1
|
Kikuchi Y, Uddin M, Veltman JA, Wells S, Morris C, Woodbury-Smith M. Evolutionary constrained genes associated with autism spectrum disorder across 2,054 nonhuman primate genomes. Mol Autism 2025; 16:5. [PMID: 39849619 PMCID: PMC11755938 DOI: 10.1186/s13229-024-00633-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2024] [Accepted: 12/11/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Significant progress has been made in elucidating the genetic underpinnings of Autism Spectrum Disorder (ASD). However, there are still significant gaps in our understanding of the link between genomics, neurobiology and clinical phenotype in scientific discovery. New models are therefore needed to address these gaps. Rhesus macaques (Macaca mulatta) have been extensively used for preclinical neurobiological research because of remarkable similarities to humans across biology and behaviour that cannot be captured by other experimental animals. METHODS We used the macaque Genotype and Phenotype (mGAP) resource consisting of 2,054 macaque genomes to examine patterns of evolutionary constraint in known human neurodevelopmental genes. Residual variation intolerance scores (RVIS) were calculated for all annotated autosomal genes (N = 18,168) and Gene Set Enrichment Analysis (GSEA) was used to examine patterns of constraint across ASD genes and related neurodevelopmental genes. RESULTS We demonstrated that patterns of constraint across autosomal genes are correlated in humans and macaques, and that ASD-associated genes exhibit significant constraint in macaques (p = 9.4 × 10- 27). Among macaques, many key ASD-implicated genes were observed to harbour predicted damaging mutations. A small number of key ASD-implicated genes that are highly intolerant to mutation in humans, however, showed no evidence of similar intolerance in macaques (CACNA1D, MBD5, AUTS2 and NRXN1). Constraint was also observed across genes associated with intellectual disability (p = 1.1 × 10- 46), epilepsy (p = 2.1 × 10- 33) and schizophrenia (p = 4.2 × 10- 45), and for an overlapping neurodevelopmental gene set (p = 4.0 × 10- 10). LIMITATIONS The lack of behavioural phenotypes among the macaques whose genotypes were studied means that we are unable to further investigate whether genetic variants have similar phenotypic consequences among nonhuman primates. CONCLUSION The presence of pathological mutations in ASD genes among macaques, along with evidence of similar genetic constraints to those in humans, provides a strong rationale for further investigation of genotype-phenotype relationships in macaques. This highlights the importance of developing primate models of ASD to elucidate the neurobiological underpinnings and advance approaches for precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Yukiko Kikuchi
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Mohammed Uddin
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
- GenomeArc Inc, Mississauga, ON, Canada
| | - Joris A Veltman
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sara Wells
- MRC Centre for Macaques, Salisbury, UK
- Mary Lyon Centre at MRC Harwell, Oxfordshire, UK
| | - Christopher Morris
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Marc Woodbury-Smith
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
- Department of Psychiatry, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
2
|
Almansoori S, Alsters SI, Yiorkas AM, Nor Hashim NA, Walters RG, Chahal HS, Purkayastha S, Lessan N, Blakemore AIF. Oligogenic inheritance in severe adult obesity. Int J Obes (Lond) 2024; 48:815-820. [PMID: 38297031 PMCID: PMC11129943 DOI: 10.1038/s41366-024-01476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/07/2022] [Revised: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND/OBJECTIVE The genetic architecture of extreme non-syndromic obesity in adults remains to be elucidated. A range of genes are known to cause monogenic obesity, but even when pathogenic mutations are present, there may be variable penetrance. METHODS Whole-exome sequencing (WES) was carried out on a 15-year-old male proband of Pakistani ancestry who had severe obesity. This was followed by family segregation analysis, using Sanger sequencing. We also undertook re-analysis of WES data from 91 unrelated adults with severe obesity (86% white European ancestry) from the Personalised Medicine for Morbid Obesity (PMMO) cohort, recruited from the UK National Health Service. RESULTS We identified an oligogenic mode of inheritance of obesity in the proband's family-this provided the impetus to reanalyze existing sequence data in a separate dataset. Analysis of PMMO participant data revealed two further patients who carried more than one rare, predicted-deleterious mutation in a known monogenic obesity gene. In all three cases, the genes involved had known autosomal dominant inheritance, with incomplete penetrance. CONCLUSION Oligogenic inheritance may explain some of the variable penetrance in Mendelian forms of obesity. We caution clinicians and researchers to avoid confining sequence analysis to individual genes and, in particular, not to stop looking when the first potentially-causative mutation is found.
Collapse
Affiliation(s)
- Sumaya Almansoori
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK.
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Healthcare City, Dubai, United Arab Emirates.
- Genome Center, Department of Forensic Science and Criminology, Dubai Police GHQ, Dubai, United Arab Emirates.
| | - Suzanne I Alsters
- South West Thames Regional Genetics Service, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Andrianos M Yiorkas
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
| | - Nikman Adli Nor Hashim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
- Centre for Drug Research in Systems Biology, Structural Bioinformatics and Human Digital Imaging (CRYSTAL), Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Robin G Walters
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, University of Oxford, Oxford, UK
| | - Harvinder S Chahal
- Imperial Weight Centre, Imperial College Healthcare NHS Trust, St Mary's Hospital, Praed Street, London, W2 1NY, UK
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, Hammersmith Campus, Hammersmith Hospital, 6th Floor Commonwealth Building, Du Cane Road, London, W12 0NN, UK
| | | | - Nader Lessan
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Imperial College London Diabetes Centre Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Alexandra I F Blakemore
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, London, UK
- College of Medicine, Nursing, and Health Science, University of Galway, Galway, Republic of Ireland
| |
Collapse
|
3
|
Guo J, Zou Z, Dou X, Zhao X, Wang Y, Wei L, Pi Y, Wang Y, He C, Guo S. Zebrafish Mbd5 binds to RNA m5C and regulates histone deubiquitylation and gene expression in development metabolism and behavior. Nucleic Acids Res 2024; 52:4257-4275. [PMID: 38366571 PMCID: PMC11077058 DOI: 10.1093/nar/gkae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024] Open
Abstract
Complex biological processes are regulated by both genetic and epigenetic programs. One class of epigenetic modifications is methylation. Evolutionarily conserved methyl-CpG-binding domain (MBD)-containing proteins are known as readers of DNA methylation. MBD5 is linked to multiple human diseases but its mechanism of action remains unclear. Here we report that the zebrafish Mbd5 does not bind to methylated DNA; but rather, it directly binds to 5-methylcytosine (m5C)-modified mRNAs and regulates embryonic development, erythrocyte differentiation, iron metabolism, and behavior. We further show that Mbd5 facilitates removal of the monoubiquitin mark at histone H2A-K119 through an interaction with the Polycomb repressive deubiquitinase (PR-DUB) complex in vivo. The direct target genes of Mbd5 are enriched with both RNA m5C and H2A-K119 ubiquitylation signals. Together, we propose that zebrafish MBD5 is an RNA m5C reader that potentially links RNA methylation to histone modification and in turn transcription regulation in vivo.
Collapse
Affiliation(s)
- Jianhua Guo
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhongyu Zou
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoyang Dou
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Xiang Zhao
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yimin Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China
| | - Liqiang Wei
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yan Pi
- State Key Laboratory of Genetic Engineering, National Demonstration Center for Experimental Biology Education, School of Life Sciences, Fudan University, Shanghai, China
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, No. 399, Wanyuan Road, Minhang District, Shanghai, China
| | - Chuan He
- Department of Chemistry and Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Su Guo
- Department of Bioengineering and Therapeutic Sciences, Programs in Human Genetics and Biological Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
4
|
Harris JR, Gao CW, Britton JF, Applegate CD, Bjornsson HT, Fahrner JA. Five years of experience in the Epigenetics and Chromatin Clinic: what have we learned and where do we go from here? Hum Genet 2024; 143:607-624. [PMID: 36952035 PMCID: PMC10034257 DOI: 10.1007/s00439-023-02537-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023]
Abstract
The multidisciplinary Epigenetics and Chromatin Clinic at Johns Hopkins provides comprehensive medical care for individuals with rare disorders that involve disrupted epigenetics. Initially centered on classical imprinting disorders, the focus shifted to the rapidly emerging group of genetic disorders resulting from pathogenic germline variants in epigenetic machinery genes. These are collectively called the Mendelian disorders of the epigenetic machinery (MDEMs), or more broadly, Chromatinopathies. In five years, 741 clinic visits have been completed for 432 individual patients, with 153 having confirmed epigenetic diagnoses. Of these, 115 individuals have one of 26 MDEMs with every single one exhibiting global developmental delay and/or intellectual disability. This supports prior observations that intellectual disability is the most common phenotypic feature of MDEMs. Additional common phenotypes in our clinic include growth abnormalities and neurodevelopmental issues, particularly hypotonia, attention-deficit/hyperactivity disorder (ADHD), and anxiety, with seizures and autism being less common. Overall, our patient population is representative of the broader group of MDEMs and includes mostly autosomal dominant disorders impacting writers more so than erasers, readers, and remodelers of chromatin marks. There is an increased representation of dual function components with a reader and an enzymatic domain. As expected, diagnoses were made mostly by sequencing but were aided in some cases by DNA methylation profiling. Our clinic has helped to facilitate the discovery of two new disorders, and our providers are actively developing and implementing novel therapeutic strategies for MDEMs. These data and our high follow-up rate of over 60% suggest that we are achieving our mission to diagnose, learn from, and provide optimal care for our patients with disrupted epigenetics.
Collapse
Affiliation(s)
- Jacqueline R Harris
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christine W Gao
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jacquelyn F Britton
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carolyn D Applegate
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hans T Bjornsson
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Landspitali University Hospital, Reykjavik, Iceland
| | - Jill A Fahrner
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Dermitzaki N, Loukopoulos T, Zikopoulos A, Vatopoulou A, Stavros S, Skentou C. Genetic Disorders Underlying Polyhydramnios and Congenital Hypotonia: Three Case Reports and a Review of the Literature. Cureus 2023; 15:e50331. [PMID: 38205489 PMCID: PMC10779346 DOI: 10.7759/cureus.50331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 12/10/2023] [Indexed: 01/12/2024] Open
Abstract
An abnormal rise in the amount of amniotic fluid is a frequent prenatal observation called polyhydramnios, which can indicate a number of underlying problems. Even while it frequently goes undiagnosed during pregnancy, it may be linked to dangerous fetal illnesses. In three cases of newborns with congenital hypotonia, polyhydramnios was the sole prenatal symptom reported in this study. This fact highlights the significance of understanding the possible connection between genetic abnormalities or neurological problems and polyhydramnios, underscoring the responsibility obstetricians have in educating expectant mothers who are at potential risk for these uncommon but serious illnesses. Whole-genome sequencing (WES), an advanced kind of prenatal testing, is essential for determining genetic reasons and assisting families in making decisions. Working together with specialists in fetal medicine is crucial in guaranteeing the best possible treatment and results for the mother and child.
Collapse
Affiliation(s)
- Niki Dermitzaki
- Neonatal Intensive Care Unit, University Hospital of Ioannina, Ioannina, GRC
| | - Themistoklis Loukopoulos
- Medicine, University of Ioannina, Ioannina, GRC
- Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, GRC
| | | | | | - Sofoklis Stavros
- Obstetrics and Gynecology, University Hospital Attikon, National and Kapodistrian University of Athens, Athens, GRC
| | - Chara Skentou
- Obstetrics and Gynecology, University of Ioannina, Ioannina, GRC
| |
Collapse
|
6
|
Martins M, Oliveira AR, Martins S, Vieira JP, Perdigão P, Fernandes AR, de Almeida LP, Palma PJ, Sequeira DB, Santos JMM, Duque F, Oliveira G, Cardoso AL, Peça J, Seabra CM. A Novel Genetic Variant in MBD5 Associated with Severe Epilepsy and Intellectual Disability: Potential Implications on Neural Primary Cilia. Int J Mol Sci 2023; 24:12603. [PMID: 37628781 PMCID: PMC10454663 DOI: 10.3390/ijms241612603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Disruptions in the MBD5 gene have been linked with an array of clinical features such as global developmental delay, intellectual disability, autistic-like symptoms, and seizures, through unclear mechanisms. MBD5 haploinsufficiency has been associated with the disruption of primary cilium-related processes during early cortical development, and this has been reported in many neurodevelopmental disorders. In this study, we describe the clinical history of a 12-year-old child harboring a novel MBD5 rare variant and presenting psychomotor delay and seizures. To investigate the impact of MBD5 haploinsufficiency on neural primary cilia, we established a novel patient-derived cell line and used CRISPR-Cas9 technology to create an isogenic control. The patient-derived neural progenitor cells revealed a decrease in the length of primary cilia and in the total number of ciliated cells. This study paves the way to understanding the impact of MBD5 haploinsufficiency in brain development through its potential impact on neural primary cilia.
Collapse
Affiliation(s)
- Mariana Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Rafaela Oliveira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Solange Martins
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - José Pedro Vieira
- Neuropediatrics Unit, Central Lisbon Hospital Center, 1169-045 Lisbon, Portugal
| | - Pedro Perdigão
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Ana Rita Fernandes
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Luís Pereira de Almeida
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Jorge Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Diana Bela Sequeira
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - João Miguel Marques Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
- Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Frederico Duque
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Guiomar Oliveira
- University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
- Child Developmental Center and Research and Clinical Training Center, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal
| | - Ana Luísa Cardoso
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Peça
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Catarina Morais Seabra
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
7
|
Tang FL, Zhang XG, Ke PY, Liu J, Zhang ZJ, Hu DM, Gu J, Zhang H, Guo HK, Zang QW, Huang R, Ma YL, Kwan P. MBD5 regulates NMDA receptor expression and seizures by inhibiting Stat1 transcription. Neurobiol Dis 2023; 181:106103. [PMID: 36997128 DOI: 10.1016/j.nbd.2023.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/26/2022] [Revised: 02/21/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Epilepsy is considered to result from an imbalance between excitation and inhibition of the central nervous system. Pathogenic mutations in the methyl-CpG binding domain protein 5 gene (MBD5) are known to cause epilepsy. However, the function and mechanism of MBD5 in epilepsy remain elusive. Here, we found that MBD5 was mainly localized in the pyramidal cells and granular cells of mouse hippocampus, and its expression was increased in the brain tissues of mouse models of epilepsy. Exogenous overexpression of MBD5 inhibited the transcription of the signal transducer and activator of transcription 1 gene (Stat1), resulting in increased expression of N-methyl-d-aspartate receptor (NMDAR) subunit 1 (GluN1), 2A (GluN2A) and 2B (GluN2B), leading to aggravation of the epileptic behaviour phenotype in mice. The epileptic behavioural phenotype was alleviated by overexpression of STAT1 which reduced the expression of NMDARs, and by the NMDAR antagonist memantine. These results indicate that MBD5 accumulation affects seizures through STAT1-mediated inhibition of NMDAR expression in mice. Collectively, our findings suggest that the MBD5-STAT1-NMDAR pathway may be a new pathway that regulates the epileptic behavioural phenotype and may represent a new treatment target.
Collapse
|
8
|
Montenegro MM, Camilotti D, Quaio CRDC, Gasparini Y, Zanardo ÉA, Rangel-Santos A, Novo-Filho GM, Francisco G, Liro L, Nascimento A, Chehimi SN, Soares DCQ, Krepischi ACV, Grassi MS, Honjo RS, Palmeira P, Kim CA, Carneiro-Sampaio MMS, Rosenberg C, Kulikowski LD. Expanding the Phenotype of 8p23.1 Deletion Syndrome: Eight New Cases Resembling the Clinical Spectrum of 22q11.2 Microdeletion. J Pediatr 2023; 252:56-60.e2. [PMID: 36067875 DOI: 10.1016/j.jpeds.2022.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE To report the effectiveness of early molecular diagnosis in the clinical management of rare diseases, presenting 8 patients with 8p23.1DS who have clinical features that overlap the phenotypic spectrum of 22q11.2DS. STUDY DESIGN This report is part of a previous study that aims to provide a precocious molecular diagnosis of the 22q11.2 deletion syndrome in 118 infants with congenital heart disease. To confirm the clinical diagnosis, patients underwent comparative genomic screening by the multiplex ligation-dependent probe amplification (MLPA) assay with the SALSA MLPA probemix kits P064-B2, P036-E1, P070-B2, P356-A1, and P250- B1. Subsequently, the patients performed the genomic microarray using the Infinium CytoSNP-850K BeadChip to confirm the deletion, determine the breakpoints of the deletion, and search for genomic copy number variations. RESULTS MLPA performed with 3 different kits revealed the 8p23.1 typical deletion involving the PPP1R3B, MSRA, and GATA4 genes in the 5 patients. The array analysis was performed on these 5 patients and 3 other patients (8 patients) who also had clinical suspicion of 22q11 deletion (8 patients) allowed a precise definition of the breakpoints and excluded other genomic abnormalities. CONCLUSIONS Cytogenomic screening was efficient in establishing a differential diagnosis and ruling out the presence of other concomitant syndromes. The clinical picture of the 8p23.1 deletion syndrome is challenging; however, cytogenomic tools can provide an exact diagnosis and help to clarify the genotype-phenotype complexity of these patients. Our reports underline the importance of early diagnosis and clinical follow-up of microdeletion syndromes.
Collapse
Affiliation(s)
- Marília Moreira Montenegro
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil; Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil; Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil.
| | - Débora Camilotti
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | | | - Yanca Gasparini
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Évelin Aline Zanardo
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Andreia Rangel-Santos
- Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Gil Monteiro Novo-Filho
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Gleyson Francisco
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Lucas Liro
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Amom Nascimento
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Samar Nasser Chehimi
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Diogo Cordeiro Queiroz Soares
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Ana C V Krepischi
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | - Marcília Sierro Grassi
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Rachel Sayuri Honjo
- Genetics Unit, Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Patricia Palmeira
- Laboratory of Medical Research in Pediatrics (LIM-36), Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Chong Ae Kim
- Genetics Unit, Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Magda Maria Sales Carneiro-Sampaio
- Department of Pediatrics, Children's Institute, Clinical Hospital of Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| | - Carla Rosenberg
- Human Genome and Stem-Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo (USP), Sao Paulo - SP, Brazil
| | - Leslie Domenici Kulikowski
- Cytogenomics Laboratory, Department of Pathology, Medicine School, University of Sao Paulo (FMUSP), Sao Paulo - SP, Brazil
| |
Collapse
|
9
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
10
|
Bhatia M, Cavalleri GL, White M, Delanty N, Sweeney BJ, Costello DJ, Greally MT, Benson KA. Germline mosaicism in a family with MBD5 haploinsufficiency. Cold Spring Harb Mol Case Stud 2022; 8:mcs.a006253. [PMID: 36396431 PMCID: PMC9808559 DOI: 10.1101/mcs.a006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022] Open
Abstract
Haploinsufficiency of the methyl-CpG-binding domain protein 5 (MBD5) gene causes a neurodevelopmental disorder that includes intellectual disability, developmental delay, speech impairment, seizures, sleep disturbances, and behavioral difficulties. Microdeletion of 2q23.1 is the most common cause of haploinsufficiency, although MBD5 haploinsufficiency may also cause this genetic disorder. We report a family harboring a heterozygous loss-of-function variant in MBD5 (NM_018328.5:c.728delC; p.Pro243Hisfs*26), which includes three affected siblings with varying phenotypic features. Both parents were phenotypically normal but deep coverage sequencing of the parents showed germline mosaicism in the mother.
Collapse
Affiliation(s)
- Mehak Bhatia
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, DO2 VN51, Ireland
| | - Gianpiero L. Cavalleri
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, DO2 VN51, Ireland;,FutureNeuro Research Centre, Dublin, DO2 VN51, Ireland
| | - Máire White
- FutureNeuro Research Centre, Dublin, DO2 VN51, Ireland
| | - Norman Delanty
- School of Medicine, Royal College of Surgeons in Ireland, Dublin, DO2 VN51, Ireland;,FutureNeuro Research Centre, Dublin, DO2 VN51, Ireland;,Department of Neurology, Beaumont Hospital, Dublin, DO9 DK19, Ireland
| | - Brian J. Sweeney
- Epilepsy Service, Cork University Hospital and College of Medicine and Health, University Hospital Cork, Cork, T12 YE02, Ireland
| | - Daniel J. Costello
- Epilepsy Service, Cork University Hospital and College of Medicine and Health, University Hospital Cork, Cork, T12 YE02, Ireland
| | - Marie T. Greally
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, DO2 VN51, Ireland;,FutureNeuro Research Centre, Dublin, DO2 VN51, Ireland;,Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin D12 N512, Ireland
| | - Katherine A. Benson
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, DO2 VN51, Ireland;,FutureNeuro Research Centre, Dublin, DO2 VN51, Ireland
| |
Collapse
|
11
|
Mahdiannasser M, Rashidi-Nezhad A, Badv RS, Akrami SM. Exploring the genetic etiology of drug-resistant epilepsy: incorporation of exome sequencing into practice. Acta Neurol Belg 2022; 122:1457-1468. [PMID: 36127562 DOI: 10.1007/s13760-022-02095-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND By affecting about 50 million people worldwide, epilepsy is considered a global concern in neurology. Intolerable enough, up to ¼ of all patients do not respond to antiepileptic drugs and have recurring seizures. Therefore, revealing the underlying etiology is quite demanding in a clinical context to improve diagnosis and disease management. METHODS Initially, 85 patients suspected of epilepsy underwent thorough clinical and paraclinical evaluation and 24 individuals with drug-resistant epilepsy entered the study. Using whole-exome sequencing, the genetic etiology of drug-resistant epilepsy was investigated and discerned whether this method could facilitate the management of drug-resistant epilepsy through personalized medicine. Eventually, functional annotation was performed and drug-gene interaction networks were constructed to find potential therapeutic targets. RESULTS We found eleven novel variants in various genes including IRF2BPL, ST3GAL3, and GPAA1, for which a few epilepsy-related variants are available in public databases. The overall diagnostic yield for likely pathogenic and pathogenic variants and the detection rate of novel variants were 25% and 84.6%, respectively. Based on the results, two patients were considered potential candidates for personalized medicine. The highest number of interaction with drugs was demonstrated for SCN1A, SCN2A, and GRIN2A genes. CONCLUSIONS This study highlighted the importance of consanguineous marriage in drug-resistant epilepsy and suggested the possibility of reduced penetrance and variable expressivity in some of the autosomal dominant cases. We also suggest that whole-exome sequencing could facilitate personalized management of drug-resistant epilepsy. Regarding drug-gene interactions, some genes such as SCN1A and SCN2A might serve as therapeutic targets in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Mojdeh Mahdiannasser
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Genetics Ward, Yas Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Children's Medical Center, Pediatrics Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Poursina St., P.O. Box:14176-13151, Tehran, Iran.
| |
Collapse
|
12
|
Kushima I, Lo T, Aleksic B, Ozaki N. Case report of a female with bipolar disorder and MBD5 deletion. Psychiatry Clin Neurosci 2022; 76:127-128. [PMID: 35088487 DOI: 10.1111/pcn.13329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/29/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
13
|
Chen CH, Cheng MC, Hu TM, Ping LY. Chromosomal Microarray Analysis as First-Tier Genetic Test for Schizophrenia. Front Genet 2021; 12:620496. [PMID: 34659328 PMCID: PMC8517076 DOI: 10.3389/fgene.2021.620496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2020] [Accepted: 09/20/2021] [Indexed: 01/07/2023] Open
Abstract
Schizophrenia is a chronic, devastating mental disorder with complex genetic components. Given the advancements in the molecular genetic research of schizophrenia in recent years, there is still a lack of genetic tests that can be used in clinical settings. Chromosomal microarray analysis (CMA) has been used as first-tier genetic testing for congenital abnormalities, developmental delay, and autism spectrum disorders. This study attempted to gain some experience in applying chromosomal microarray analysis as a first-tier genetic test for patients with schizophrenia. We consecutively enrolled patients with schizophrenia spectrum disorder from a clinical setting and conducted genome-wide copy number variation (CNV) analysis using a chromosomal microarray platform. We followed the 2020 “Technical Standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen)” to interpret the clinical significance of CNVs detected from patients. We recruited a total of 60 patients (36 females and 24 males) into this study. We detected three pathogenic CNVs and one likely pathogenic CNV in four patients, respectively. The detection rate was 6.7% (4/60, 95% CI: 0.004–0.13), comparable with previous studies in the literature. Also, we detected thirteen CNVs classified as uncertain clinical significance in nine patients. Detecting these CNVs can help establish the molecular genetic diagnosis of schizophrenia patients and provide helpful information for genetic counseling and clinical management. Also, it can increase our understanding of the pathogenesis of schizophrenia. Hence, we suggest CMA is a valuable genetic tool and considered first-tier genetic testing for schizophrenia spectrum disorders in clinical settings.
Collapse
Affiliation(s)
- Chia-Hsiang Chen
- Department of Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| | - Lieh-Yung Ping
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien, Taiwan
| |
Collapse
|
14
|
Qaiser F, Sadoway T, Yin Y, Zulfiqar Ali Q, Nguyen CM, Shum N, Backstrom I, Marques PT, Tabarestani S, Munhoz RP, Krings T, Pearson CE, Yuen RKC, Andrade DM. Genome sequencing identifies rare tandem repeat expansions and copy number variants in Lennox-Gastaut syndrome. Brain Commun 2021; 3:fcab207. [PMID: 34622207 PMCID: PMC8491034 DOI: 10.1093/braincomms/fcab207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsies are a group of common neurological disorders with a substantial
genetic basis. Despite this, the molecular diagnosis of epilepsies remains
challenging due to its heterogeneity. Studies utilizing whole-genome sequencing
may provide additional insights into genetic causes of epilepsies of unknown
aetiology. Whole-genome sequencing was used to evaluate a cohort of adults with
unexplained developmental and epileptic encephalopathies (n
= 30), for whom prior genetic tests, including whole-exome sequencing in
some cases, were negative or inconclusive. Rare single nucleotide variants,
insertions/deletions, copy number variants and tandem repeat expansions were
analysed. Seven pathogenic or likely pathogenic single nucleotide variants, and
two pathogenic deleterious copy number variants were identified in nine patients
(32.1% of the cohort). One of the copy number variants, identified in a
patient with Lennox–Gastaut syndrome, was too small to be detected by
chromosomal microarray techniques. We also identified two tandem repeat
expansions with clinical implications in two other patients with
Lennox–Gastaut syndrome: a CGG repeat expansion in the
5′untranslated region of DIP2B, and a CTG expansion in
ATXN8OS (previously implicated in spinocerebellar ataxia
type 8). Three patients had KCNA2 pathogenic variants. One of
them died of sudden unexpected death in epilepsy. The other two patients had, in
addition to a KCNA2 variant, a second de novo
variant impacting potential epilepsy-relevant genes (KCNIP4 and
UBR5). Overall, whole-genome sequencing provided a genetic
explanation in 32.1% of the total cohort. This is also the first report
of coding and non-coding tandem repeat expansions identified in patients with
Lennox–Gastaut syndrome. This study demonstrates that using whole-genome
sequencing, the examination of multiple types of rare genetic variation,
including those found in the non-coding region of the genome, can help resolve
unexplained epilepsies.
Collapse
Affiliation(s)
- Farah Qaiser
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada.,Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Tara Sadoway
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Yue Yin
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Quratulain Zulfiqar Ali
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charlotte M Nguyen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Natalie Shum
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ian Backstrom
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Paula T Marques
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Sepideh Tabarestani
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Renato P Munhoz
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Neuromodulation Unit and Ataxia Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Timo Krings
- Department of Medical Imaging, University of Toronto, Toronto, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Christopher E Pearson
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ryan K C Yuen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Danielle M Andrade
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Epilepsy Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
González-Ortega G, Llamas-Velasco S, Arteche-López A, Quesada-Espinosa JF, Puertas-Martín V, Gómez-Grande A, López-Álvarez J, Saiz Díaz RA, Lezana-Rosales JM, Villarejo-Galende A, González de la Aleja J. Early-Onset Dementia Associated with a Heterozygous, Nonsense, and de novo Variant in the MBD5 Gene. J Alzheimers Dis 2021; 84:73-78. [PMID: 34459404 DOI: 10.3233/jad-210648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
The haploinsufficiency of the methyl-binding domain protein 5 (MBD5) gene has been identified as the determinant cause of the neuropsychiatric disorders grouped under the name MBD5-neurodevelopment disorders (MAND). MAND includes patients with intellectual disability, behavioral problems, and seizures with a static clinical course. However, a few reports have suggested regression. We describe a non-intellectually disabled female, with previous epilepsy and personality disorder, who developed early-onset dementia. The extensive etiologic study revealed a heterozygous nonsense de novo pathogenic variant in the MBD5 gene. This finding could support including the MBD5 gene in the study of patients with atypical early-onset dementia.
Collapse
Affiliation(s)
| | - Sara Llamas-Velasco
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Biomedical Research Networking Center in Neurodegenerative diseases CIBERNED, Madrid, Spain
| | - Ana Arteche-López
- Department of Genetics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Verónica Puertas-Martín
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Universidad Internacional de La Rioja (UNIR), Logroño, Spain
| | - Adolfo Gómez-Grande
- Department of Nuclear Medicine, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jorge López-Álvarez
- Department of Psychiatry, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Rosa Ana Saiz Díaz
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain.,Epilepsy-EEG Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Alberto Villarejo-Galende
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Group of Neurodegenerative Diseases, Instituto de Investigación Hospital 12 de Octubre (I+12), Madrid, Spain.,Biomedical Research Networking Center in Neurodegenerative diseases CIBERNED, Madrid, Spain.,Department of Medicine, School of Medicine, Complutense University, Madrid, Spain
| | - Jesús González de la Aleja
- Department of Neurology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Epilepsy-EEG Unit, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
16
|
Braun MH, Payne ET, Simpkins A, Kozlik S, Curtis C. Novel bathing epilepsy in a patient with 2q22.3q23.2 deletion. Seizure 2021; 91:1-4. [PMID: 34051608 DOI: 10.1016/j.seizure.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2021] [Revised: 05/03/2021] [Accepted: 05/09/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Marvin H Braun
- Department of Pediatrics, Section of Neurology, Alberta Children's Hospital, 28 Oki Drive NW, Calgary, Alberta, Canada, T3B 6A8.
| | - Eric T Payne
- Pediatric Neurocritical Care and Epilepsy, Alberta Children's Hospital and University of Calgary. Calgary, Alberta, Canada.
| | - Ashley Simpkins
- Clinical Neurophysiology, Alberta Children's Hospital, Calgary, Alberta, Canada.
| | - Silvia Kozlik
- Clinical Neurophysiology, Alberta Children's Hospital, Calgary, Alberta, Canada.
| | - Colleen Curtis
- Department of Pediatrics, Section of Neurology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
17
|
Orrico A, Galli L, Rossi M, Cortesi A, Mazzi M, Caterino E. The Variable Expression of a Novel MBD5 Gene Frameshift Mutation in an Italian Family. Neuropediatrics 2021; 52:138-141. [PMID: 33374027 DOI: 10.1055/s-0040-1715633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 10/22/2022]
Abstract
Haploinsufficiency of the methyl-CpG-binding domain protein 5 (MBD5) gene is reported as a cause of an autosomal dominant type of cognitive disability (MRD1) and autism spectrum disorder through large deletions involving multiple genes or point mutations, ultimately leading to haploinsufficiency in both cases. However, relatively few reports have been published on the phenotypical spectrum resulting from point mutations.We report here on a novel heterozygous frameshift variant in the MBD5 gene [c.2579del; p.(Lys860Argfs*11)] in a family in which the typical signs associated with pathogenic variants were expressed with different degrees of severity in the clinical presentation of the carrier individuals.Our findings, adding a novel mutation to the mutational spectrum, further support the relevance of the MBD5 gene as one of the main molecular mechanisms involved in the pathogenesis of intellectual disability and contribute to the characterization of the genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alfredo Orrico
- Inter-departmental Program for Molecular Diagnosis and Characterization of Pathogenic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
- Clinical Genetics, ASL Toscana Sudest, Ospedale della Misericordia, Grosseto, Italy
| | - Lucia Galli
- Clinical Genetics, ASL Toscana Sudest, Ospedale della Misericordia, Grosseto, Italy
- Inter-departmental Program for Molecular Diagnosis and Characterization of Pathogenic Mechanisms of Rare Genetic Diseases, Azienda Ospedaliero Universitaria Senese, Siena, Italy
| | - Maja Rossi
- Molecular Diagnostic Laboratory, ASL Toscana Sudest, Ospedale della Misericordia, Grosseto, Italy
| | - Ambra Cortesi
- Molecular Diagnostic Laboratory, ASL Toscana Sudest, Ospedale della Misericordia, Grosseto, Italy
| | - Marta Mazzi
- Pathophysiology of Human Reproduction, ASL Toscana Sudest, Ospedale della Misericordia, Grosseto, Italy
| | - Ettore Caterino
- Neuropsychiatry Unit, ASL Toscana Sudest, UFSMIA Zona Amiata Grossetana, Grosseto, Italy
| |
Collapse
|
18
|
Ohori S, Tsuburaya RS, Kinoshita M, Miyagi E, Mizuguchi T, Mitsuhashi S, Frith MC, Matsumoto N. Long-read whole-genome sequencing identified a partial MBD5 deletion in an exome-negative patient with neurodevelopmental disorder. J Hum Genet 2021; 66:697-705. [PMID: 33510365 DOI: 10.1038/s10038-020-00893-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
Whole-exome sequencing (WES) can detect not only single-nucleotide variants in causal genes, but also pathogenic copy-number variations using several methods. However, there may be overlooked pathogenic variations in the out of target genome regions of WES analysis (e.g., promoters), leaving many patients undiagnosed. Whole-genome sequencing (WGS) can potentially analyze such regions. We applied long-read nanopore WGS and our recently developed analysis pipeline "dnarrange" to a patient who was undiagnosed by trio-based WES analysis, and identified a heterozygous 97-kb deletion partially involving 5'-untranslated exons of MBD5, which was outside the WES target regions. The phenotype of the patient, a 32-year-old male, was consistent with haploinsufficiency of MBD5. The transcript level of MBD5 in the patient's lymphoblastoid cells was reduced. We therefore concluded that the partial MBD5 deletion is the culprit for this patient. Furthermore, we found other rare structural variations (SVs) in this patient, i.e., a large inversion and a retrotransposon insertion, which were not seen in 33 controls. Although we considered that they are benign SVs, this finding suggests that our pipeline using long-read WGS is useful for investigating various types of potentially pathogenic SVs. In conclusion, we identified a 97-kb deletion, which causes haploinsufficiency of MBD5 in a patient with neurodevelopmental disorder, demonstrating that long-read WGS is a powerful technique to discover pathogenic SVs.
Collapse
Affiliation(s)
- Sachiko Ohori
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Rie S Tsuburaya
- Department of Pediatric Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Masako Kinoshita
- Department of Neurology, National Hospital Organization Utano National Hospital, 8 Ondoyamacho, Ukyo-ku, Kyoto, 616-8255, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Martin C Frith
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan.,Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-city, Chiba, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, Shinjuku-ku, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| |
Collapse
|
19
|
Emerging multifaceted roles of BAP1 complexes in biological processes. Cell Death Dis 2021; 7:20. [PMID: 33483476 PMCID: PMC7822832 DOI: 10.1038/s41420-021-00406-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2020] [Revised: 10/28/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023]
Abstract
Histone H2AK119 mono-ubiquitination (H2AK119Ub) is a relatively abundant histone modification, mainly catalyzed by the Polycomb Repressive Complex 1 (PRC1) to regulate Polycomb-mediated transcriptional repression of downstream target genes. Consequently, H2AK119Ub can also be dynamically reversed by the BAP1 complex, an evolutionarily conserved multiprotein complex that functions as a general transcriptional activator. In previous studies, it has been reported that the BAP1 complex consists of important biological roles in development, metabolism, and cancer. However, identifying the BAP1 complex's regulatory mechanisms remains to be elucidated due to its various complex forms and its ability to target non-histone substrates. In this review, we will summarize recent findings that have contributed to the diverse functional role of the BAP1 complex and further discuss the potential in targeting BAP1 for therapeutic use.
Collapse
|
20
|
Le TNU, Ha TMT. MBD5-related intellectual disability in a Vietnamese child. Am J Med Genet A 2021; 185:1321-1323. [PMID: 33427406 DOI: 10.1002/ajmg.a.62077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2020] [Revised: 11/17/2020] [Accepted: 12/26/2020] [Indexed: 11/11/2022]
Abstract
The disruption of methyl-binding domain protein 5 (MBD5) gene has been determined as a significant cause of a group of disorders known as MBD5-associated neurodevelopmental disorder. Here, we report a novel pathogenic mutation, NM_001378120.1 (MBD5): c.217-1G>C, occurring at the acceptor splicing site of intron 6 of the MBD5 gene identified in a Vietnamese child with intellectual disability, autistic-like behaviors, and seizure. Phenotypic manifestations in this patient are highlighted with neurodevelopmental impairments whereas his facial dysmorphism is unremarkable. Our finding has enriched the understanding of the spectrum of MBD5 variants, a critical database for diagnosis, genetic counseling, and management of the patients with neurological diseases.
Collapse
Affiliation(s)
- Thanh Nha Uyen Le
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam.,Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Thi Minh Thi Ha
- Department of Medical Genetics, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam.,Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam.,Center of Prenatal and Neonatal Screening-Diagnosis, Hospital of Hue University of Medicine and Pharmacy, Hue, Vietnam
| |
Collapse
|
21
|
|
22
|
Composite Sleep Problems Observed Across Smith-Magenis Syndrome, MBD5-Associated Neurodevelopmental Disorder, Pitt-Hopkins Syndrome, and ASD. J Autism Dev Disord 2020; 51:1852-1865. [PMID: 32845423 DOI: 10.1007/s10803-020-04666-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/27/2022]
Abstract
Caregivers of preschool and elementary school age children with Smith-Magenis syndrome (SMS), MBD5-associated neurodevelopmental disorder (MAND), and Pitt-Hopkins syndrome (PTHS) were surveyed to assess sleep disturbance and to identify disorder-specific sleep problems. Because of overlapping features of these rare genetic neurodevelopmental syndromes, data were compared to reports of sleep disturbance in children with autism spectrum disorder (ASD). While similarities were observed with ASD, specific concerns between disorders differed, including mean nighttime sleep duration, daytime sleepiness, night wakings, parasomnias, restless sleep, and bedwetting. Overall, sleep disturbance in PTHS is significant but less severe than in SMS and MAND. The complexity of these conditions and the challenges of underlying sleep disturbance indicate the need for more support, education, and ongoing management of sleep for these individuals.
Collapse
|
23
|
Mitani T, Punetha J, Akalin I, Pehlivan D, Dawidziuk M, Coban Akdemir Z, Yilmaz S, Aslan E, Hunter JV, Hijazi H, Grochowski CM, Jhangiani SN, Karaca E, Fatih JM, Iwanowski P, Gambin T, Wlasienko P, Goszczanska-Ciuchta A, Bekiesinska-Figatowska M, Hosseini M, Arzhangi S, Najmabadi H, Rosenfeld JA, Du H, Marafi D, Blaser S, Teitelbaum R, Silver R, Posey JE, Ropers HH, Gibbs RA, Wiszniewski W, Lupski JR, Chitayat D, Kahrizi K, Gawlinski P, Gawlinski P. Bi-allelic Pathogenic Variants in TUBGCP2 Cause Microcephaly and Lissencephaly Spectrum Disorders. Am J Hum Genet 2019; 105:1005-1015. [PMID: 31630790 DOI: 10.1016/j.ajhg.2019.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2019] [Accepted: 09/13/2019] [Indexed: 10/25/2022] Open
Abstract
Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification. Using exome sequencing and family based rare variant analyses, we identified a homozygous variant (c.997C>T [p.Arg333Cys]) in TUBGCP2, encoding gamma-tubulin complex protein 2 (GCP2), in two individuals from a consanguineous family; both individuals presented with microcephaly and developmental delay. GCP2 forms the multiprotein γ-tubulin ring complex (γ-TuRC) together with γ-tubulin and other GCPs to regulate the assembly of microtubules. By querying clinical exome sequencing cases and through GeneMatcher-facilitated collaborations, we found three additional families with bi-allelic variation and similarly affected phenotypes including a homozygous variant (c.1843G>C [p.Ala615Pro]) in two families and compound heterozygous variants consisting of one missense variant (c.889C>T [p.Arg297Cys]) and one splice variant (c.2025-2A>G) in another family. Brain imaging from all five affected individuals revealed varying degrees of cortical malformations including pachygyria and subcortical band heterotopia, presumably caused by disruption of neuronal migration. Our data demonstrate that pathogenic variants in TUBGCP2 cause an autosomal recessive neurodevelopmental trait consisting of a neuronal migration disorder, and our data implicate GCP2 as a core component of γ-TuRC in neuronal migrating cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Pawel Gawlinski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland.
| |
Collapse
|
24
|
Vevera J, Zarrei M, Hartmannová H, Jedličková I, Mušálková D, Přistoupilová A, Oliveriusová P, Trešlová H, Nosková L, Hodaňová K, Stránecký V, Jiřička V, Preiss M, Příhodová K, Šaligová J, Wei J, Woodbury-Smith M, Bleyer AJ, Scherer SW, Kmoch S. Rare copy number variation in extremely impulsively violent males. GENES BRAIN AND BEHAVIOR 2018; 18:e12536. [DOI: 10.1111/gbb.12536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Vevera
- Department of Psychiatry; Faculty of Medicine and University Hospital in Pilsen, Charles University; Prague Czech Republic
- Department of Psychiatry, First Faculty of Medicine; Charles University and General University Hospital in Prague; Prague Czech Republic
- Institute for Postgraduate Medical Education; Prague Czech Republic
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Mehdi Zarrei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Hana Hartmannová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Ivana Jedličková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Dita Mušálková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Anna Přistoupilová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Petra Oliveriusová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Helena Trešlová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Kateřina Hodaňová
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Viktor Stránecký
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| | - Václav Jiřička
- Prison Service of the Czech Republic, Directorate General; Department of Psychology; Prague Czech Republic
| | - Marek Preiss
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
- Psychology Department; University of New York in Prague; Prague Czech Republic
| | - Kateřina Příhodová
- Psychology Department; National Institute of Mental Health; Klecany Czech Republic
| | - Jana Šaligová
- Children's Faculty Hospital; Department of Pediatrics and Adolescent Medicine; Kosice Slovakia
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine of Pavel Jozef Šafárik University Kosice; Kosice Slovakia
| | - John Wei
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Institute of Neuroscience, Newcastle University, Sir James Spence Institute, Royal Victoria Infirmary; Newcastle upon Tyne UK
| | - Anthony J. Bleyer
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
- Section on Nephrology, Wake Forest School of Medicine; Medical Center Blvd.; Winston-Salem North Carolina USA
| | - Stephen W. Scherer
- The Centre for Applied Genomics and Program in Genetics and Genome Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics and McLaughlin Centre; University of Toronto; Toronto Ontario Canada
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine; First Faculty of Medicine, Charles University; Prague Czech Republic
| |
Collapse
|