provide mechanistic insights into how this increases the cooperativity of the dose-dependent bactericidal activity and potency that enable therapy. Only two WF AMPs have potent antimicrobial activity when used alone but we find a series of two-way combinations, involving peptides which otherwise have low or no activity, yield potent antimicrobial activity. Weakly active WF AMPs modulate the membrane interactions of the more potent WF AMPs and enable therapy in a model of Acinetobacter baumannii burn wound infection. The observed synergy and emergent behaviour may explain the evolutionary benefits of producing a family of related peptides and are attractive properties to consider when developing AMPs towards clinical applications.
Collapse
Affiliation(s)
- Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Charlotte K. Hind
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, SP4 0JG UK
| | - Philip M. Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Bhumil Mistry
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Bingkun Yue
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Janis Romanopulos
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| | - Melanie Clifford
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, SP4 0JG UK
| | - Tam T. Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL UK
| | - Alex F. Drake
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London, SE1 1UL UK
| | | | - J. Mark Sutton
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
- Technology Development Group, UK Health Security Agency, Research and Evaluation, Porton Down, Salisbury, SP4 0JG UK
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH UK
| |
Collapse
|
6
|
Antibacterial and Anticancer Activities of Pleurocidin-Amide, a Potent Marine Antimicrobial Peptide Derived from Winter Flounder, Pleuronectes americanus. Mar Drugs 2022; 20:md20080519. [PMID: 36005521 PMCID: PMC9409841 DOI: 10.3390/md20080519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/02/2022] Open
Abstract
The extensive use of conventional antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence suggests that cationic antimicrobial peptides (AMPs) have the greatest potential to serve as traditional antibiotic substitutes. Recent studies have also reported that certain AMPs have selective toxicity toward various types of cancer cells. The electrostatic attraction between the negatively charged membrane components and AMPs is believed to play a crucial role in the disruption of bacterial and cancer cell membranes. In the current study, we used a potent AMP called Pleurocidin (Ple) derived from winter flounder Pleuronectes americanus and its C-terminal-amidated derivative Pleurocidin-amide (Ple-a), and evaluated their antibacterial and anticancer activities. Our results indicated that both Ple and Ple-a exhibited significant antibacterial activity against a broad spectrum of Gram-positive and Gram-negative bacteria, especially marine pathogens, with MIC values ranging from 0.25 to 32 μg/mL. These peptides are also potent against several multidrug-resistant (MDR) bacterial strains, with MIC values ranging from 2 to 256 μg/mL. When used in combination with certain antibiotics, they exhibited a synergistic effect against MDR E. coli. Ple and Ple-a also showed notable cytotoxicity toward various cancer cell lines, with IC50 values ranging from 11 to 340 μM, while normal mouse fibroblast 3T3 cells were less susceptible to these peptides. Ple-a was then selected to study its anticancer mechanism toward A549 human lung adenocarcinoma cells. Western blot analysis and confocal microscopy showed that Ple-a could inhibit autophagy of A549 cells, and induce apoptosis 48 h after treatment. Our findings provided support for the future application of Ple-a as potential therapeutic agent for bacterial infections and cancer treatment.
Collapse
|
7
|
Cashman-Kadri S, Lagüe P, Fliss I, Beaulieu L. Determination of the Relationships between the Chemical Structure and Antimicrobial Activity of a GAPDH-Related Fish Antimicrobial Peptide and Analogs Thereof. Antibiotics (Basel) 2022; 11:antibiotics11030297. [PMID: 35326761 PMCID: PMC8944596 DOI: 10.3390/antibiotics11030297] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/28/2022] Open
Abstract
The structure–activity relationships and mode of action of synthesized glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-related antimicrobial peptides were investigated. Including the native skipjack tuna GAPDH-related peptide (SJGAP) of 32 amino acid residues (model for the study), 8 different peptide analogs were designed and synthesized to study the impact of net charge, hydrophobicity, amphipathicity, and secondary structure on both antibacterial and antifungal activities. A net positive charge increase, by the substitution of anionic residues or C-terminal amidation, improved the antimicrobial activity of the SJGAP analogs (minimal inhibitory concentrations of 16–64 μg/mL), whereas the alpha helix content, as determined by circular dichroism, did not have a very definite impact. The hydrophobicity of the peptides was also found to be important, especially for the improvement of antifungal activity. Membrane permeabilization assays showed that the active peptides induced significant cytoplasmic membrane permeabilization in the bacteria and yeast tested, but that this permeabilization did not cause leakage of 260 nm-absorbing intracellular material. This points to a mixed mode of action involving both membrane pore formation and targeting of intracellular components. This study is the first to highlight the links between the physicochemical properties, secondary structure, antimicrobial activity, and mechanism of action of antimicrobial peptides from scombrids or homologous to GAPDH.
Collapse
Affiliation(s)
- Samuel Cashman-Kadri
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC G1V 0A6, Canada;
- Institute for Integrative Systems Biology, Department of Biochemistry, Microbiology and Bio-Informatics, Pavillon, Alexandre-Vachon, Université Laval, 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
- The Quebec Network for Research on Protein Function, Engineering, and Applications (PROTEO), 1045 Avenue de la Medecine, Québec, QC G1V 0A6, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lucie Beaulieu
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada; (S.C.-K.); (I.F.)
- Department of Food Science, Faculty of Agricultural and Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada
- Québec-Océan, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: ; Tel.: +1-418-656-2131 (ext. 404767)
| |
Collapse
|
8
|
Expression of the Antimicrobial Peptide Piscidin 1 and Neuropeptides in Fish Gill and Skin: A Potential Participation in Neuro-Immune Interaction. Mar Drugs 2022; 20:md20020145. [PMID: 35200674 PMCID: PMC8879440 DOI: 10.3390/md20020145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are found widespread in nature and possess antimicrobial and immunomodulatory activities. Due to their multifunctional properties, these peptides are a focus of growing body of interest and have been characterized in several fish species. Due to their similarities in amino-acid composition and amphipathic design, it has been suggested that neuropeptides may be directly involved in the innate immune response against pathogen intruders. In this review, we report the molecular characterization of the fish-specific AMP piscidin1, the production of an antibody raised against this peptide and the immunohistochemical identification of this peptide and enkephalins in the neuroepithelial cells (NECs) in the gill of several teleost fish species living in different habitats. In spite of the abundant literature on Piscidin1, the biological role of this peptide in fish visceral organs remains poorly explored, as well as the role of the neuropeptides in neuroimmune interaction in fish. The NECs, by their role as sensors of hypoxia changes in the external environments, in combination with their endocrine nature and secretion of immunomodulatory substances would influence various types of immune cells that contain piscidin, such as mast cells and eosinophils, both showing interaction with the nervous system. The discovery of piscidins in the gill and skin, their diversity and their role in the regulation of immune response will lead to better selection of these immunomodulatory molecules as drug targets to retain antimicrobial barrier function and for aquaculture therapy in the future.
Collapse
|
9
|
Manzo G, Gianfanti F, Hind CK, Allison L, Clarke M, Hohenbichler J, Limantoro I, Martin B, Do Carmo Silva P, Ferguson PM, Hodgson-Casson AC, Fleck RA, Sutton JM, Phoenix DA, Mason AJ. Impacts of Metabolism and Organic Acids on Cell Wall Composition and Pseudomonas aeruginosa Susceptibility to Membrane Active Antimicrobials. ACS Infect Dis 2021; 7:2310-2323. [PMID: 34329558 DOI: 10.1021/acsinfecdis.1c00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reliable antimicrobial susceptibility testing is essential in informing both clinical antibiotic therapy decisions and the development of new antibiotics. Mammalian cell culture media have been proposed as an alternative to bacteriological media, potentially representing some critical aspects of the infection environment more accurately. Here, we use a combination of NMR metabolomics and electron microscopy to investigate the response of Escherichia coli and Pseudomonas aeruginosa to growth in differing rich media to determine whether and how this determines metabolic strategies, the composition of the cell wall, and consequently susceptibility to membrane active antimicrobials including colistin and tobramycin. The NMR metabolomic approach is first validated by characterizing the expected E. coli acid stress response to fermentation and the accompanying changes in the cell wall composition, when cultured in glucose rich mammalian cell culture media. Glucose is not a major carbon source for P. aeruginosa but is associated with a response to osmotic stress and a modest increase in colistin tolerance. Growth of P. aeruginosa in a range of bacteriological media is supported by consumption of formate, an important electron donor in anaerobic respiration. In mammalian cell culture media, however, the overall metabolic strategy of P. aeruginosa is instead dependent on consumption of glutamine and lactate. Formate doping of mammalian cell culture media does not alter the overall metabolic strategy but is associated with polyamine catabolism, remodelling of both inner and outer membranes, and a modest sensitization of P. aeruginosa PAO1 to colistin. Further, in a panel of P. aeruginosa isolates an increase between 2- and 3-fold in sensitivity to tobramycin is achieved through doping with other organic acids, notably propionate which also similarly enhances the activity of colistin. Organic acids are therefore capable of nonspecifically influencing the potency of membrane active antimicrobials.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Federico Gianfanti
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Charlotte K. Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Leanne Allison
- Centre for Ultrastructural Imaging, Guy’s Campus, King’s College London, London SE1 1UL, United Kingdom
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Julia Hohenbichler
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Ilene Limantoro
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Bethany Martin
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Phoebe Do Carmo Silva
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - Philip M. Ferguson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Alice C. Hodgson-Casson
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Roland A. Fleck
- Centre for Ultrastructural Imaging, Guy’s Campus, King’s College London, London SE1 1UL, United Kingdom
| | - J. Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury SP4 0JG United Kingdom
| | - David A. Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London SE1 0AA, United Kingdom
| | - A. James Mason
- Institute of Pharmaceutical Science, School of Cancer and Pharmaceutical Sciences, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
10
|
McMillan KAM, Coombs MRP. Investigating Potential Applications of the Fish Anti-Microbial Peptide Pleurocidin: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:ph14070687. [PMID: 34358113 PMCID: PMC8308923 DOI: 10.3390/ph14070687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/05/2022] Open
Abstract
The anti-microbial peptide (AMP) pleurocidin is found in winter flounder (Pseudopleuronectes americanus), an Atlantic flounder species. There is promising evidence for clinical, aquaculture, and veterinary applications of pleurocidin. This review provides an overview of the current literature available on pleurocidin to guide future research directions. By fully elucidating pleurocidin’s mechanism of action and developing novel treatments against pathogenic microbes, populations of flatfish and humans can be protected. This review consulted publications from PubMed and Environment Complete with search terms such as “pleurocidin”, “winter flounder”, and “antimicrobial”. The fish immune system includes AMPs as a component of the innate immune system. Pleurocidin, one of these AMPs, has been found to be effective against various Gram-positive and Gram-negative bacteria. More investigations are required to determine pleurocidin’s suitability as a treatment against antibiotic-resistant pathogens. There is promising evidence for pleurocidin as a novel anti-cancer therapy. The peptide has been found to display potent anti-cancer effects against human cancer cells. Research efforts focused on pleurocidin may result in novel treatment strategies against antibiotic-resistant bacteria and cancer. More research is required to determine if the peptide is a suitable candidate to be developed into a novel anti-microbial treatment. Some of the microbes susceptible to the peptide are also pathogens of fish, suggesting its suitability as a therapeutic treatment for fish species.
Collapse
Affiliation(s)
| | - Melanie R. Power Coombs
- Biology Department, Acadia University, Wolfville, NS B4P 2R6, Canada;
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4H7, Canada
- Correspondence:
| |
Collapse
|
11
|
Talandashti R, Mehrnejad F, Rostamipour K, Doustdar F, Lavasanifar A. Molecular Insights into Pore Formation Mechanism, Membrane Perturbation, and Water Permeation by the Antimicrobial Peptide Pleurocidin: A Combined All-Atom and Coarse-Grained Molecular Dynamics Simulation Study. J Phys Chem B 2021; 125:7163-7176. [PMID: 34171196 DOI: 10.1021/acs.jpcb.1c01954] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The antimicrobial peptide (AMP) pleurocidin has a broad antimicrobial activity against Gram-negative and Gram-positive bacteria by perturbation and permeabilizing their membranes; however, understanding the mechanism of action of pleurocidin, a promising AMP for replacing current antibiotic agents, has tremendous importance for future applications. Hence, we applied all-atom (AA) and coarse-grained (CG) molecular dynamics (MD) simulations to provide molecular-level insights into the pore-forming process. The early stages of pore formation were examined by 500 ns AA simulations. The results demonstrated that pleurocidin has the ability to create a pore with two peptides through which water molecules can flow. However, the results of the 25 μs CG simulations indicate that the final pore will be created by accumulation of more than two peptides. The results show that after 2.5 μs of simulations, peptides will aggregate and create a channel-like pore across the membrane. Pleurocidin can construct a more efficient and stable pore in the anionic membranes than in the zwitterionic membranes. Moreover, the structure amphipathicity, polarity, and basic residues play crucial roles in the pore formation and flow of water molecules across the lipid bilayers. In general, the findings revealed that based on the lipid compositions of the membranes, pleurocidin could act by forming either toroidal or disordered toroidal pores with different peptide arrangements.
Collapse
Affiliation(s)
- Reza Talandashti
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, P. O. Box: 1985717443 Tehran, Iran.,Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Kiana Rostamipour
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran
| | - Farahnoosh Doustdar
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 14395-1561, Iran.,Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
12
|
Investigating the action of the microalgal pigment marennine on Vibrio splendidus by in vivo 2H and 31P solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183642. [PMID: 34000261 DOI: 10.1016/j.bbamem.2021.183642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 11/21/2022]
Abstract
This work investigates the potential probiotic effect of marennine - a natural pigment produced by the diatom Haslea ostrearia - on Vibrio splendidus. These marine bacteria are often considered a threat for aquaculture; therefore, chemical antibiotics can be required to reduce bacterial outbreaks. In vivo2H solid-state NMR was used to probe the effects of marennine on the bacterial membrane in the exponential and stationary phases. Comparisons were made with polymyxin B (PxB) - an antibiotic used in aquaculture and known to interact with Gram(-) bacteria membranes. We also investigated the effect of marennine using 31P solid-state NMR on model membranes. Our results show that marennine has little effect on phospholipid headgroups dynamics, but reduces the acyl chain fluidity. Our data suggest that the two antimicrobial agents perturb V. splendidus membranes through different mechanisms. While PxB would alter the bacterial outer and inner membranes, marennine would act through a membrane stiffening mechanism, without affecting the bilayer integrity. Our study proposes this microalgal pigment, which is harmless for humans, as a potential treatment against vibriosis.
Collapse
|
13
|
Raju SV, Sarkar P, Kumar P, Arockiaraj J. Piscidin, Fish Antimicrobial Peptide: Structure, Classification, Properties, Mechanism, Gene Regulation and Therapeutical Importance. Int J Pept Res Ther 2021; 27:91-107. [DOI: 10.1007/s10989-020-10068-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/28/2020] [Indexed: 01/02/2023]
|
14
|
Manzo G, Hind CK, Ferguson PM, Amison RT, Hodgson-Casson AC, Ciazynska KA, Weller BJ, Clarke M, Lam C, Man RCH, Shaughnessy BGO, Clifford M, Bui TT, Drake AF, Atkinson RA, Lam JKW, Pitchford SC, Page CP, Phoenix DA, Lorenz CD, Sutton JM, Mason AJ. A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Commun Biol 2020; 3:697. [PMID: 33247193 PMCID: PMC7699649 DOI: 10.1038/s42003-020-01420-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/22/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs.
Collapse
Affiliation(s)
- Giorgia Manzo
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Charlotte K Hind
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Philip M Ferguson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard T Amison
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Alice C Hodgson-Casson
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Katarzyna A Ciazynska
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Bethany J Weller
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Maria Clarke
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Carolyn Lam
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
| | - Rico C H Man
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Blaze G O' Shaughnessy
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Melanie Clifford
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK
| | - Tam T Bui
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Alex F Drake
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - R Andrew Atkinson
- Centre for Biomolecular Spectroscopy and Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, London, SE1 1UL, UK
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Simon C Pitchford
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - Clive P Page
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK
- Sackler Institute of Pulmonary Pharmacology, King's College London, London, UK
| | - David A Phoenix
- School of Applied Science, London South Bank University, 103 Borough Road, London, SE1 0AA, UK
| | | | - J Mark Sutton
- Technology Development Group, National Infection Service, Public Health England, Salisbury, UK.
| | - A James Mason
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
15
|
Zhong P, Liu CH, Chen YT, Yu TY. The Study of HIV-1 Vpr-Membrane and Vpr-hVDAC-1 Interactions by Graphene Field-Effect Transistor Biosensors. ACS APPLIED BIO MATERIALS 2020; 3:6351-6357. [PMID: 35021765 DOI: 10.1021/acsabm.0c00783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The viral protein R (Vpr) of human immunodeficiency virus 1 (HIV-1) is involved in many cellular processes during the viral life cycle; however, its associated mechanisms remain unclear. Here, we designed an Escherichia coli expression construct to achieve a milligram yield of recombinant Vpr. In addition, we fabricated a graphene field-effect transistor (G-FET) biosensor, with the modification of a supported lipid bilayer (SLB), to study the interaction between Vpr and its interaction partners. The Dirac point of the SLB/G-FET was observed to shift in response to the binding of Vpr to the SLB. By fitting the normalized shift of the Dirac point as a function of Vpr concentration to the Langmuir adsorption isotherm equation, we could extract the dissociation constant (Kd) to quantify the Vpr binding affinity. When the 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) membrane was used as the SLB, the dissociation constant was determined to be 9.6 ± 2.1 μM. In contrast, only a slight shift of the Dirac point was observed in response to the addition of Vpr when the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membrane was used as the SLB. Taking advantage of the much weaker binding of Vpr to the DOPC membrane, we prepared a human voltage-dependent anion channel isoform 1 (hVDAC-1)-embedded DOPC membrane as the SLB for the G-FET and used it to determine the dissociation constant to be 5.1 ± 0.9 μM. In summary, using the clinically relevant Vpr protein as an example, we demonstrated that an SLB/G-FET biosensor is a suitable tool for studying the interaction between a membrane-associated protein and its interaction partners.
Collapse
Affiliation(s)
- Peibin Zhong
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Chun-Hao Liu
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115 Taiwan.,Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsin Chu 30013, Taiwan
| | - Yit-Tsong Chen
- Department of Chemistry, National Taiwan University, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Tsyr-Yan Yu
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
16
|
Talandashti R, Mahdiuni H, Jafari M, Mehrnejad F. Molecular Basis for Membrane Selectivity of Antimicrobial Peptide Pleurocidin in the Presence of Different Eukaryotic and Prokaryotic Model Membranes. J Chem Inf Model 2019; 59:3262-3276. [DOI: 10.1021/acs.jcim.9b00245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Reza Talandashti
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Hamid Mahdiuni
- Bioinformatics Lab., Department of Biology, School of Sciences, Razi University, P.O. Box 67149-67346, Kermanshah, Iran
| | - Majid Jafari
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran, Iran
| |
Collapse
|
17
|
Laadhari M, Arnold AA, Gravel AE, Separovic F, Marcotte I. Interaction of the antimicrobial peptides caerin 1.1 and aurein 1.2 with intact bacteria by 2 H solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2959-2964. [DOI: 10.1016/j.bbamem.2016.09.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/11/2016] [Accepted: 09/12/2016] [Indexed: 11/17/2022]
|
18
|
|
19
|
Bluhm MEC, Schneider VAF, Schäfer I, Piantavigna S, Goldbach T, Knappe D, Seibel P, Martin LL, Veldhuizen EJA, Hoffmann R. N-Terminal Ile-Orn- and Trp-Orn-Motif Repeats Enhance Membrane Interaction and Increase the Antimicrobial Activity of Apidaecins against Pseudomonas aeruginosa. Front Cell Dev Biol 2016; 4:39. [PMID: 27243004 PMCID: PMC4861708 DOI: 10.3389/fcell.2016.00039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/21/2016] [Indexed: 11/23/2022] Open
Abstract
The Gram-negative bacterium Pseudomonas aeruginosa is a life-threatening nosocomial pathogen due to its generally low susceptibility toward antibiotics. Furthermore, many strains have acquired resistance mechanisms requiring new antimicrobials with novel mechanisms to enhance treatment options. Proline-rich antimicrobial peptides, such as the apidaecin analog Api137, are highly efficient against various Enterobacteriaceae infections in mice, but less active against P. aeruginosa in vitro. Here, we extended our recent work by optimizing lead peptides Api755 (gu-OIORPVYOPRPRPPHPRL-OH; gu = N,N,N′,N′-tetramethylguanidino, O = L-ornithine) and Api760 (gu-OWORPVYOPRPRPPHPRL-OH) by incorporation of Ile-Orn- and Trp-Orn-motifs, respectively. Api795 (gu-O(IO)2RPVYOPRPRPPHPRL-OH) and Api794 (gu-O(WO)3RPVYOPRPRPPHPRL-OH) were highly active against P. aeruginosa with minimal inhibitory concentrations of 8–16 and 8–32 μg/mL against Escherichia coli and Klebsiella pneumoniae. Assessed using a quartz crystal microbalance, these peptides inserted into a membrane layer and the surface activity increased gradually from Api137, over Api795, to Api794. This mode of action was confirmed by transmission electron microscopy indicating some membrane damage only at the high peptide concentrations. Api794 and Api795 were highly stable against serum proteases (half-life times >5 h) and non-hemolytic to human erythrocytes at peptide concentrations of 0.6 g/L. At this concentration, Api795 reduced the cell viability of HeLa cells only slightly, whereas the IC50 of Api794 was 0.23 ± 0.09 g/L. Confocal fluorescence microscopy revealed no colocalization of 5(6)-carboxyfluorescein-labeled Api794 or Api795 with the mitochondria, excluding interactions with the mitochondrial membrane. Interestingly, Api795 was localized in endosomes, whereas Api794 was present in endosomes and the cytosol. This was verified using flow cytometry showing a 50% higher uptake of Api794 in HeLa cells compared with Api795. The uptake was reduced for both peptides by 50 and 80%, respectively, after inhibiting endocytotic uptake with dynasore. In summary, Api794 and Api795 were highly active against P. aeruginosa in vitro. Both peptides passed across the bacterial membrane efficiently, most likely then disturbing the ribosome assembly, and resulting in further intracellular damage. Api795 with its IOIO-motif, which was particularly active and only slightly toxic in vitro, appears to represent a promising third generation lead compound for the development of novel antibiotics against P. aeruginosa.
Collapse
Affiliation(s)
- Martina E C Bluhm
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Viktoria A F Schneider
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Ingo Schäfer
- Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany; Molecular Cell Therapy, Faculty of Medicine, Universität LeipzigLeipzig, Germany
| | | | - Tina Goldbach
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Daniel Knappe
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| | - Peter Seibel
- Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany; Molecular Cell Therapy, Faculty of Medicine, Universität LeipzigLeipzig, Germany
| | | | - Edwin J A Veldhuizen
- Division of Molecular Host Defence, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University Utrecht, Netherlands
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Universität LeipzigLeipzig, Germany; Center for Biotechnology and Biomedicine, Universität LeipzigLeipzig, Germany
| |
Collapse
|
20
|
Design and Synthesis of a Novel Cationic Peptide with Potent and Broad-Spectrum Antimicrobial Activity. BIOMED RESEARCH INTERNATIONAL 2015; 2015:578764. [PMID: 26688811 PMCID: PMC4673326 DOI: 10.1155/2015/578764] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 11/18/2022]
Abstract
Antibacterial and antifungal peptides have increasingly been used to combat the antibiotic-resistant microbes in recent years. KW-13, a novel cationic α-helical antibacterial peptide consisting of 13 amino acid residues, was designed and chemically synthesized. The peptide has a net charge of +6 with a total hydrophobic ratio of 38%. The antibacterial experiments revealed that KW-13 strongly inhibited the growth of human pathogenic bacteria with minimal inhibitory concentrations of 4 and 16 μg/mL for Staphylococcus epidermidis and Staphylococcus aureus, respectively, while the hemolytic assay showed that this peptide did not destroy human red blood cells in vitro. Scanning electron microscopy imaging of Escherichia coli confirmed that KW-13 can damage the membrane of bacterial cells. Thus, this peptide could be a potential candidate for the treatment of infectious diseases.
Collapse
|
21
|
Concentration-Dependent Mechanism Alteration of Pleurocidin Peptide in Escherichia coli. Curr Microbiol 2015; 72:159-164. [DOI: 10.1007/s00284-015-0937-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/20/2015] [Indexed: 11/27/2022]
|
22
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
23
|
Pleurocidin, a novel antimicrobial peptide, induces human mast cell activation through the FPRL1 receptor. Mucosal Immunol 2014; 7:177-87. [PMID: 23839065 DOI: 10.1038/mi.2013.37] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 04/26/2013] [Indexed: 02/04/2023]
Abstract
Pleurocidins are a novel family of α-helical cationic antimicrobial peptides (CAPs) that are structurally and functionally similar to cathelicidins, one of the major CAP families. As cathelicidins stimulate mast cell chemotaxis and mediator release, we postulated that pleurocidins similarly activate mast cells. A screen of 20 pleurocidin peptides revealed that some were capable of degranulating the human mast cell line LAD2 (Laboratory of Allergic Diseases 2). Pleurocidin NRC-04 caused LAD2 to adhere, migrate, degranulate, and release cysteinyl leukotrienes and prostaglandin D2. Moreover, pleurocidin increased intracellular Ca(2+) mobilization in mast cells and induced the production of proinflammatory chemokines such as monocyte chemotactic protein-1/C-C motif chemokine ligand 2 (CCL2) and macrophage inflammatory protein-1β/CCL4. Our evaluation of possible cellular mechanisms suggested that G proteins, phosphoinositol-3 kinase (PI3K), phospholipase C (PLC), and phosphokinase C (PKC) were involved in pleurocidin-induced mast cell activation as evidenced by the inhibitory effects of pertussis toxin (G protein inhibitor), wortmanin (PI3K inhibitor), U-73122 (PLC inhibitor), and Ro-31-8220 (PKC inhibitor), respectively. We also found that human mast cells expressed the N-formyl-peptide receptor 1 (FPRL1) receptor and FPRL1-specific inhibitor affected pleurocidin-mediated activation of mast cell. Our finding that the novel CAP pleurocidin activated human mast cell through G protein-coupled receptor signaling suggests that this peptide might have immunomodulatory functions.
Collapse
|
24
|
Abstract
AbstractPhosphatidyl serine plays an important role in animal innate immunity. Given its important functions, numerous investigations have been carried out on its immunological function in many animals. However, studies of phosphatidyl serine in the white shrimp Litopenaeus vannamei, an economically important animal, are rare. In this paper, we demonstrated influences of injecting phosphatidyl serine (PS) on immune response including some parameters from pro-phenol oxidase activating system (pro-PO system) and hemocyanin-derived phenol oxidase activity (Hd-PO) along with antibacterial and bacteriolytic activities in the white shrimp Litopenaeus vannamei with different PS concentrations (5, 10 and 20 μg mL−1). The results showed that PS could affect immune response of L. vannamei significantly (P<0.05), including total hemocyte counts (THC), PO activity from hemocyte, phenol oxidase (PO) activity from plasma, hemocyanin concentration, Hd-PO activity as well as antibacterial and bacteriolytic activities in the plasma. Among the lines, 20 μg mL−1 PS had the strongest effect on the above parameters, whereas 5 μg mL−1 had the least effect. The experimental results indicated that PS was able to activate exocytosis of pro-PO and formation of Hd-PO in white shrimp after injection, further regulating the immune process reflected by variation of antibacterial and bacteriolytic activities in a certain way.
Collapse
|
25
|
Souza ALA, Díaz-Dellavalle P, Cabrera A, Larrañaga P, Dalla-Rizza M, De-Simone SG. Antimicrobial activity of pleurocidin is retained in Plc-2, a C-terminal 12-amino acid fragment. Peptides 2013; 45:78-84. [PMID: 23603258 DOI: 10.1016/j.peptides.2013.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022]
Abstract
An analysis of a series of five peptides composed of various portions of the pleurocidin (Plc) sequence identified a l2-amino acid fragment from the C-terminus of Plc, designated Plc-2, as the smallest fragment that retained a antimicrobial activity comparable to that of the parent compound. MIC tests in vitro with low-ionic-strength medium showed that Plc-2 has potent activity against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus but not against Enterococcus faecalis. The antifungal activity of the synthetic peptides against phytopathogenic fungi, such as Fusarium oxysporum, Colletotrichum sp., Aspergillus niger and Alternaria sp., also identified Plc-2 as a biologically active peptide. Microscopy studies of fluorescently stained fungi treated with Plc-2 demonstrated that cytoplasmic and nuclear membranes were compromised in all strains of phytopathogenic fungi tested. Together, these results identify Plc-2 as a potential antimicrobial agent with similar properties to its parent compound, pleurocidin. In addition, it demonstrated that the KHVGKAALTHYL residues are critical for the antimicrobial activity described for pleurocidin.
Collapse
Affiliation(s)
- Andre L A Souza
- National Institute of Science and Technology on Innovation on Neglected Diseases (INCT-IDN)/Center for Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR. The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 2012; 19:3794-804. [PMID: 22725698 DOI: 10.2174/092986712801661004] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 04/27/2012] [Accepted: 05/03/2012] [Indexed: 02/06/2023]
Abstract
Peptide therapeutics is a promising field for emerging anti-cancer agents. Benefits include the ease and rapid synthesis of peptides and capacity for modifications. An existing and vast knowledge base of protein structure and function can be exploited for novel peptide design. Current research focuses on developing peptides that can (1) serve as tumor targeting moieties and (2) permeabilize membranes with cytotoxic consequences. A survey of recent findings reveals significant trends. Amphiphilic peptides with clusters of hydrophobic and cationic residues are features of anti-microbial peptides that confer the ability to eradicate microbes and show considerable anti-cancer toxicity. Peptides that assemble and form pores can disrupt cell or organelle membranes and cause apoptotic or necrotic death. Cell permeable and tumor-homing peptides can carry biologically active cargo to tumors or tumor vasculature. The challenge lies in developing the clinical application of therapeutic peptides. Improving delivery to tumors, minimizing non-specific toxic effects and discerning pharmacokinetic properties are high among the needs to produce a powerful therapeutic peptide for cancer treatment.
Collapse
Affiliation(s)
- R J Boohaker
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL 32827, USA
| | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Vijay K. Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| | | | - Xianghe Yan
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038;
| |
Collapse
|
28
|
Morash MG, Douglas SE, Robotham A, Ridley CM, Gallant JW, Soanes KH. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. Dis Model Mech 2011; 4:622-33. [PMID: 21729875 PMCID: PMC3177944 DOI: 10.1242/dmm.007310] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The emergence of multidrug-resistant cancers and the lack of targeted therapies for many cancers underscore an unmet need for new therapeutics with novel modes of action towards cancer cells. Host-defense peptides often exhibit selective cytotoxicity towards cancer cells and show potential as anti-cancer therapeutics. Here, we screen 26 naturally occurring variants of the peptide pleurocidin for cytotoxic and anti-cancer activities, and investigate the underlying mechanism of action. Cytotoxicities were assessed in vitro using cell-based assays and in vivo using zebrafish embryos. Morphological changes were assessed by both transmission and scanning electron microscopy, and functional assays were performed on zebrafish embryos to investigate the mechanism of cell death. A total of 14 peptides were virtually inactive against HL60 human leukemia cells, whereas 12 caused >50% death at ≤32 μg/ml. Morphological changes characteristic of oncosis were evident by electron microscopy after only 1 minute of treatment with 32 μg/ml of variant NRC-03. Only two peptides were hemolytic. Four peptides showed no toxicity towards zebrafish embryos at the highest concentration tested (25 μM; ∼64 μg/ml) and one peptide was highly toxic, killing 4-hour-post-fertilization (hpf) embryos immediately after exposure to 1 μM peptide. Four other peptides killed embryos after 24 hours of exposure at 1 μM. Most peptides caused mortality at one or more developmental stages only after continuous exposure (24 hours) with higher lethal doses (≥5 μM). Pleurocidin NRC-03 bound to embryos and induced the release of superoxide, caused an increase in the number of TUNEL-positive nuclei, and caused membrane damage and the loss of embryonic epithelial integrity, marked by the exclusion of cells from the outer epithelium and the appearance of F-actin within the circumferential cells of the repair site. Our results indicate that specific pleurocidin variants are attractive cancer-selective agents that selectively induce cell death in target cells but leave non-target cells such as erythrocytes and non-transformed cells unaffected.
Collapse
Affiliation(s)
- Michael G Morash
- Institute for Marine Biosciences, National Research Council, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| | | | | | | | | | | |
Collapse
|
29
|
Fernandez DI, Sani MA, Separovic F. Interactions of the Antimicrobial Peptide Maculatin 1.1 and Analogues with Phospholipid Bilayers. Aust J Chem 2011. [DOI: 10.1071/ch11062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interactions of the antimicrobial peptide, maculatin 1.1 (GLFGVLAKVAAHVVPAIAEHF-NH2) and two analogues, with model phospholipid membranes have been studied using solid-state NMR and circular dichroism spectroscopy. Maculatin 1.1 and the P15G and P15A analogues displayed minimal secondary structure in water, but with zwitterionic dimyristoylphosphatidylcholine (DMPC) vesicles displayed a significant increase in α-helical content. In mixed phospholipid vesicles of DMPC and anionic dimyristoylphosphatidylglycerol (DMPG), each peptide was highly structured with ~80% α-helical content. In DMPC vesicles, the native peptide displayed moderate head group interaction and significant perturbation of the lipid acyl chains. In DMPC/DMPG vesicles, maculatin 1.1 promoted formation of a DMPG-enriched phase and moderately increased disorder towards acyl chain ends of DMPC in the mixed bilayer. Both analogues showed reduced phospholipid head group interactions with DMPC but displayed significant interactions with the mixed lipid system. These effects support the preferential activity of these antimicrobial peptides for bacterial membranes.
Collapse
|
30
|
Chou HT, Wen HW, Kuo TY, Lin CC, Chen WJ. Interaction of cationic antimicrobial peptides with phospholipid vesicles and their antibacterial activity. Peptides 2010; 31:1811-20. [PMID: 20600422 DOI: 10.1016/j.peptides.2010.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/22/2010] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
Abstract
We have designed and synthesized a series of cationic α-helical AMPs with improved antibacterial activity and selectivity against a broad spectrum of G(+) and G(-) bacteria. In the current study, we intended to gain further insight into the mechanisms of action between AMPs and cellular membranes using model liposomes of various phospholipid compositions. Circular dichroism measurements showed that AMPs adopted amphipathic α-helical conformation in the presence of negatively charged vesicles (DOPC/DOPG=1:3), while they were largely unstructured when incubated with neutral vesicles (DOPC). The interaction of AMPs with phospholipid vesicles were further analyzed by calcein leakage experiments. AMPs exhibited weak dye-leakage activity for DOPC (neutral) vesicles, while they effectively induced calcein leakage when interacted with DOPC/DOPG-entrapped vesicles. These results indicated that our newly designed cationic AMPs did show preferences for bacteria-mimicking anionic membranes. All of them exert their cytolytic activity by folding into an amphipathic helix upon selectively binding and insertion into the target membrane, leading to breakdown of the membrane structure, thus causing leakage of cell contents, resulting finally in cell death. Elucidating the mechanism of the membranolytic activity of AMPs may facilitate the development of more effective antimicrobial agents.
Collapse
Affiliation(s)
- Hung-Ta Chou
- Graduate Institute of Biotechnology, College of Bioresources, National Ilan University, 1 Sheng-lung Rd. Sec. 1, Ilan 26047, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Ando S, Mitsuyasu K, Soeda Y, Hidaka M, Ito Y, Matsubara K, Shindo M, Uchida Y, Aoyagi H. Structure-activity relationship of indolicidin, a Trp-rich antibacterial peptide. J Pept Sci 2010; 16:171-7. [PMID: 20196123 DOI: 10.1002/psc.1217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A series of Trp and Arg analogs of antibacterial indolicidin (Ind) was synthesized and the antimicrobial and hemolytic activities were investigated. [L(9)]Ind, [L(11)]Ind, [K(8),L(9)]Ind and [K(6, 8),L(9)]Ind showed desirable characteristics, exhibiting negligible hemolytic activity while keeping strong antibacterial activity. The results indicated that the Trp residue at position 11 essentially contributes to both activities and one can not be exchanged for the other, whereas the Trp residues at positions 4 and 9 play important roles in antimicrobial and hemolytic activities, respectively. The Trp residues at positions 6 and 8 play no important roles in biological activities. We then found that the retro analog of Ind showed higher antibacterial activity than Ind against both Gram-positive and Gram-negative bacteria but remarkably lower hemolytic activity than that of Ind.
Collapse
Affiliation(s)
- Setsuko Ando
- Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Tiwari BK, Valdramidis VP, O'Donnell CP, Muthukumarappan K, Bourke P, Cullen PJ. Application of natural antimicrobials for food preservation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:5987-6000. [PMID: 19548681 DOI: 10.1021/jf900668n] [Citation(s) in RCA: 429] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this review, antimicrobials from a range of plant, animal, and microbial sources are reviewed along with their potential applications in food systems. Chemical and biochemical antimicrobial compounds derived from these natural sources and their activity against a range of pathogenic and spoilage microorganisms pertinent to food, together with their effects on food organoleptic properties, are outlined. Factors influencing the antimicrobial activity of such agents are discussed including extraction methods, molecular weight, and agent origin. These issues are considered in conjunction with the latest developments in the quantification of the minimum inhibitory (and noninhibitory) concentration of antimicrobials and/or their components. Natural antimicrobials can be used alone or in combination with other novel preservation technologies to facilitate the replacement of traditional approaches. Research priorities and future trends focusing on the impact of product formulation, intrinsic product parameters, and extrinsic storage parameters on the design of efficient food preservation systems are also presented.
Collapse
Affiliation(s)
- Brijesh K Tiwari
- Biosystems Engineering, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Belfied, Dublin 4, Ireland
| | | | | | | | | | | |
Collapse
|
33
|
Lee J, Park C, Park SC, Woo ER, Park Y, Hahm KS, Lee DG. Cell selectivity-membrane phospholipids relationship of the antimicrobial effects shown by pleurocidin enantiomeric peptides. J Pept Sci 2009; 15:601-6. [DOI: 10.1002/psc.1157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Mason AJ, Moussaoui W, Abdelrahman T, Boukhari A, Bertani P, Marquette A, Shooshtarizaheh P, Moulay G, Boehm N, Guerold B, Sawers RJH, Kichler A, Metz-Boutigue MH, Candolfi E, Právost G, Bechinger B. Structural determinants of antimicrobial and antiplasmodial activity and selectivity in histidine-rich amphipathic cationic peptides. J Biol Chem 2008; 284:119-133. [PMID: 18984589 DOI: 10.1074/jbc.m806201200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Designed histidine-rich amphipathic cationic peptides, such as LAH4, have enhanced membrane disruption and antibiotic properties when the peptide adopts an alignment parallel to the membrane surface. Although this was previously achieved by lowering the pH, here we have designed a new generation of histidine-rich peptides that adopt a surface alignment at neutral pH. In vitro, this new generation of peptides are powerful antibiotics in terms of the concentrations required for antibiotic activity; the spectrum of target bacteria, fungi, and parasites; and the speed with which they kill. Further modifications to the peptides, including the addition of more hydrophobic residues at the N terminus, the inclusion of a helix-breaking proline residue or using D-amino acids as building blocks, modulated the biophysical properties of the peptides and led to substantial changes in toxicity to human and parasite cells but had only a minimal effect on the antibacterial and antifungal activity. Using a range of biophysical methods, in particular solid-state NMR, we show that the peptides are highly efficient at disrupting the anionic lipid component of model membranes. However, we also show that effective pore formation in such model membranes may be related to, but is not essential for, high antimicrobial activity by cationic amphipathic helical peptides. The information in this study comprises a new layer of detail in the understanding of the action of cationic helical antimicrobial peptides and shows that rational design is capable of producing potentially therapeutic membrane active peptides with properties tailored to their function.
Collapse
Affiliation(s)
- A James Mason
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland.
| | - Wardi Moussaoui
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Tamer Abdelrahman
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Alyae Boukhari
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Philippe Bertani
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Arnaud Marquette
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Peiman Shooshtarizaheh
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Gilles Moulay
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Nelly Boehm
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Bernard Guerold
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Ruairidh J H Sawers
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Antoine Kichler
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Marie-Háléne Metz-Boutigue
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Ermanno Candolfi
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Gilles Právost
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| | - Burkhard Bechinger
- Universitá Louis Pasteur/CNRS, UMR7177, Institut de Chimie, 4 Rue Blaise Pascal, F-67070 Strasbourg, France, the UPRES EA-3432 Institut de Bactáriologie, Universitá Louis Pasteur-Hôpitaux Universitaires de Strasbourg, 3 Rue Koeberlá F-67000 Strasbourg, France, the UPRES EA-3950 Institut de Parasitologie et de Pathologie Tropicale de la FacultádeMádecine, Universitá Louis Pasteur, 3 Rue Koeberlá F-67000 Strasbourg, France, INSERM Unitá 575, Physiopathologie du Systéme Nerveux, 5 Rue Blaise Pascal, F-67084 Strasbourg, France, CNRS FRE 3087-Gánáthon, 1 Rue de l'Internationale, F-91002, Evry, France, INSERM Unitá 666 and Service Central de Microscopie Electronique, Universitá Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg, France, and the Department of Plant Molecular Biology, University of Lausanne, Biophore Building, CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Lee J, Lee DG. Structure-antimicrobial activity relationship between pleurocidin and its enantiomer. Exp Mol Med 2008; 40:370-6. [PMID: 18779649 DOI: 10.3858/emm.2008.40.4.370] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
To develop novel antibiotic peptides useful as therapeutic drugs, the enantiomeric analogue of pleurocidin (Ple), which is a well known 25-mer antimicrobial peptide, was designed for proteolytic resistance by D-amino acids substitution. The proteolytic resistance was confirmed by using HPLC after the digestion with various proteases. To investigate the antibiotic effect of L- and D-Ple, the antibacterial activity and hemolytic effect were tested against human erythrocytes. The D-Ple showed a decreased antibacterial activity and a dramatically decreased hemolytic activity compared with L-Ple. The hemolytic effect of analogue was further confirmed by using calcein leakage measurement with liposome. To elucidate these results, the secondary structure of the peptides was investigated by using circular dichroism spectroscopy. The results revealed that D-Ple, as well as L-Ple, had typical alpha-helical structures which were mirror images, with a different helicity. These results suggested that the discrepancy of the structure between the two peptides made their antibacterial activity distinct.
Collapse
Affiliation(s)
- Juneyoung Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Korea
| | | |
Collapse
|
36
|
Fernandez DI, Gehman JD, Separovic F. Membrane interactions of antimicrobial peptides from Australian frogs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1788:1630-8. [PMID: 19013126 DOI: 10.1016/j.bbamem.2008.10.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/08/2008] [Accepted: 10/12/2008] [Indexed: 10/21/2022]
Abstract
The membrane interactions of four antimicrobial peptides, aurein 1.2, citropin 1.1, maculatin 1.1 and caerin 1.1, isolated from Australian tree frogs, are reviewed. All four peptides are amphipathic alpha-helices with a net positive charge and range in length from 13 to 25 residues. Despite several similar sequence characteristics, these peptides compromise the integrity of model membrane bilayers via different mechanisms; the shorter peptides exhibit a surface interaction mechanism while the longer peptides may form pores in membranes.
Collapse
Affiliation(s)
- David I Fernandez
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne VIC 3010, Australia
| | | | | |
Collapse
|
37
|
Tsuda N, Koba Y, Hatakeyama T, Ando S, Shindo M, Uchida Y, Aoyagi H. Antibacterial Activity of Short Peptides Based on Pleurocidin and Their Interaction with Phospholipid Membranes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.1299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Chou HT, Kuo TY, Chiang JC, Pei MJ, Yang WT, Yu HC, Lin SB, Chen WJ. Design and synthesis of cationic antimicrobial peptides with improved activity and selectivity against Vibrio spp. Int J Antimicrob Agents 2008; 32:130-8. [DOI: 10.1016/j.ijantimicag.2008.04.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/20/2008] [Accepted: 04/03/2008] [Indexed: 11/26/2022]
|
39
|
Taira J, Furukawa S, Hatakeyama T, Aoyagi H, Kodama H. Modifications of Hydrophobic Value and Hydrophobic Moment Value of Cationic Model Peptides for Conversion of Peptide–Membrane Interactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
40
|
Sung WS, Lee DG. Pleurocidin-derived antifungal peptides with selective membrane-disruption effect. Biochem Biophys Res Commun 2008; 369:858-61. [PMID: 18325325 DOI: 10.1016/j.bbrc.2008.02.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 02/23/2008] [Indexed: 10/22/2022]
Abstract
Pleurocidin (Ple) is a peptide derived from the winter flounder. In our previous study, we reported the antifungal effect of Ple and its mode of action. To develop novel antifungal peptides useful as therapeutic agents, two analogs, with amino acid substitutions, were designed to decrease the net hydrophobicity by Arg (R) or Ser (S)-substitution at the hydrophobic face of Ple without changing the amphipathic structure. By substituting Ser, the hydrophobicity of the peptide (anal-S) was decreased, and by substituting Arg, though the hydrophobicity of the peptide (anal-R) was decreased, the cationicity of this peptide was increased. CD measurements showed the substitution of Arg or Ser decrease the alpha-helical conformation of analog peptides. Studies with analog peptides have shown decreases in hydrophobicity and alpha-helicity do not affect antifungal activity but decrease hemolytic activity. These results suggest that highly hydrophobic and alpha-helical natures are not desirable in the design of antimicrobial peptides.
Collapse
Affiliation(s)
- Woo Sang Sung
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Puk-ku, Daegu 702-701, Republic of Korea
| | | |
Collapse
|
41
|
Mason AJ, Bertani P, Moulay G, Marquette A, Perrone B, Drake AF, Kichler A, Bechinger B. Membrane interaction of chrysophsin-1, a histidine-rich antimicrobial peptide from red sea bream. Biochemistry 2007; 46:15175-87. [PMID: 18052076 DOI: 10.1021/bi701344m] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chrysophsin-1 is an amphipathic alpha-helical antimicrobial peptide produced in the gill cells of red sea bream. The peptide has broad range activity against both Gram-positive and Gram-negative bacteria but is more hemolytic than other antimicrobial peptides such as magainin. Here we explore the membrane interaction of chrysophsin-1 and determine its toxicity, in vitro, for human lung fibroblasts to obtain a mechanism for its antimicrobial activity and to understand the role of the unusual C-terminal RRRH sequence. At intermediate peptide concentrations, solid-state NMR methods reveal that chrysophsin-1 is aligned parallel to the membrane surface and the lipid acyl chains in mixed model membranes are destabilized, thereby being in agreement with models where permeabilization is an effect of transient membrane disruption. The C-terminal RRRH sequence was shown to have a large effect on the insertion of the peptide into membranes with differing lipid compositions and was found to be crucial for pore formation and toxicity of the peptide to fibroblasts. The combination of biophysical data and cell-based assays suggests likely mechanisms involved in both the antibiotic and toxic activity of chrysophsins.
Collapse
Affiliation(s)
- A James Mason
- UMR 7177, Institut de Chimie, Université Louis Pasteur/CNRS, 4 rue Blaise Pascal, 67070 Strasbourg, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Mason AJ, Marquette A, Bechinger B. Zwitterionic phospholipids and sterols modulate antimicrobial peptide-induced membrane destabilization. Biophys J 2007; 93:4289-99. [PMID: 17766347 PMCID: PMC2098721 DOI: 10.1529/biophysj.107.116681] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cationic amphipathic alpha-helical peptides preferentially disrupt anionic lipids in mixed model membranes, potentially causing a catastrophic release of the cell contents or attenuation of the membrane potential. The effective role of such peptides requires considerable discrimination between target and host cells, which is likely to occur at the level of the cell membrane. Here, we explore the roles of a variety of common membrane constituents in mediating the interaction between the antimicrobial peptide pleurocidin and model membranes. We employ intrinsic tryptophan fluorescence and circular dichroism to observe the effect of increasing concentrations of sterol in the membrane on peptide binding, using (2)H solid-state NMR of chain deuterated lipids simultaneously to probe the effective chain disruption of the anionic phospholipid component of the membrane. We show that the degree of ordering of the lipid acyl chains in the membrane is dependent on the nature of the zwitterionic phospholipid headgroup in mixed anionic membranes. Furthermore, the presence of cholesterol and ergosterol increases acyl chain order in the liquid crystalline model membranes, but to differing degrees. Our results show how sterols can protect even negatively charged membranes from the disruptive effects of antimicrobial peptides, thereby providing a molecular view of the differences in sensitivity of various target membranes to linear cationic antibiotic peptides where bacteria (no sterols) are most susceptible, lower eukaryotes including fungi (containing ergosterol) exhibit an intermediate degree of sensitivity, and higher organisms (containing cholesterol) are largely resistant to antimicrobial peptides.
Collapse
Affiliation(s)
- A James Mason
- Faculté de chimie, Université Louis Pasteur/Centre National de la Recherche Scientifique UMR 7177, Institut le Bel, Strasbourg, France.
| | | | | |
Collapse
|
43
|
Jung HJ, Park Y, Sung WS, Suh BK, Lee J, Hahm KS, Lee DG. Fungicidal effect of pleurocidin by membrane-active mechanism and design of enantiomeric analogue for proteolytic resistance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1400-5. [PMID: 17467656 DOI: 10.1016/j.bbamem.2007.02.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2006] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 11/17/2022]
Abstract
Pleurocidin (Ple) is a 25-residue peptide which is derived from the skin mucous secretion of the winter flounder (Pleuronectes americanus). In this study, we investigated antifungal effects and its mode of action of Ple on human pathogenic fungi. Ple showed potent antifungal activity with low hemolytic activity. To investigate the antifungal mechanisms of Ple, the cellular localization and membrane interaction of Ple were examined. Protoplast regeneration and membrane-disrupting activity by DPH-labeled membrane support the idea, that Ple exerts fungicidal activity against the human pathogenic fungus Candida albicans with the disruption of a plasma membrane. To aim for which was the application of a therapeutic agent, we designed a synthetic enantiomeric peptide composed of all-d-amino acids to enhance proteolytic resistance. The synthetic all-d-Ple also displayed two-fold more potent antifungal activity than that of all-l-Ple, and its antifungal activity showed proteolytic resistance against various proteases. Therefore, these results suggest a therapeutic potential of all-d-Ple with regard to its proteolytic resistance against human fungal infections.
Collapse
Affiliation(s)
- Hyun Jun Jung
- Department of Microbiology, College of Natural Sciences, Kyungpook National University, 1370 Sankyuk-dong, Puk-ku, Daegu 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Mason AJ, Chotimah INH, Bertani P, Bechinger B. A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin. Mol Membr Biol 2006; 23:185-94. [PMID: 16754361 DOI: 10.1080/09687860500485303] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cationic amphipathic alpha-helical antibiotic peptide, pleurocidin, from the winter flounder Pleuronectes americanus associates strongly with anionic membranes where it is able to translocate across the membrane, cause dye leakage from vesicles and induce pore like channel conductance. To investigate the mechanism of pleurocidin antibiotic activity in more detail we have applied a variety of spectroscopic techniques to study the interaction of pleurocidin with model membranes. At neutral pH the peptide inserts into membranes containing anionic lipids and, as shown by proton-decoupled 15N solid-state NMR spectroscopy of macroscopically oriented samples, is aligned parallel to the membrane surface. 2H solid-state NMR spectroscopy of chain deuterated phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) lipids in mixed membranes shows that pleurocidin interacts with both the zwitterionic PE and anionic PG but disrupts the lipid acyl chain order of the anionic PG lipids more effectively. At acidic pH the three histidine residues of pleurocidin become protonated and positively charged which does not alter the membrane disrupting effect nor the location of the peptide in the membrane. The results are interpreted in terms of a structural model for pleurocidin inserted into anionic lipid membranes and the implications of our data are discussed in terms of a general mechanism for the antibiotic activity.
Collapse
Affiliation(s)
- A James Mason
- Faculté de chimie, University Louis Pasteur/CNRS, LC3-UMR7177 Institut le Bel, Strasbourg, France.
| | | | | | | |
Collapse
|
45
|
BURROWES OJ, HADJICHARALAMBOUS C, DIAMOND G, LEE TUNGCHING. Evaluation of Antimicrobial Spectrum and Cytotoxic Activity of Pleurocidin for Food Applications. J Food Sci 2006. [DOI: 10.1111/j.1365-2621.2004.tb13373.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Brocal I, Falco A, Mas V, Rocha A, Perez L, Coll JM, Estepa A. Stable expression of bioactive recombinant pleurocidin in a fish cell line. Appl Microbiol Biotechnol 2006; 72:1217-28. [PMID: 16636829 DOI: 10.1007/s00253-006-0393-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 02/09/2006] [Accepted: 02/23/2006] [Indexed: 11/28/2022]
Abstract
Pleurocidin (Ple), a linear cationic peptide of 25 amino acids, is a member of a larger family of antimicrobial peptides present in flatfish. Previous studies have shown that Ple displays a strong antimicrobial activity against a broad spectrum of bacteria and appears to play a role in innate host defence. In this work, the genomic sequence encoding the Ple prepropeptide has been isolated from Limanda limanda and cloned in a vector under the control of a non-viral promoter (the carp beta-actin promoter). By using this construction, expression of bioactive Ple was demonstrated in transformed fish cell lines continuously growing for more than 2 years. Furthermore, the study of Ple processing, maturation and secretion (by using fusion with green fluorescence protein) and the high bactericidal activity of the secreted recombinant Ple (detectable in cell supernatants without any concentration) are all reported here, as no other recombinant Ple or fish antimicrobial peptide have been expressed before to that extent. Such an overexpression of recombinant Ple or any other related antimicrobial peptide might improve the chances to develop new antibiotic agents, as well as to provide essential information about the mechanism of action, range of activity and the role in the innate immune response of antibiotic peptides.
Collapse
Affiliation(s)
- I Brocal
- Instituto de Biologia Molecular y Celular (IBMC), Miguel Hernández University, 03202 Elche, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Syvitski RT, Burton I, Mattatall NR, Douglas SE, Jakeman DL. Structural Characterization of the Antimicrobial Peptide Pleurocidin from Winter Flounder. Biochemistry 2005; 44:7282-93. [PMID: 15882067 DOI: 10.1021/bi0504005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pleurocidin is an antimicrobial peptide that was isolated from the mucus membranes of winter flounder (Pseudopleuronectes americanus) and contributes to the initial stages of defense against bacterial infection. From NMR structural studies with the uniformly (15)N-labeled peptide, a structure of pleurocidin was determined to be in a random coil conformation in aqueous solution whereas it assumes an alpha-helical structure in TFE and in dodecylphosphocholine (DPC) micelles. From (15)N relaxation studies, the helix is a rigid structure in the membrane-mimicking environment. Strong NOESY cross-peaks from the pleurocidin to the aliphatic chain on DPC confirm that pleurocidin is contained within the DPC micelle and not associated with the surface of the micelle. From diffusion studies it was determined that each micelle contains at least two pleurocidin molecules.
Collapse
Affiliation(s)
- Raymond T Syvitski
- College of Pharmacy, 5968 College Street, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5
| | | | | | | | | |
Collapse
|
48
|
Niidome T, Matsuyama N, Kunihara M, Hatakeyama T, Aoyagi H. Effect of Chain Length of Cationic Model Peptides on Antibacterial Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2005. [DOI: 10.1246/bcsj.78.473] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
49
|
Tang YC, Deber CM. Aqueous solubility and membrane interactions of hydrophobic peptides with peptoid tags. Biopolymers 2004; 76:110-8. [PMID: 15054891 DOI: 10.1002/bip.10566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lysine tagging of hydrophobic peptides of parent sequence KKAAALAAAAALAAWAALAAAKKKK-NH(2) has been shown to facilitate their synthesis and purification through water solubilization, yet not impact on the intrinsic properties of the hydrophobic core sequence with respect to its insertion into membranes in an alpha-helical conformation. However, due to their positively charged character, such peptides often become bound to phospholipid head groups in membrane surfaces, which inhibits their transbilayer insertion and/or prevents their transport across cellular bilayers. We sought to develop more neutral peptides of membrane-permeable character by replacing most Lys residues with uncharged peptoid [N-(R)glycyl] residues, which might similarly confer water solubility while retaining membrane-interactive properties of the hydrophobic core. Several "peptoid-tagged" derivatives of the parent peptide were prepared with varying peptoid content, with five of the six Lys residues replaced with peptoids Nala and/or Nval. Conformations of these peptides measured by circular dichroism spectroscopy demonstrated that these water-soluble peptides retain the alpha-helix structure in micelles (lysophosphatidylcholine and sodium dodecyl sulfate) notwithstanding the known helix-breaking capacity of the peptoid tags. Blue shifts in Trp fluorescence spectra and quenching experiments with acrylamide confirmed that peptoid-tagged peptides insert spontaneously into micellar membranes. Results suggest that upon introduction of uncharged tags, the interaction between the membrane and the peptides is dominated by the hydrophobicity of the peptide core rather than the electrostatic interactions between the Lys and the head groups of the lipids. The overall findings indicate that peptoid residues are effective surrogates for Lys as uncharged water-solubilizing tags and, as such, provide a potentially valuable feature of design of membrane-interactive peptides.
Collapse
Affiliation(s)
- Yan-Chun Tang
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
| | | |
Collapse
|
50
|
Fukuoka Y, Matsushita Y, Furukawa S, Niidome T, Hatakeyama T, Aoyagi H. Structure-Activity Relationship of Model Peptides Based on Pleurocidin, an Antibacterial Peptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2003. [DOI: 10.1246/bcsj.76.1857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|