1
|
Zeng S, Zhu Y, Su C, Jiang Z, You Y, Zhu D, Fan Q. Integrating serum metabolomics analysis and network pharmacology to reveal the potential mechanism of Shengmai Jianghuang San in the treatment of nasopharyngeal carcinoma. Biomed Chromatogr 2024; 38:e5981. [PMID: 39113411 DOI: 10.1002/bmc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 10/19/2024]
Abstract
Shengmai Jianghuang San (SMJHS) is a traditional Chinese herbal compound reported to inhibit Nasopharyngeal Carcinoma (NPC) progression and enhance radiosensitivity. However, the specific active ingredients and regulatory mechanisms of SMJHS against NPC, particularly under hypoxic conditions, remain unclear. In this study, Sprague-Dawley (SD) rats were gavaged with Shengmai Jianghuang San (SMJHS), and their blood was collected from the abdominal aorta. UHPLC-Q-Exactive orbitrap MS/MS was used to identify the metabolite profiles of SMJHS drug-containing serum. A molecular network of the active compositions in SMJHS targeting NPC was constructed through network pharmacology and molecular docking. The HIF-1α/VEGF pathway was in key positions. The effects of SMJHS on the proliferation, migration, and radiosensitivity of hypoxic NPC cells were assessed by in vitro experiments. NPC cell lines stably overexpressing HIF-1α were established using a lentivirus to investigate the regulation of HIF-1α/VEGF signaling in hypoxic NPC cells by SMJHS. Through a combination of network pharmacological analysis, cellular biofunctional validation, and molecular biochemical experiments, our study found that SMJHS had an anti-proliferative effect on NPC cells cultured under hypoxic conditions, inhibiting their migration and increasing their radiosensitivity. Additionally, SMJHS suppressed the expression of HIF-1α and VEGFA, exhibiting potential as an effective option for improving NPC treatment.
Collapse
Affiliation(s)
- Siying Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuanchao Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chao Su
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ziqing Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyi You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Daoqi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Thoracic Surgery, General Hospital of Southern Theater Command, PLA, Guangzhou, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Benaiges E, Ceperuelo-Mallafré V, Guaita S, Maymó-Masip E, Madeira A, Gómez D, Hernández V, Vilaseca I, Merma C, León X, Terra X, Vendrell J, Avilés-Jurado FX, Fernández-Veledo S. Survivin/BIRC5 as a novel molecular effector at the crossroads of glucose metabolism and radioresistance in head and neck squamous cell carcinoma. Head Neck 2024; 46:1752-1765. [PMID: 38305029 DOI: 10.1002/hed.27651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Metabolic reprogramming and abnormal glucose metabolism are hallmarks of head and neck squamous cell carcinoma (HNSCC). Certain oncogenes can promote cancer-related metabolic changes, but understanding their crosstalk in HNSCC biology and treatment is essential for identifying predictive biomarkers and developing target therapies. METHODS We assessed the value of survivin/BIRC5 as a radioresistance factor potentially modulated by glucose for predicting therapeutic sensitivity and prognosis of HNSCC in a cohort of 32 patients. Additionally, we conducted in vitro experiments to explore the role of survivin/BIRC5 in glucose metabolism concerning radiation response. RESULTS Tumoral BIRC5 expression is associated with serum glucose and predicts locoregional disease-free survival and lower BIRC5 mRNA levels are associated with better outcomes. Upregulation of BIRC5 by radiation depends on glucose levels and provokes a pro-tumoral and radioresistant phenotype in surviving cells. CONCLUSIONS Survivin/BIRC5 might be independently associated with the risk of recurrence in patients with HNSCC.
Collapse
Affiliation(s)
- Ester Benaiges
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Victòria Ceperuelo-Mallafré
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Sandra Guaita
- Departament d'Oncologia, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Unitat de Recerca en Lípids i Arteriosclerosi (URLA), Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, Spain
| | - Elsa Maymó-Masip
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Ana Madeira
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - David Gómez
- Servei d'Oncologia Radioteràpica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Victor Hernández
- Servei d'Oncologia Radioteràpica, Hospital Universitari Sant Joan, Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Isabel Vilaseca
- Head neck tumors Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Surgical Area, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Carla Merma
- Servei d'Otorrinolaringologia i Cirurgia de Cap i Coll, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Xavier León
- Servei d'Otorrinolaringologia i Cirurgia de Cap i Coll, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBERBBN)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- UVIC-Universitat Central de Catalunya, Vic, Spain
| | - Ximena Terra
- Grup de Recerca MoBioFood, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Vendrell
- Departament de Medicina i Cirurgia, Universitat Rovira i Virgili, Reus, Spain
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francesc Xavier Avilés-Jurado
- Head neck tumors Unit, Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Servei d'Otorrinolaringologia i Cirurgia de Cap i Coll, Hospital Universitari Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Grup de Recerca en Diabetis i Malalties Metabòliques Associades (DIAMET), Institut d'Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari Joan XXIII, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Ciències Mèdiques Bàsiques, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
3
|
Li CX, Gong ZC, Zhang WN, Zhang Y, Zhao HR. Radioresistance or/and radiosensitivity of head and neck squamous cell carcinoma: biological angle. Oral Maxillofac Surg 2024; 28:547-555. [PMID: 37935817 DOI: 10.1007/s10006-023-01189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVE This narrative review aimed to compile and summarize clinically relevant literature in radiation therapy and to discuss the potential in radioresistant and radiosensitive head and neck squamous cell carcinoma (HNSCC). METHODS AND MATERIALS Google Scholar, PubMed, and the Cochrane Library were retrieved using combined key words such as "radiotherapy" and "head and neck cancer." Search strings additionally queried were "radioresistant," "radiosensitive," "head and neck region," "squamous cell carcinoma," in combination with Boolean operators 'AND' and 'OR.' Subsequently, the resulting publications were included for review of the full text. RESULTS Radiotherapeutic responses currently in clinical observation referred to HNSCC scoping were selected into this review. The compiled mechanisms were then detailed concerning on the clinical significance, biological characteristics, and molecular function. CONCLUSIONS Brachytherapy or/and external-beam radiotherapy are crucial for treating HNSCC especially the early stage patients, but in some patients with locally advanced tumors, their outcome with radiation therapy is poor due to obvious radioresistance. The curative effects mainly depend on the response to radiation therapy so an updated review is needed to optimize further applications in HNSCC radiotherapy.
Collapse
Affiliation(s)
- Chen-Xi Li
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhong-Cheng Gong
- Department of Oral and Maxillofacial Oncology & Surgery, School / Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| | - Wei-Na Zhang
- Ear, Nose & Throat Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yang Zhang
- The First Ward of Oncological Department, Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Hua-Rong Zhao
- The First Ward of Oncological Department, Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| |
Collapse
|
4
|
Shi Z, Hu C, Zheng X, Sun C, Li Q. Feedback loop between hypoxia and energy metabolic reprogramming aggravates the radioresistance of cancer cells. Exp Hematol Oncol 2024; 13:55. [PMID: 38778409 PMCID: PMC11110349 DOI: 10.1186/s40164-024-00519-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Radiotherapy is one of the mainstream approaches for cancer treatment, although the clinical outcomes are limited due to the radioresistance of tumor cells. Hypoxia and metabolic reprogramming are the hallmarks of tumor initiation and progression and are closely linked to radioresistance. Inside a tumor, the rate of angiogenesis lags behind cell proliferation, and the underdevelopment and abnormal functions of blood vessels in some loci result in oxygen deficiency in cancer cells, i.e., hypoxia. This prevents radiation from effectively eliminating the hypoxic cancer cells. Cancer cells switch to glycolysis as the main source of energy, a phenomenon known as the Warburg effect, to sustain their rapid proliferation rates. Therefore, pathways involved in metabolic reprogramming and hypoxia-induced radioresistance are promising intervention targets for cancer treatment. In this review, we discussed the mechanisms and pathways underlying radioresistance due to hypoxia and metabolic reprogramming in detail, including DNA repair, role of cancer stem cells, oxidative stress relief, autophagy regulation, angiogenesis and immune escape. In addition, we proposed the existence of a feedback loop between energy metabolic reprogramming and hypoxia, which is associated with the development and exacerbation of radioresistance in tumors. Simultaneous blockade of this feedback loop and other tumor-specific targets can be an effective approach to overcome radioresistance of cancer cells. This comprehensive overview provides new insights into the mechanisms underlying tumor radiosensitivity and progression.
Collapse
Affiliation(s)
- Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Guo Q, Zhou Y, Xie T, Yuan Y, Li H, Shi W, Zheng L, Li X, Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis 2024; 11:101043. [PMID: 38292177 PMCID: PMC10825311 DOI: 10.1016/j.gendis.2023.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/25/2023] [Indexed: 02/01/2024] Open
Abstract
There are few tumor cell subpopulations with stem cell characteristics in tumor tissue, defined as cancer stem cells (CSCs) or cancer stem-like cells (CSLCs), which can reconstruct neoplasms with malignant biological behaviors such as invasiveness via self-renewal and unlimited generation. The microenvironment that CSCs depend on consists of various cellular components and corresponding medium components. Among these factors existing at a variety of levels and forms, cytokine networks and numerous signal pathways play an important role in signaling transduction. These factors promote or maintain cancer cell stemness, and participate in cancer recurrence, metastasis, and resistance. This review aims to summarize the recent molecular data concerning the multilayered relationship between CSCs and CSC-favorable microenvironments. We also discuss the therapeutic implications of targeting this synergistic interplay, hoping to give an insight into targeting cancer cell stemness for tumor therapy and prognosis.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Huilong Li
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wanjin Shi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450003, China
| |
Collapse
|
6
|
Li CX, Tan XR, Wei W, Li MQ, Zhang WN, Gong ZC, Zhang Y, Zhao HR. A radiobiological perspective on radioresistance or/and radiosensitivity of head and neck squamous cell carcinoma. Rep Pract Oncol Radiother 2024; 28:809-822. [PMID: 38515813 PMCID: PMC10954264 DOI: 10.5603/rpor.99355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/11/2023] [Indexed: 03/23/2024] Open
Abstract
Background This article aimed to compile and summarize clinically relevant literature in radiation therapy, and to discuss the potential in radioresistant and radiosensitive head and neck cancer. Study Design Narrative review. Materials and methods Google Scholar, PubMed and the Cochrane Library were retrieved using combined key words such as "radiotherapy" and "head and neck cancer". Search strings additionally queried were "radioresistant", "radiosensitive", "head and neck region", "squamous cell carcinoma", in combination with Boolean Operators 'AND' and 'OR'. Subsequently, the resulting publications were included for review of the full text. Results Radiotherapeutic response currently in clinical observation referred to HNSCC scoping were selected into this review. The compiled mechanisms were then detailed concerning on the clinical significance, biological characteristics, and molecular function. Conclusions Brachytherapy or/and external-beam radiotherapy are crucial for treating HNSCC, especially the early stage patients, but in patients with locally advanced tumors, their outcome with radiation therapy is poor due to obvious radioresistance. The curative effects mainly depend on the response of radiation therapy, so an updated review is needed to optimize further applications in HNSCC radiotherapy.
Collapse
Affiliation(s)
- Chen-xi Li
- Department of Oral and Maxillofacial Oncology & Surgery, School/Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-rong Tan
- Department of Oral and Maxillofacial Oncology & Surgery, School/Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wei Wei
- Department of Oral and Maxillofacial Oncology & Surgery, School/Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Mu-qiu Li
- Department of Oral and Maxillofacial Oncology & Surgery, School/Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Wei-na Zhang
- Ear, Nose & Throat Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhong-cheng Gong
- Department of Oral and Maxillofacial Oncology & Surgery, School/Hospital of Stomatology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yang Zhang
- The First Ward of Oncological Department, Cancer Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hua-rong Zhao
- The First Ward of Oncological Department, Cancer Center, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
7
|
Louati S, Wozny AS, Malesys C, Daguenet E, Ladjohounlou R, Alphonse G, Tomasetto C, Magné N, Rodriguez-Lafrasse C. Differential Formation of Stress Granules in Radiosensitive and Radioresistant Head and Neck Squamous Cell Carcinoma Cells. Int J Radiat Oncol Biol Phys 2024; 118:485-497. [PMID: 37619790 DOI: 10.1016/j.ijrobp.2023.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
PURPOSE Stress granules (SGs) are cytoplasmic aggregates in which mRNAs and specific proteins are trapped in response to a variety of damaging agents. They participate in the cellular defense mechanisms. Currently, their mechanism of formation in response to ionizing radiation and their role in tumor-cell radiosensitivity remain elusive. METHODS AND MATERIALS The kinetics of SG formation was investigated after the delivery of photon irradiation at different doses to head and neck squamous cell carcinoma cell lines with different radiosensitivities and the HeLa cervical cancer cell line (used as reference). In parallel, the response to a canonical inducer of SGs, sodium arsenite, was also studied. Immunolabeling of SG-specific proteins and mRNA fluorescence in situ hybridization enabled SG detection and quantification. Furthermore, a ribopuromycylation assay was used to assess the cell translational status. To determine whether reactive oxygen species were involved in SG formation, their scavenging or production was induced by pharmacologic pretreatment in both SCC61 and SQ20B cells. RESULTS Photon irradiation at different doses led to the formation of cytoplasmic foci that were positive for different SG markers. The presence of SGs gradually increased from 30 minutes to 2 hours postexposure in HeLa, SCC61, and Cal60 radiosensitive cells. In turn, the SQ20B and FaDu radioresistant cells did not form SGs. These results indicated a correlation between sensitivity to photon irradiation and SG formation. Moreover, SG formation was significantly reduced by reactive oxygen species scavenging using dimethyl sulfoxide in SCC61 cells, which supported their role in SG formation. However, a reciprocal experiment in SQ20B cells that depleted glutathione using buthionine sulfoximide did not restore SG formation in these cells. CONCLUSIONS SGs are formed in response to irradiation in radiosensitive, but not in radioresistant, head and neck squamous cell carcinoma cells. Interestingly, compared with sodium arsenite-induced SGs, photon-induced SGs exhibited a different morphology and cellular localization. Moreover, photon-induced SGs were not associated with the inhibition of translation; rather, they depended on oxidative stress.
Collapse
Affiliation(s)
- Safa Louati
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France; Department of Research and Teaching in Oncology, Hôpital Nord, Saint-Priest en Jarez, France
| | - Anne-Sophie Wozny
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France; Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Céline Malesys
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France
| | - Elisabeth Daguenet
- Department of Research and Teaching in Oncology, Hôpital Nord, Saint-Priest en Jarez, France
| | - Riad Ladjohounlou
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France
| | - Gersende Alphonse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France; Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Catherine Tomasetto
- Institute of Genetic, Molecular and Cellular Biology, Université de Strasbourg, Illkirch, France
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France; Radiotherapy Department, Bergonié Institute, Bordeaux, France
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS 5822/IP2I, Université de Lyon, Lyon 1 University, Oullins, France; Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, Pierre-Bénite, France.
| |
Collapse
|
8
|
Nisar H, Labonté FM, Roggan MD, Schmitz C, Chevalier F, Konda B, Diegeler S, Baumstark-Khan C, Hellweg CE. Hypoxia Modulates Radiosensitivity and Response to Different Radiation Qualities in A549 Non-Small Cell Lung Cancer (NSCLC) Cells. Int J Mol Sci 2024; 25:1010. [PMID: 38256084 PMCID: PMC10816011 DOI: 10.3390/ijms25021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Hypoxia-induced radioresistance reduces the efficacy of radiotherapy for solid malignancies, including non-small cell lung cancer (NSCLC). Cellular hypoxia can confer radioresistance through cellular and tumor micro-environment adaptations. Until recently, studies evaluating radioresistance secondary to hypoxia were designed to maintain cellular hypoxia only before and during irradiation, while any handling of post-irradiated cells was carried out in standard oxic conditions due to the unavailability of hypoxia workstations. This limited the possibility of simulating in vivo or clinical conditions in vitro. The presence of molecular oxygen is more important for the radiotoxicity of low-linear energy transfer (LET) radiation (e.g., X-rays) than that of high-LET carbon (12C) ions. The mechanisms responsible for 12C ions' potential to overcome hypoxia-induced radioresistance are currently not fully understood. Therefore, the radioresistance of hypoxic A549 NSCLC cells following exposure to X-rays or 12C ions was investigated along with cell cycle progression and gene expression by maintaining hypoxia before, during and after irradiation. A549 cells were incubated under normoxia (20% O2) or hypoxia (1% O2) for 48 h and then irradiated with X-rays (200 kV) or 12C ions (35 MeV/n, LET ~75 keV/µm). Cell survival was evaluated using colony-forming ability (CFA) assays immediately or 24 h after irradiation (late plating). DNA double-strand breaks (DSBs) were analyzed using γH2AX immunofluorescence microscopy. Cell cycle progression was determined by flow cytometry of 4',6-diamidino-2-phenylindole-stained cells. The global transcription profile post-irradiation was evaluated by RNA sequencing. When hypoxia was maintained before, during and after irradiation, hypoxia-induced radioresistance was observed only in late plating CFA experiments. The killing efficiency of 12C ions was much higher than that of X-rays. Cell survival under hypoxia was affected more strongly by the timepoint of plating in the case of X-rays compared to 12C ions. Cell cycle arrest following irradiation under hypoxia was less pronounced but more prolonged. DSB induction and resolution following irradiation were not significantly different under normoxia and hypoxia. Gene expression response to irradiation primarily comprised cell cycle regulation for both radiation qualities and oxygen conditions. Several PI3K target genes involved in cell migration and cell motility were differentially upregulated in hypoxic cells. Hypoxia-induced radioresistance may be linked to altered cell cycle response to irradiation and PI3K-mediated changes in cell motility and migration in A549 cells rather than less DNA damage or faster repair.
Collapse
Affiliation(s)
- Hasan Nisar
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
- Department of Medical Sciences, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan
| | - Frederik M. Labonté
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Marie Denise Roggan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Claudia Schmitz
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
| | - François Chevalier
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-University of Caen Normandy, 14000 Caen, France;
| | - Bikash Konda
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
| | - Sebastian Diegeler
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christa Baumstark-Khan
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
| | - Christine E. Hellweg
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany; (H.N.); (F.M.L.); (M.D.R.); (C.S.); (B.K.); (S.D.); (C.B.-K.)
| |
Collapse
|
9
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
10
|
Sokol O, Durante M. Carbon Ions for Hypoxic Tumors: Are We Making the Most of Them? Cancers (Basel) 2023; 15:4494. [PMID: 37760464 PMCID: PMC10526811 DOI: 10.3390/cancers15184494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Hypoxia, which is associated with abnormal vessel growth, is a characteristic feature of many solid tumors that increases their metastatic potential and resistance to radiotherapy. Carbon-ion radiation therapy, either alone or in combination with other treatments, is one of the most promising treatments for hypoxic tumors because the oxygen enhancement ratio decreases with increasing particle LET. Nevertheless, current clinical practice does not yet fully benefit from the use of carbon ions to tackle hypoxia. Here, we provide an overview of the existing experimental and clinical evidence supporting the efficacy of C-ion radiotherapy in overcoming hypoxia-induced radioresistance, followed by a discussion of the strategies proposed to enhance it, including different approaches to maximize LET in the tumors.
Collapse
Affiliation(s)
- Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institute for Condensed Matter Physics, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
11
|
Zhou Z, Guan B, Xia H, Zheng R, Xu B. Particle radiotherapy in the era of radioimmunotherapy. Cancer Lett 2023:216268. [PMID: 37331583 DOI: 10.1016/j.canlet.2023.216268] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
Radiotherapy (RT) is one of the key modalities for cancer treatment, and more than 70% of tumor patients will receive RT during the course of their disease. Particle radiotherapy, such as proton radiotherapy, carbon-ion radiotherapy (CIRT) and boron neutron capture therapy (BNCT), is currently available for the treatment of patients Immunotherapy combined with photon RT has been successfully used in the clinic. The effect of immunotherapy combined with particle RT is an area of interest. However, the molecular mechanisms underlying the effects of combined immunotherapy and particle RT remain largely unknown. In this review, we summarize the properties of different types of particle RT and the mechanisms underlying their radiobiological effects. Additionally, we compared the main molecular players in photon RT and particle RT and the mechanisms involved the RT-mediated immune response.
Collapse
Affiliation(s)
- Zihan Zhou
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Huang Xia
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China.
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Xinquan Road 29, Fuzhou, 350000, Fuzhou, China; Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors (Fujian Medical University), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China; Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, Xinquan Road 29, Fuzhou, 350000, Fujian, China.
| |
Collapse
|
12
|
Sai S, Koto M, Yamada S. Basic and translational research on carbon-ion radiobiology. Am J Cancer Res 2023; 13:1-24. [PMID: 36777517 PMCID: PMC9906076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/16/2022] [Indexed: 02/14/2023] Open
Abstract
Carbon-ion beam irradiation (IR) has evident advantages over the conventional photon beams in treating tumors. It releases enormous amount of energy in a well-defined range with insignificant scatter in surrounding tissues based on well-localized energy deposition. Over the past 28 years, more than 14,000 patients with various types of cancer have been treated by carbon ion radiotherapy (CIRT) with promising results at QST. I have provided an overview of the basic and translational research on carbon-ion radiobiology including mechanisms underlying high linear energy transfer (LET) carbon-ion IR-induced cell death (apoptosis, autophagy, senescence, mitotic catastrophe etc.) and high radiocurability produced by carbon-ion beams in combination with DNA damaging drugs or with molecular-targeted drugs, micro-RNA therapeutics and immunotherapy. Additionally, I have focused on the application of these treatment in human cancer cells, especially cancer stem cells (CSCs). Finally, I have summarized the current studies on the application of basic carbon-ion beam IR according to the cancer types and clinical outcomes.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and Technology (QST)Chiba, Japan,QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology (QST)Chiba, Japan
| |
Collapse
|
13
|
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer 2023; 128:1429-1438. [PMID: 36639527 PMCID: PMC10070470 DOI: 10.1038/s41416-022-02117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.
Collapse
|
14
|
Siqueira JM, Heguedusch D, Rodini CO, Nunes FD, Rodrigues MFSD. Mechanisms involved in cancer stem cell resistance in head and neck squamous cell carcinoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:116-137. [PMID: 37065869 PMCID: PMC10099599 DOI: 10.20517/cdr.2022.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/04/2023] [Accepted: 02/08/2023] [Indexed: 04/18/2023]
Abstract
Despite scientific advances in the Oncology field, cancer remains a leading cause of death worldwide. Molecular and cellular heterogeneity of head and neck squamous cell carcinoma (HNSCC) is a significant contributor to the unpredictability of the clinical response and failure in cancer treatment. Cancer stem cells (CSCs) are recognized as a subpopulation of tumor cells that can drive and maintain tumorigenesis and metastasis, leading to poor prognosis in different types of cancer. CSCs exhibit a high level of plasticity, quickly adapting to the tumor microenvironment changes, and are intrinsically resistant to current chemo and radiotherapies. The mechanisms of CSC-mediated therapy resistance are not fully understood. However, they include different strategies used by CSCs to overcome challenges imposed by treatment, such as activation of DNA repair system, anti-apoptotic mechanisms, acquisition of quiescent state and Epithelial-mesenchymal transition, increased drug efflux capacity, hypoxic environment, protection by the CSC niche, overexpression of stemness related genes, and immune surveillance. Complete elimination of CSCs seems to be the main target for achieving tumor control and improving overall survival for cancer patients. This review will focus on the multi-factorial mechanisms by which CSCs are resistant to radiotherapy and chemotherapy in HNSCC, supporting the use of possible strategies to overcome therapy failure.
Collapse
Affiliation(s)
- Juliana Mota Siqueira
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daniele Heguedusch
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-230, Brazil
| | - Fabio Daumas Nunes
- Department of Stomatology, Discipline of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Maria Fernanda Setúbal Destro Rodrigues
- Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, São Paulo 01504-001, Brazil
- Correspondence to: PhD. Maria Fernanda Setúbal Destro Rodrigues. Biophotonics Applied to Health Sciences, Nove de Julho University, UNINOVE, Rua Vergueiro, 235/249 - Liberdade, São Paulo 01504-001, Brazil. E-mail:
| |
Collapse
|
15
|
Du TQ, Liu R, Zhang Q, Luo H, Chen Y, Tan M, Wang Q, Wu X, Liu Z, Sun S, Yang K, Tian J, Wang X. Does particle radiation have superior radiobiological advantages for prostate cancer cells? A systematic review of in vitro studies. Eur J Med Res 2022; 27:306. [PMID: 36572945 PMCID: PMC9793637 DOI: 10.1186/s40001-022-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Charged particle beams from protons to carbon ions provide many significant physical benefits in radiation therapy. However, preclinical studies of charged particle therapy for prostate cancer are extremely limited. The aim of this study was to comprehensively investigate the biological effects of charged particles on prostate cancer from the perspective of in vitro studies. METHODS We conducted a systematic review by searching EMBASE (OVID), Medline (OVID), and Web of Science databases to identify the publications assessing the radiobiological effects of charged particle irradiation on prostate cancer cells. The data of relative biological effectiveness (RBE), surviving fraction (SF), standard enhancement ratio (SER) and oxygen enhancement ratio (OER) were extracted. RESULTS We found 12 studies met the eligible criteria. The relative biological effectiveness values of proton and carbon ion irradiation ranged from 0.94 to 1.52, and 1.67 to 3.7, respectively. Surviving fraction of 2 Gy were 0.17 ± 0.12, 0.55 ± 0.20 and 0.53 ± 0.16 in carbon ion, proton, and photon irradiation, respectively. PNKP inhibitor and gold nanoparticles were favorable sensitizing agents, while it was presented poorer performance in GANT61. The oxygen enhancement ratio values of photon and carbon ion irradiation were 2.32 ± 0.04, and 1.77 ± 0.13, respectively. Charged particle irradiation induced more G0-/G1- or G2-/M-phase arrest, more expression of γ-H2AX, more apoptosis, and lower motility and/or migration ability than photon irradiation. CONCLUSIONS Both carbon ion and proton irradiation have advantages over photon irradiation in radiobiological effects on prostate cancer cell lines. Carbon ion irradiation seems to have further advantages over proton irradiation.
Collapse
Affiliation(s)
- Tian-Qi Du
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Ruifeng Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Qiuning Zhang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Hongtao Luo
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Yanliang Chen
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Mingyu Tan
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Qian Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xun Wu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Zhiqiang Liu
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Shilong Sun
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| | - Kehu Yang
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Jinhui Tian
- grid.32566.340000 0000 8571 0482Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu People’s Republic of China
| | - Xiaohu Wang
- grid.9227.e0000000119573309Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Rd, Lanzhou, 730000 Gansu People’s Republic of China ,grid.32566.340000 0000 8571 0482The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu People’s Republic of China ,grid.410726.60000 0004 1797 8419Graduate School, University of Chinese Academy of Sciences, Beijing, People’s Republic of China ,Heavy Ion Therapy Center, Lanzhou Heavy Ion Hospital, Lanzhou, Gansu People’s Republic of China
| |
Collapse
|
16
|
Li Y, Zhang L, Zhang Y, Miao Z, Liu Z, Zhou G, He J, Ding N, Zhou H, Zhou T, Niu F, Li J, Liu Y. Potential molecular mechanism of Guiqi Baizhu Decoction in radiation-induced intestinal edema by regulating HIF-1a, AQP4 and Na +/K +-ATPase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154445. [PMID: 36130463 DOI: 10.1016/j.phymed.2022.154445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Guiqi Baizhu Decoction (GQBZD) has a good protective effect on radiation-induced intestinal edema (RIIE). However, the underlying molecular mechanisms need further elucidation. PURPOSE To reveal the potential mechanism of RIIE and GQBZD treatment. METHODS SD rats were irradiated with 6Gy X-ray to establish RIIE model. The general condition of the rats was observed; the dry/wet weight ratio of colon tissue was detected; the morphological changes of colon tissue were observed by HE staining; the expressions of ROS, HIF-1α and AQP4 in colon tissue were detected by confocal laser scanning; the expression of edema-related proteins was detected by Western blot. In addition, human colon epithelial cells (NCM460) was irradiated with 2Gy X-ray, and HIF-1α expression in NCM460 was knocked down by small interfering RNA (siRNA) transfection, and the activity of Na+/K+-ATPase was detected by enzyme activity kit; the ROS expression was detected by flow cytometer; the AQP4 expression was detected by laser confocal microscopy; and the expression of edema-related proteins were detected by Western blot. RESULTS We found that after irradiation, the colon tissue of rats was significantly edema, mainly manifested as mucosal and submucosal edema, and the ultrastructure was reflected in the structural damage of nucleus and mitochondria. ROS, HIF-1α and AQP4 were significantly expressed, and Na+/K+-ATPase expression/activity was decreased. After the intervention of GQBZD, the edema of the colon tissue of the rats was improved, the expressions of ROS, HIF-1α and AQP4 were decreased, and the expression/activity of Na+/K+-ATPase was increased. CONCLUSION Ionizing radiation (IR) can cause significant intestinal edema. AQP4 and Na+/K+-ATPase are the key factors of RIIE, which are regulated by ROS and HIF-1α. GQBZD can improve hypoxia and oxidative stress, regulate the expression of AQP4 and Na+/K+-ATPase, and achieve a protective effect on RIIE. This study is the first to reveal the mechanism of RIIE.
Collapse
Affiliation(s)
- Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, Lanzhou, China
| | - Yiming Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiming Miao
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhiwei Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Gucheng Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Fan Niu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Medicine and Translation of the Ministry of Education of Dunhuang,Lanzhou,China.
| |
Collapse
|
17
|
Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14122829. [PMID: 35740495 PMCID: PMC9221493 DOI: 10.3390/cancers14122829] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/24/2022] Open
Abstract
Survival in unresectable locally advanced stage non-small cell lung cancer (NSCLC) patients remains poor despite chemoradiotherapy. Recently, adjuvant immunotherapy improved survival for these patients but we are still far from curing most of the patients with only a 57% survival remaining at 3 years. This poor survival is due to the resistance to chemoradiotherapy, local relapses, and distant relapses. Several biological mechanisms have been found to be involved in the chemoradioresistance such as cancer stem cells, cancer mutation status, or the immune system. New drugs to overcome this radioresistance in NSCLCs have been investigated such as radiosensitizer treatments or immunotherapies. Different modalities of radiotherapy have also been investigated to improve efficacity such as dose escalation or proton irradiations. In this review, we focused on biological mechanisms such as the cancer stem cells, the cancer mutations, the antitumor immune response in the first part, then we explored some strategies to overcome this radioresistance in stage III NSCLCs with new drugs or radiotherapy modalities.
Collapse
|
18
|
Liang S, Zhou G, Hu W. Research Progress of Heavy Ion Radiotherapy for Non-Small-Cell Lung Cancer. Int J Mol Sci 2022; 23:2316. [PMID: 35216430 PMCID: PMC8876478 DOI: 10.3390/ijms23042316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and poses a serious threat to human health. However, the treatment outcomes of concurrent chemoradiotherapy for non-small-cell lung cancer are still unsatisfactory, especially for high grade lesions. As a new cancer treatment, heavy ion radiotherapy has shown promising efficacy and safety in the treatment of non-small-cell lung cancer. This article discusses the clinical progress of heavy ion radiotherapy in the treatment of non-small-cell lung cancer mainly from the different cancer stages, the different doses of heavy ion beams, and the patient's individual factors, and explores the deficiency of heavy ion radiotherapy in the treatment of non-small-cell lung cancer and the directions of future research, in order to provide reference for the wider and better application of heavy ion radiotherapy in the future.
Collapse
Affiliation(s)
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China;
| |
Collapse
|
19
|
Heft Neal ME, Brenner JC, Prince MEP, Chinn SB. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front Cell Dev Biol 2022; 9:660210. [PMID: 35047489 PMCID: PMC8762309 DOI: 10.3389/fcell.2021.660210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Head and Neck cancer survival has continued to remain around 50% despite treatment advances. It is thought that cancer stem cells play a key role in promoting tumor heterogeneity, treatment resistance, metastasis, and recurrence in solid malignancies including head and neck cancer. Initial studies identified cancer stem cell markers including CD44 and ALDH in head and neck malignancies and found that these cells show aggressive features in both in vitro and in vivo studies. Recent evidence has now revealed a key role of the tumor microenvironment in maintaining a cancer stem cell niche and promoting cancer stem cell plasticity. There is an increasing focus on identifying and targeting the crosstalk between cancer stem cells and surrounding cells within the tumor microenvironment (TME) as new therapeutic potential, however understanding how CSC maintain a stem-like state is critical to understanding how to therapeutically alter their function. Here we review the current evidence for cancer stem cell plasticity and discuss how interactions with the TME promote the cancer stem cell niche, increase tumor heterogeneity, and play a role in treatment resistance.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark E P Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
21
|
Wozny AS, Gauthier A, Alphonse G, Malésys C, Varoclier V, Beuve M, Brichart-Vernos D, Magné N, Vial N, Ardail D, Nakajima T, Rodriguez-Lafrasse C. Involvement of HIF-1α in the Detection, Signaling, and Repair of DNA Double-Strand Breaks after Photon and Carbon-Ion Irradiation. Cancers (Basel) 2021; 13:cancers13153833. [PMID: 34359734 PMCID: PMC8345054 DOI: 10.3390/cancers13153833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Hypoxia-Inducible Factor 1α (HIF-1α), the main regulator of the oxygen homeostasis, promotes cancer cell survival through proliferation, angiogenesis, metastasis and radioresistance. Previously, our group demonstrated that silencing HIF-1α under hypoxia leads to a substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and carbon-ions, probably resulting from an accumulation of deleterious complex DNA damage. In this study, we aimed at determining the potential role of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, under hypoxia, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). Silencing HIF-1α under hypoxia led us to demonstrate the involvement of this transcriptional regulator in DSB repair in non-CSCS and CSC, thus highlighting its targeting together with radiation as a promising therapeutic strategy against radioresistant tumor cells in hypoxic niches. Abstract Hypoxia-Inducible Factor 1α (HIF-1α), which promotes cancer cell survival, is the main regulator of oxygen homeostasis. Hypoxia combined with photon and carbon ion irradiation (C-ions) stabilizes HIF-1α. Silencing HIF-1α under hypoxia leads to substantial radiosensitization of Head-and-Neck Squamous Cell Carcinoma (HNSCC) cells after both photons and C-ions. Thus, this study aimed to clarify a potential involvement of HIF-1α in the detection, signaling, and repair of DNA Double-Strand-Breaks (DSBs) in response to both irradiations, in two HNSCC cell lines and their subpopulations of Cancer-Stem Cells (CSCs). After confirming the nucleoshuttling of HIF-1α in response to both exposure under hypoxia, we showed that silencing HIF-1α in non-CSCs and CSCs decreased the initiation of the DSB detection (P-ATM), and increased the residual phosphorylated H2AX (γH2AX) foci. While HIF-1α silencing did not modulate 53BP1 expression, P-DNA-PKcs (NHEJ-c) and RAD51 (HR) signals decreased. Altogether, our experiments demonstrate the involvement of HIF-1α in the detection and signaling of DSBs, but also in the main repair pathways (NHEJ-c and HR), without favoring one of them. Combining HIF-1α silencing with both types of radiation could therefore present a potential therapeutic benefit of targeting CSCs mostly present in tumor hypoxic niches.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Arnaud Gauthier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Gersende Alphonse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| | - Céline Malésys
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Virginie Varoclier
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Michael Beuve
- Univ Lyon, Lyon 1 University, UMR CNRS5822/IP2I, 69100 Villeurbanne, France;
| | - Delphine Brichart-Vernos
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Nicolas Magné
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Nicolas Vial
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Radiotherapy, Institute of Cancerology Lucien Neuwirth, 42270 Saint-Priest-en-Jarez, France
| | - Dominique Ardail
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Claire Rodriguez-Lafrasse
- Cellular and Molecular Radiobiology Laboratory, Lyon-Sud Medical School, UMR CNRS5822/IP2I, Univ Lyon, Lyon 1 University, 69921 Oullins, France; (A.-S.W.); (A.G.); (G.A.); (C.M.); (V.V.); (D.B.-V.); (N.M.); (N.V.); (D.A.)
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
- Correspondence: ; Tel.: +33-426-235-965
| |
Collapse
|
22
|
Muraro E, Fanetti G, Lupato V, Giacomarra V, Steffan A, Gobitti C, Vaccher E, Franchin G. Cetuximab in locally advanced head and neck squamous cell carcinoma: Biological mechanisms involved in efficacy, toxicity and resistance. Crit Rev Oncol Hematol 2021; 164:103424. [PMID: 34245856 DOI: 10.1016/j.critrevonc.2021.103424] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 12/17/2022] Open
Abstract
Since its introduction, the use of cetuximab in the treatment of head and neck squamous cell carcinoma (HNSCC) has experienced an evolution. Currently, cetuximab associated with radiotherapy is limited to the treatment of patients affected by a locally advanced malignancy and unfit for cisplatin. However, reliable biomarkers of cetuximab efficacy in this cancer setting are still lacking. This review focuses on the mechanisms of action of cetuximab, highlighting, in particular, the consequences of the binding to EGFR, and the pathways involved in the development of adverse events or acquired resistance. Indeed, adverse events, such as skin rash, have been associated with cetuximab efficacy in HNSCC several times. Acquired resistance is associated with microenvironment plasticity, which is, in turn, characterized by an increased immune infiltrate. The better definition of patients eligible for this kind of therapy could improve HNSCC management, possibly proposing a combined treatment with radiotherapy, cetuximab and immune checkpoint inhibitors as recently investigated.
Collapse
Affiliation(s)
- Elena Muraro
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, CRO Aviano National Cancer Institute, Aviano, PN, Italy.
| | - Giuseppe Fanetti
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Valentina Lupato
- Unit of Otolaryngology, General Hospital "S. Maria degli Angeli", Pordenone, Italy
| | - Vittorio Giacomarra
- Unit of Otolaryngology, General Hospital "S. Maria degli Angeli", Pordenone, Italy
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Department of Translational Research, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Carlo Gobitti
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Emanuela Vaccher
- Department of Medical Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| | - Giovanni Franchin
- Department of Radiation Oncology, CRO Aviano National Cancer Institute, Aviano, PN, Italy
| |
Collapse
|
23
|
Guy JB, Espenel S, Louati S, Gauthier A, Garcia MA, Vial N, Malésys C, Ardail D, Alphonse G, Wozny AS, Rodriguez-Lafrasse C, Magné N. Combining radiation to EGFR and Bcl-2 blockade: a new approach to target cancer stem cells in head and neck squamous cell carcinoma. J Cancer Res Clin Oncol 2021; 147:1905-1916. [PMID: 33791846 DOI: 10.1007/s00432-021-03593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The clinical outcome of head and neck squamous cell carcinoma (HNSCC) remains poor, partly due to the presence of resistant cancer stem cells (CSCs) which are responsible of recurrences. CSCs have low EGFR expression and, conversely, overexpress the anti-apoptotic Bcl-2 protein, which is involved in resistance to apoptosis and the invasion/migration capacities of tumour cells. METHODS The combination therapy of ABT-199, a Bcl-2 inhibitor, cetuximab an EGFR inhibitor, and radiation using an HNSCC model (SQ20B cell line) and its corresponding CSC subpopulation were evaluated in vitro (2D/3D cell proliferation; invasion/migration and apoptosis using videomicroscopy) and in vivo. RESULTS Cetuximab strongly inhibited 2D and 3D cell proliferation, as well as invasion/migration, only in non-CSC-SQ20B cells, whereas ABT-199 selectively inhibited these mechanisms in SQ20B/CSCs. The combination of irradiation + cetuximab + ABT-199 increased the inhibition of the 2D and 3D cell proliferation, invasion/migration, and resistance to apoptosis in both cell sub-populations. In addition, in a nude mouse model with heterotopic tumour xenograft, a treatment combining cetuximab + ABT-199 with fractional irradiation strongly delayed the tumour growth and increased in vivo lifespan without side effects. CONCLUSION Based on the present results, this triple combination therapy may represent a new opportunity for testing in clinical trials, particularly in locally advanced HNSCC.
Collapse
Affiliation(s)
- Jean-Baptiste Guy
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France.
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France.
- Département de Radiothérapie, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France.
| | - Sophie Espenel
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Département de Radiothérapie, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France
| | - Safa Louati
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Département de Radiothérapie, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France
| | - Arnaud Gauthier
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Hospices Civils de Lyon, 69229, Lyon, France
| | - Max-Adrien Garcia
- Département de Santé Publique, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France
| | - Nicolas Vial
- Département de Radiothérapie, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France
| | - Céline Malésys
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
| | - Dominique Ardail
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Hospices Civils de Lyon, 69229, Lyon, France
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Hospices Civils de Lyon, 69229, Lyon, France
| | - Anne-Sophie Wozny
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Hospices Civils de Lyon, 69229, Lyon, France
| | - Claire Rodriguez-Lafrasse
- Faculté de Médecine-Lyon-Sud, Université Lyon 1, 69921, Oullins, France
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Hospices Civils de Lyon, 69229, Lyon, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon Sud, CNRS UMR 5822 IP2I, 165 Chemin du Grand Revoyet, BP 12, 69921, Oullins Cedex, France
- Département de Radiothérapie, Institut de Cancérologie de La Loire, Lucien Neuwirth, 42270, St Priest en Jarez, France
| |
Collapse
|
24
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
25
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
26
|
Impact of hypoxia on the double-strand break repair after photon and carbon ion irradiation of radioresistant HNSCC cells. Sci Rep 2020; 10:21357. [PMID: 33288855 PMCID: PMC7721800 DOI: 10.1038/s41598-020-78354-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand breaks (DSBs) induced by photon irradiation are the most deleterious damage for cancer cells and their efficient repair may contribute to radioresistance, particularly in hypoxic conditions. Carbon ions (C-ions) act independently of the oxygen concentration and trigger complex- and clustered-DSBs difficult to repair. Understanding the interrelation between hypoxia, radiation-type, and DNA-repair is therefore essential for overcoming radioresistance. The DSBs signaling and the contribution of the canonical non-homologous end-joining (NHEJ-c) and homologous-recombination (HR) repair pathways were assessed by immunostaining in two cancer-stem-cell (CSCs) and non-CSCs HNSCC cell lines. Detection and signaling of DSBs were lower in response to C-ions than photons. Hypoxia increased the decay-rate of the detected DSBs (γH2AX) in CSCs after photons and the initiation of DSB repair signaling (P-ATM) in CSCs and non-CSCs after both radiations, but not the choice of DSB repair pathway (53BP1). Additionally, hypoxia increased the NHEJ-c (DNA-PK) and the HR pathway (RAD51) activation only after photons. Furthermore, the involvement of the HR seemed to be higher in CSCs after photons and in non-CSCs after C-ions. Taken together, our results show that C-ions may overcome the radioresistance of HNSCC associated with DNA repair, particularly in CSCs, and independently of a hypoxic microenvironment.
Collapse
|
27
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
28
|
Huang Y, Huang Q, Zhao J, Dong Y, Zhang L, Fang X, Sun P, Kong L, Lu JJ. The Impacts of Different Types of Radiation on the CRT and PDL1 Expression in Tumor Cells Under Normoxia and Hypoxia. Front Oncol 2020; 10:1610. [PMID: 32974200 PMCID: PMC7466457 DOI: 10.3389/fonc.2020.01610] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/24/2020] [Indexed: 01/19/2023] Open
Abstract
Introduction Hypoxia is a hallmark of cancer that may contribute to an immunosuppressive microenvironment and promote radioresistance. High linear energy transfer (LET) radiation is considered to be able to overcome the negative effects of hypoxia. However, the anti-tumorigenic effects induced by low or high LET radiation have not been fully elucidated. This study aimed to compare the effects of different types of radiation on the immune response, particularly the impact on calreticulin (CRT), and programmed cell death ligand 1 (PDL1) expression. Methods Four human tumor cell lines were investigated in this study. Cells in normoxic and hypoxic groups were irradiated with 4Gy (physical dose) photon, proton, and carbon-ion radiation, respectively. The expression of CRT and PDL1 was detected 48 h after irradiation, and the median fluorescence intensities (MFIs) were compared by flow cytometry. Meanwhile, the radiosensitivity of tumor cells in each group was also compared by colony formation assays and flow cytometry. Results All types of radiation could significantly inhibit the colony formation of tumor cells under normoxia. However, the efficacy of photon and proton radiation was impaired under hypoxia. Carbon-ion radiation could still inhibit colony formation. The percentage of viable cells after irradiation was higher under hypoxia compared with those under normoxia. The CRT expression under normoxia was significantly increased after radiation. Carbon-ion radiation enhanced CRT expression compared to photon and proton radiation. Conversely, under hypoxia, the CRT expression level was significantly upregulated at baseline (0Gy). Radiation could not increase the expression further. PDL1 expression was also significantly increased by radiation under normoxia in all cell lines except the Ln18 cell line. Carbon-ion radiation induced the most significant increase. Under hypoxia, the PDL1 expression level was also upregulated at baseline and radiation could not increase expression further. Conclusion Tumor cells were resistant to photon and proton but sensitive to carbon-ion radiation under hypoxia. Carbon-ion radiation could induce the highest CRT and PDL1 expression under normoxia. However, under hypoxia, radiation could not further enhance the high baseline expression of CRT and PDL1.
Collapse
Affiliation(s)
- Yangle Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jingfang Zhao
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Yuanli Dong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lijia Zhang
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China.,Department of Medical Physics, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Xumeng Fang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Pian Sun
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Jiade Jay Lu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China.,Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| |
Collapse
|
29
|
Sun X, Lv X, Yan Y, Zhao Y, Ma R, He M, Wei M. Hypoxia-mediated cancer stem cell resistance and targeted therapy. Biomed Pharmacother 2020; 130:110623. [PMID: 32791395 DOI: 10.1016/j.biopha.2020.110623] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Drug resistance is a major obstacle in the treatment of tumors, which easily lead to relapse or poor prognosis. Cancer stem cells (CSCs) are regarded as one of the important targets that mediate tumor resistance. Increasing evidence shows that the tumor hypoxia microenvironment is closely related to the resistance of CSCs to chemotherapy and radiotherapy. In this review, we intend to review the articles that have described how the hypoxic microenvironment affects CSC stemness and mediates tumor resistance and provide new directions and methods in the clinical treatment of tumors. Here, we also discuss the feasibility and development prospects of using hypoxia-inducible factors (HIFs) that regulate the hypoxic microenvironment of tumors as targeted agents to treat tumors, as well as to reduce or even reverse the resistance of tumors to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Xuemei Lv
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yuanyuan Yan
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Yanyun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Rong Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning Province, China; Liaoning Engineering Technology Research Center for the Research, Development and Industrialization of Innovative Peptide Drugs, China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
30
|
Impact of Hypoxia on Carbon Ion Therapy in Glioblastoma Cells: Modulation by LET and Hypoxia-Dependent Genes. Cancers (Basel) 2020; 12:cancers12082019. [PMID: 32718037 PMCID: PMC7464439 DOI: 10.3390/cancers12082019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/26/2022] Open
Abstract
Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.
Collapse
|
31
|
ROS-Mediated Therapeutic Strategy in Chemo-/Radiotherapy of Head and Neck Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5047987. [PMID: 32774675 PMCID: PMC7396055 DOI: 10.1155/2020/5047987] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancer is a highly genetic and metabolic heterogeneous collection of malignancies of the lip, oral cavity, salivary glands, pharynx, esophagus, paranasal sinuses, and larynx with five-year survival rates ranging from 12% to 93%. Patients with head and neck cancer typically present with advanced stage III, IVa, or IVb disease and are treated with comprehensive modality including chemotherapy, radiotherapy, and surgery. Despite advancements in treatment modality and technique, noisome recurrence, invasiveness, and resistance as well as posttreatment complications severely influence survival rate and quality of life. Thus, new therapeutic strategies are urgently needed that offer enhanced efficacy with less toxicity. ROS in cancer cells plays a vital role in regulating cell death, DNA repair, stemness maintenance, metabolic reprogramming, and tumor microenvironment, all of which have been implicated in resistance to chemo-/radiotherapy of head and neck cancer. Adjusting ROS generation and elimination to reverse the resistance of cancer cells without impairing normal cells show great hope in improving the therapeutic efficacy of chemo-/radiotherapy of head and neck cancer. In the current review, we discuss the pivotal and targetable redox-regulating system including superoxide dismutases (SODs), tripeptide glutathione (GSH), thioredoxin (Trxs), peroxiredoxins (PRXs), nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/keap1), and mitochondria electron transporter chain (ETC) complexes and their roles in regulating ROS levels and their clinical significance implicated in chemo-/radiotherapy of head and neck cancer. We also summarize several old drugs (referred to as the non-anti-cancer drugs used in other diseases for a long time) and small molecular compounds as well as natural herbs which effectively modulate cellular ROS of head and neck cancer to synergize the efficacy of conventional chemo-/radiotherapy. Emerging interdisciplinary techniques including photodynamic, nanoparticle system, and Bio-Electro-Magnetic-Energy-Regulation (BEMER) therapy are promising measures to broaden the potency of ROS modulation for the benefit of chemo-/radiotherapy in head and neck cancer.
Collapse
|
32
|
Liu Y, Yang M, Luo J, Zhou H. Radiotherapy targeting cancer stem cells "awakens" them to induce tumour relapse and metastasis in oral cancer. Int J Oral Sci 2020; 12:19. [PMID: 32576817 PMCID: PMC7311531 DOI: 10.1038/s41368-020-00087-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023] Open
Abstract
Radiotherapy is one of the most common treatments for oral cancer. However, in the clinic, recurrence and metastasis of oral cancer occur after radiotherapy, and the underlying mechanism remains unclear. Cancer stem cells (CSCs), considered the “seeds” of cancer, have been confirmed to be in a quiescent state in most established tumours, with their innate radioresistance helping them survive more easily when exposed to radiation than differentiated cancer cells. There is increasing evidence that CSCs play an important role in recurrence and metastasis post-radiotherapy in many cancers. However, little is known about how oral CSCs cause tumour recurrence and metastasis post-radiotherapy. In this review article, we will first summarise methods for the identification of oral CSCs and then focus on the characteristics of a CSC subpopulation induced by radiation, hereafter referred to as “awakened” CSCs, to highlight their response to radiotherapy and potential role in tumour recurrence and metastasis post-radiotherapy as well as potential therapeutics targeting CSCs. In addition, we explore potential therapeutic strategies targeting these “awakened” CSCs to solve the serious clinical challenges of recurrence and metastasis in oral cancer after radiotherapy.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Miao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Konings K, Vandevoorde C, Baselet B, Baatout S, Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol 2020; 10:128. [PMID: 32117774 PMCID: PMC7033551 DOI: 10.3389/fonc.2020.00128] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy plays a central role in the treatment of cancer patients. Over the past decades, remarkable technological progress has been made in the field of conventional radiotherapy. In addition, the use of charged particles (e.g., protons and carbon ions) makes it possible to further improve dose deposition to the tumor, while sparing the surrounding healthy tissues. Despite these improvements, radioresistance and tumor recurrence are still observed. Although the mechanisms underlying resistance to conventional radiotherapy are well-studied, scientific evidence on the impact of charged particle therapy on cancer cell radioresistance is restricted. The purpose of this review is to discuss the potential role that charged particles could play to overcome radioresistance. This review will focus on hypoxia, cancer stem cells, and specific signaling pathways of EGFR, NFκB, and Hedgehog as well as DNA damage signaling involving PARP, as mechanisms of radioresistance for which pharmacological targets have been identified. Finally, new lines of future research will be proposed, with a focus on novel molecular inhibitors that could be used in combination with charged particle therapy as a novel treatment option for radioresistant tumors.
Collapse
Affiliation(s)
- Katrien Konings
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Department of Nuclear Medicine, iThemba LABS, Cape Town, South Africa
| | - Bjorn Baselet
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Marjan Moreels
- Radiobiology Unit, Belgian Nuclear Research Center (SCK•CEN), Mol, Belgium
| |
Collapse
|
34
|
Thariat J, Valable S, Laurent C, Haghdoost S, Pérès EA, Bernaudin M, Sichel F, Lesueur P, Césaire M, Petit E, Ferré AE, Saintigny Y, Skog S, Tudor M, Gérard M, Thureau S, Habrand JL, Balosso J, Chevalier F. Hadrontherapy Interactions in Molecular and Cellular Biology. Int J Mol Sci 2019; 21:E133. [PMID: 31878191 PMCID: PMC6981652 DOI: 10.3390/ijms21010133] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.
Collapse
Affiliation(s)
- Juliette Thariat
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Samuel Valable
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Carine Laurent
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Elodie A. Pérès
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - François Sichel
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Paul Lesueur
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Edwige Petit
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Aurélie E. Ferré
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, GIP CYCERON, 14000 Caen, France
| | - Yannick Saintigny
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| | - Sven Skog
- Sino-Swed Molecular Bio-Medicine Research Institute, Shenzhen 518057, China;
| | - Mihaela Tudor
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, PO Box MG-63, 077125 Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania
| | - Michael Gérard
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - Sebastien Thureau
- Laboratoire de Physique Corpusculaire IN2P3/ENSICAEN-UMR6534-Unicaen-Normandie Université, 14000 Caen, France;
- Department of Radiation Oncology, Centre Henri Becquerel, 76000 Rouen, France
| | - Jean-Louis Habrand
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Jacques Balosso
- Department of Radiation Oncology, Centre François Baclesse, 14000 Caen, France; (J.T.); (P.L.); (M.C.); (M.G.); (J.-L.H.); (J.B.)
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
| | - François Chevalier
- ARCHADE Research Community, 14000 Caen, France; (S.V.); (C.L.); (S.H.); (E.A.P.); (M.B.); (F.S.); (E.P.); (A.E.F.); (Y.S.)
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14000 Caen, France
- UMR6252 CIMAP, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000 Caen, France;
| |
Collapse
|
35
|
Coliat P, Ramolu L, Jégu J, Gaiddon C, Jung AC, Pencreach E. Constitutive or Induced HIF-2 Addiction is Involved in Resistance to Anti-EGFR Treatment and Radiation Therapy in HNSCC. Cancers (Basel) 2019; 11:cancers11101607. [PMID: 31640284 PMCID: PMC6827016 DOI: 10.3390/cancers11101607] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND management of head and neck squamous cell carcinomas (HNSCC) include anti-Epidermal Growth Factor Receptor (EGFR) antibodies and radiotherapy, but resistance emerges in most patients. RAS mutations lead to primary resistance to EGFR blockade in metastatic colorectal cancer but are infrequent in HNSCC, suggesting that other mechanisms are implicated. Since hypoxia and Hypoxia Inducible Factor-1 (HIF-1) have been associated with treatment failure and tumor progression, we hypothesized that EGFR/mammalian Target Of Rapamycin (mTOR)/HIF-1 axis inhibition could radiosensitize HNSCC. METHODS We treated the radiosensitive Cal27 used as control, and radioresistant SQ20B and UD-SCC1 cells, in vivo and in vitro, with rapamycin and cetuximab before irradiation and evaluated tumor progression and clonogenic survival. RESULTS Rapamycin and cetuximab inhibited the mTOR/HIF-1α axis, and sensitized the SQ20B cell line to EGFR-inhibition. However, concomitant delivery of radiation to SQ20B xenografts increased tumor relapse frequency, despite effective HIF-1 inhibition. Treatment failure was associated with the induction of HIF-2α expression by cetuximab and radiotherapy. Strikingly, SQ20B and UD-SCC1 cells clonogenic survival dropped <30% after HIF-2α silencing, suggesting a HIF-2-dependent mechanism of oncogenic addiction. CONCLUSIONS altogether, our data suggest that resistance to EGFR inhibition combined with radiotherapy in HNSCC may depend on tumor HIF-2 expression and underline the urgent need to develop novel HIF-2 targeted treatments.
Collapse
Affiliation(s)
- Pierre Coliat
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Service de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Ludivine Ramolu
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Jérémie Jégu
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire d'Épidémiologie et de Santé Publique, Université de Strasbourg, 67200 Strasbourg, France.
- Service de Santé Publique, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| | - Christian Gaiddon
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Alain C Jung
- Centre de Lutte Contre le Cancer Paul Strauss, 67200 Strasbourg, France.
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
| | - Erwan Pencreach
- Université de Strasbourg, Inserm, UMR_S1113, 67200 Strasbourg, France.
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, 67200 Strasbourg, France.
| |
Collapse
|
36
|
Wozny AS, Vares G, Alphonse G, Lauret A, Monini C, Magné N, Cuerq C, Fujimori A, Monboisse JC, Beuve M, Nakajima T, Rodriguez-Lafrasse C. ROS Production and Distribution: A New Paradigm to Explain the Differential Effects of X-ray and Carbon Ion Irradiation on Cancer Stem Cell Migration and Invasion. Cancers (Basel) 2019; 11:cancers11040468. [PMID: 30987217 PMCID: PMC6521340 DOI: 10.3390/cancers11040468] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023] Open
Abstract
Although conventional radiotherapy promotes the migration/invasion of cancer stem cells (CSCs) under normoxia, carbon ion (C-ion) irradiation actually decreases these processes. Unraveling the mechanisms of this discrepancy, particularly under the hypoxic conditions that pertain in niches where CSCs are preferentially localized, would provide a better understanding of the origins of metastases. Invasion/migration, proteins involved in epithelial-to-mesenchymal transition (EMT), and expression of MMP-2 and HIF-1α were quantified in the CSC subpopulations of two head-and-neck squamous cell carcinoma (HNSCC) cell lines irradiated with X-rays or C-ions. X-rays triggered HNSCC-CSC migration/invasion under normoxia, however this effect was significantly attenuated under hypoxia. C-ions induced fewer of these processes in both oxygenation conditions. The differential response to C-ions was associated with a lack of HIF-1α stabilization, MMP-2 expression, or activation of kinases of the main EMT signaling pathways. Furthermore, we demonstrated a major role of reactive oxygen species (ROS) in the triggering of invasion/migration in response to X-rays. Monte-Carlo simulations demonstrated that HO● radicals are quantitatively higher after C-ions than after X-rays, however they are very differently distributed within cells. We postulate that the uniform distribution of ROS after X-rays induces the mechanisms leading to invasion/migration, which ROS concentrated in C-ion tracks are unable to trigger.
Collapse
Affiliation(s)
- Anne-Sophie Wozny
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Guillaume Vares
- Advanced Medical Instrumentation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan.
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan.
| | - Gersende Alphonse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Alexandra Lauret
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
| | - Caterina Monini
- Univ Lyon, Université Lyon 1, UMR CNRS5822 /IN2P3, IPNL, PRISME, PHABIO, 69322 Villeurbanne, France.
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Département de Radiothérapie, Institut de Cancérologie de la Loire Lucien Neuwirth, 42270 St Priest en Jarez, France.
| | - Charlotte Cuerq
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Inage-ku, 263-8555 Chiba, Japan.
| | - Jean-Claude Monboisse
- Université de Reims Champagne-Ardenne, CNRS UMR 7369, CHU de Reims, 51100 Reims, France.
| | - Michael Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822 /IN2P3, IPNL, PRISME, PHABIO, 69322 Villeurbanne, France.
| | - Tetsuo Nakajima
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan.
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, Faculté de Médecine Lyon-Sud, Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, 69921 Oullins Cedex, France.
- Centre Hospitalier Lyon-Sud, Service de Biochimie et Biologie Moléculaire, Hospices Civils de Lyon, 69495 Pierre-Bénite, France.
| |
Collapse
|
37
|
Qian X, Nie X, Wollenberg B, Sudhoff H, Kaufmann AM, Albers AE. Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:23-40. [PMID: 31134493 DOI: 10.1007/978-3-030-14366-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current systemic cancer treatment in head and neck squamous cell carcinoma (HNSCC) is moving toward more personalized approaches such as de-escalation protocols human-papilloma-virus dependent HNSCC or application of checkpoint inhibitors. However, these treatments have been challenged by cancer stem cells (CSC), a small population within the bulk tumor, which are leading to treatment failure, tumor recurrence, or metastases. This review will give an overview of the characteristics of HNSCC-CSC. Specifically, the mechanisms by which HNSCC-CSC induce tumor initiation, progression, recurrence, or metastasis will be discussed. Although evidence-based treatment options targeting HNSCC-CSC specifically are still being sought for, they warrant a promise for additional and sustainable treatment options where for HNSCC patients where others have failed.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.,Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| | - Barbara Wollenberg
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology - Head and Neck Surgery, Lübeck, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.
| |
Collapse
|
38
|
Melzig C, Golestaneh AF, Mier W, Schwager C, Das S, Schlegel J, Lasitschka F, Kauczor HU, Debus J, Haberkorn U, Abdollahi A. Combined external beam radiotherapy with carbon ions and tumor targeting endoradiotherapy. Oncotarget 2018; 9:29985-30004. [PMID: 30042828 PMCID: PMC6057461 DOI: 10.18632/oncotarget.25695] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 01/05/2023] Open
Abstract
External beam radiotherapy (EBRT) with carbon ions and endoradiotherapy using radiolabeled tumor targeting agents are emerging concepts in precision cancer therapy. We report on combination effects of these two promising strategies. Tumor targeting 131I-labelled anti-EGFR-antibody (Cetuximab) was used in the prototypic EGFR-expressing A431 human squamous cell carcinoma xenograft model. A 131I-labelled melanin-binding benzamide derivative was utilized targeting B16F10 melanoma in an orthotopic syngeneic C57bl6 model. Fractionated EBRT was performed using carbon ions in direct comparison with conventional photon irradiation. Tumor uptake of 131I-Cetuximab and 131I-Benzamide was enhanced by fractionated EBRT as determined by biodistribution studies. This effect was independent of radiation quality and significant for the small molecule 131I-Benzamide, i.e., >30% more uptake in irradiated vs. non-irradiated melanoma was found (p<0.05). Compared to each monotherapy, dual combination with 131I-Cetuximab and EBRT was most effective in inhibiting A431 tumor growth. A similar trend was seen for 131I-Benzamide and EBRT in B16F10 melanoma model. Addition of 131I-Benzamide endoradiotherapy to EBRT altered expression of genes related to DNA-repair, cell cycle and cell death. In contrast, immune-response related pathways such as type 1 interferon response genes (ISG15, MX1) were predominantly upregulated after combined 131I-Cetuximab and EBRT. The beneficial effects of combined 131I-Cetuximab and EBRT was further attributed to a reduced microvascular density (CD31) and decreased proliferation index (Ki-67). Fractionated EBRT could be favorably combined with endoradiotherapy. 131I-Benzamide endoradiotherapy accelerated EBRT induced cytotoxic effects. Activation of immune-response by carbon ions markedly enhanced anti-EGFR based endoradiotherapy suggesting further evaluation of this novel and promising radioimmunotherapy concept.
Collapse
Affiliation(s)
- Claudius Melzig
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Azadeh Fahim Golestaneh
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Christian Schwager
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samayita Das
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Julian Schlegel
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix Lasitschka
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium, Heidelberg, Germany.,Translational Radiation Oncology, National Center for Tumor Diseases, German Cancer Research Center, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Research in Oncology, Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
39
|
Kolenda T, Przybyła W, Kapałczyńska M, Teresiak A, Zajączkowska M, Bliźniak R, Lamperska KM. Tumor microenvironment - Unknown niche with powerful therapeutic potential. Rep Pract Oncol Radiother 2018; 23:143-153. [PMID: 29760589 PMCID: PMC5948324 DOI: 10.1016/j.rpor.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Przybyła
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marta Kapałczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Gastroenterology and Hepatology, Charite University Medicine Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Maria Zajączkowska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
40
|
Sato K, Nitta N, Aoki I, Imai T, Shimokawa T. Repeated photon and C-ion irradiations in vivo have different impact on alteration of tumor characteristics. Sci Rep 2018; 8:1458. [PMID: 29362374 PMCID: PMC5780469 DOI: 10.1038/s41598-018-19422-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/12/2017] [Indexed: 12/16/2022] Open
Abstract
Precise characterization of tumor recurrence and regrowth after radiotherapy are important for prognostic understanding of the therapeutic effect. Here, we established a novel in vivo mouse model for evaluating the characteristics of regrown tumor after repeated photon and carbon ion (C-ion) irradiations. The results showed that tumor growth rate, lung metastasis, shortening of the survival of the tumor-bearing mice, and tumor microvessel formation were promoted 2- to 3-fold, and expression of angiogenic and metastatic genes increased 1.5- to 15-fold in regrown tumors after repeated photon irradiations, whereas repeated C-ion irradiations did not alter these characteristics. Interestingly, both repeated photon and C-ion irradiations did not generate radioresistance, which is generally acquired for in vitro treatment. Our results demonstrated that the repetition of photon, and not C-ion, irradiations in vivo alter the characteristics of the regrown tumor, making it more aggressive without acquisition of radioresistance.
Collapse
Affiliation(s)
- Katsutoshi Sato
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Koto-Ku, Tokyo, 135-8550, Japan
| | - Nobuhiro Nitta
- Department of Molecular Imaging and Theranostics, and Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ichio Aoki
- Department of Molecular Imaging and Theranostics, and Group of Quantum-state Controlled MRI, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Imai
- National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takashi Shimokawa
- Cancer Metastasis Research Team, Advanced Radiation Biology Research Program, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, QST, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
41
|
Carbon Ion Radiotherapy: A Review of Clinical Experiences and Preclinical Research, with an Emphasis on DNA Damage/Repair. Cancers (Basel) 2017; 9:cancers9060066. [PMID: 28598362 PMCID: PMC5483885 DOI: 10.3390/cancers9060066] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/21/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Compared to conventional photon-based external beam radiation (PhXRT), carbon ion radiotherapy (CIRT) has superior dose distribution, higher linear energy transfer (LET), and a higher relative biological effectiveness (RBE). This enhanced RBE is driven by a unique DNA damage signature characterized by clustered lesions that overwhelm the DNA repair capacity of malignant cells. These physical and radiobiological characteristics imbue heavy ions with potent tumoricidal capacity, while having the potential for simultaneously maximally sparing normal tissues. Thus, CIRT could potentially be used to treat some of the most difficult to treat tumors, including those that are hypoxic, radio-resistant, or deep-seated. Clinical data, mostly from Japan and Germany, are promising, with favorable oncologic outcomes and acceptable toxicity. In this manuscript, we review the physical and biological rationales for CIRT, with an emphasis on DNA damage and repair, as well as providing a comprehensive overview of the translational and clinical data using CIRT.
Collapse
|