1
|
Capp J, Aliaga B, Pancaldi V. Evidence of Epigenetic Oncogenesis: A Turning Point in Cancer Research. Bioessays 2025; 47:e202400183. [PMID: 39651839 PMCID: PMC11848115 DOI: 10.1002/bies.202400183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/19/2024] [Accepted: 11/25/2024] [Indexed: 02/25/2025]
Abstract
In cancer research, the term epigenetics was used in the 1970s in its modern sense encompassing non-genetic events modifying the chromatin state, mainly to oppose the emerging oncogene paradigm. However, starting from the establishment of this prominent concept, the importance of these epigenetic phenomena in cancer rarely led to questioning the causal role of genetic alterations. Only in the last 10 years, the accumulation of problematic data, better experimental technologies, and some ambitious models pushed the idea that epigenetics could be at least as important as genetics in early oncogenesis. Until this year, a direct demonstration of epigenetic oncogenesis was still lacking. Now, Parreno, Cavalli and colleagues, using a refined experimental model in the fruit fly Drosophila melanogaster, enforced the initiation of tumors solely by imposing a transient loss of Polycomb repression, leading to a purely epigenetic oncogenesis phenomenon. Despite a few caveats that we discuss, this pioneering work represents a major breakpoint in cancer research. We are led to consider the theoretical and conceptual implications on oncogenesis and to search for links between this artificial experimental model and naturally occurring processes, while revisiting cancer theories that were previously proposed as alternatives to the oncogene-centered paradigm.
Collapse
Affiliation(s)
- Jean‐Pascal Capp
- Toulouse Biotechnology InstituteINSA/University of ToulouseToulouseFrance
| | - Benoît Aliaga
- CRCT, Université de Toulouse, Inserm, CNRSUniversité Toulouse III‐Paul SabatierToulouseFrance
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRSUniversité Toulouse III‐Paul SabatierToulouseFrance
| |
Collapse
|
2
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Butler JT, Yashar WM, Swords R. Breaking the Bone Marrow Barrier: Peripheral Blood as a Gateway to Measurable Residual Disease Detection in Acute Myelogenous Leukemia. Am J Hematol 2025. [PMID: 39777414 DOI: 10.1002/ajh.27586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous disease with high rates of relapse after initial treatment. Identifying measurable residual disease (MRD) following initial therapy is essential to assess response, predict patient outcomes, and identify those in need of additional intervention. Currently, MRD analysis relies on invasive, serial bone marrow (BM) biopsies, which complicate sample availability and processing time and negatively impact patient experience. Additionally, finding a positive result can generate more questions than answers, causing anxiety for both the patient and the provider. Peripheral blood (PB) evaluation has shown promise in detecting MRD and is now recommended by the European Leukemia Net for AML for certain genetic abnormalities. PB-based sampling allows for more frequent testing intervals and better temporal resolution of malignant expansion while sparing patients additional invasive procedures. In this review, we will discuss the current state of PB testing for MRD evaluation with a focus on next-generation sequencing methodologies that are capable of MRD detection across AML subtypes.
Collapse
Affiliation(s)
- John T Butler
- Radiation Medicine and Applied Science, Moores Cancer Center, University of California San Diego, La Jolla, California, USA
| | - William M Yashar
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, USA
| | - Ronan Swords
- Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
4
|
Scherer B, Bogun L, Koch A, Jäger P, Maus U, Schmitt L, Krings KS, Wesselborg S, Haas R, Schroeder T, Geyh S. Antineoplastic therapy affects the in vitro phenotype and functionality of healthy human bone marrow-derived mesenchymal stromal cells. Arch Toxicol 2025; 99:393-406. [PMID: 39531065 PMCID: PMC11742341 DOI: 10.1007/s00204-024-03898-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
While antineoplastic therapies aim to specifically target cancer cells, they may also exert adverse effects on healthy tissues, like healthy hematopoietic stem and progenitor cells (HSPC), leading to hematotoxicity as a common side effect. Mesenchymal stromal cells (MSC) are a major component of the bone marrow (BM) microenvironment, regulating normal hematopoiesis, while their susceptibility to anticancer therapies and contribution to therapy-related hematotoxicity remains largely unexplored. To address this, we investigated the effects of etoposide, temozolomide, 5-azacitidine, and venetoclax on healthy BM-derived MSC functionality. Doses below therapeutic effects of etoposide (0.1-0.25 µM) inhibited cellular growth and induced cellular senescence in healthy MSC, accompanied by an increased mRNA expression of CDKN1A, decreased trilineage differentiation capacity, and insufficient hematopoietic support. Pharmacological doses of 5-azacitidine (2.5 µM) shifted MSC differentiation capacity by inhibiting osteogenic capacity but enhancing the chondrogenic lineage, as demonstrated by histochemical staining and on mRNA level. At the highest clinically relevant dose, neither venetoclax (40 nM) nor temozolomide (100 µM) exerted any effects on MSC but clearly inhibited cellular growth of cancer cell lines and primary healthy HSPC, pointing to damage to hematopoietic cells as a major driver of hematotoxicity of these two compounds. Our findings show that besides HSPC, also MSC are sensitive to certain antineoplastic agents, resulting in molecular and functional alterations that may contribute to therapy-related myelosuppression. Understanding these interactions could be helpful for the development of strategies to preserve BM MSC functionality during different kinds of anticancer therapies.
Collapse
Affiliation(s)
- Bo Scherer
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Lucienne Bogun
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopedic Surgery and Traumatology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Moorenstraße 5, 40225, Duesseldorf, Germany
| | - Laura Schmitt
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine 1, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University, Universitätsstraße 1, 40225, Duesseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Duesseldorf, Heinrich Heine University Duesseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
5
|
Zhu J, Guérineau H, Lefebvre‐Fortané A, Largeaud L, Lambert J, Rousselot P, Boudouin M, Calvo J, Prost S, Clauser S, Bardet V. The AXL inhibitor bemcentinib overcomes microenvironment-mediated resistance to pioglitazone in acute myeloid leukemia. FEBS J 2025; 292:115-128. [PMID: 39325663 PMCID: PMC11705203 DOI: 10.1111/febs.17263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/30/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Prognosis of acute myeloid leukemia (AML) remains poor especially in older patients who are ineligible for standard chemotherapy or have refractory disease. Here, we study the potential of Peroxisome Proliferator-Activated Receptor (PPAR)-γ agonist pioglitazone to improve the treatment of AML. We show that pioglitazone exerts an anti-proliferative and anti-clonogenic effect on AML cell lines KG-1a, MOLM-14 and OCI-AML3 and on primary cultures from AML patients. However, co-culture of AML cells with stromal cells mimicking the bone marrow microenvironment counteracts this effect, suggesting the existence of a stroma-mediated resistance mechanism to pioglitazone. We show that pioglitazone treatment upregulates the receptor AXL in AML cells at the mRNA and protein level, allowing AXL to be phosphorylated by its ligand Gas6, which is secreted by the stroma. Addition of exogenous Gas6 or stromal cell conditioned medium also abolishes the anti-proliferative effect of pioglitazone, with an increase in AXL phosphorylation observed in both conditions. Co-incubation with the AXL inhibitor bemcentinib restored the anti-leukemic activity of pioglitazone in the presence of stromal cells by reducing AXL phosphorylation to its baseline level. We also confirm that this resistance mechanism is PPAR-γ-dependent as stromal cells invalidated for PPAR-γ are unable to inhibit the antileukemic effect of pioglitazone. Altogether, we suggest that pioglitazone treatment exerts an anti-leukemic effect but concomitantly triggers a stroma-mediated resistance mechanism involving the Gas6/AXL axis. We demonstrate that a combination of pioglitazone with an AXL inhibitor overcomes this mechanism in primary cultures and AML cell lines and exerts potent anti-leukemic activity requiring further evaluation in vivo through murine xenograft pre-clinical models.
Collapse
MESH Headings
- Humans
- Axl Receptor Tyrosine Kinase
- Pioglitazone/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/metabolism
- Drug Resistance, Neoplasm/drug effects
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Tumor Microenvironment/drug effects
- Benzocycloheptenes/pharmacology
- PPAR gamma/metabolism
- PPAR gamma/antagonists & inhibitors
- Cell Proliferation/drug effects
- Intercellular Signaling Peptides and Proteins/metabolism
- Intercellular Signaling Peptides and Proteins/genetics
- Phosphorylation/drug effects
- Cell Line, Tumor
- Coculture Techniques
- Stromal Cells/drug effects
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Protein Kinase Inhibitors/pharmacology
- Triazoles
Collapse
Affiliation(s)
- Jaja Zhu
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Hippolyte Guérineau
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Anne‐Margaux Lefebvre‐Fortané
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Laetitia Largeaud
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Juliette Lambert
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie et d'Oncologie, Centre Hospitalier André MignotUniversité Versailles Saint Quentin‐Université Paris SaclayMontigny le BretonneuxFrance
| | - Philippe Rousselot
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie et d'Oncologie, Centre Hospitalier André MignotUniversité Versailles Saint Quentin‐Université Paris SaclayMontigny le BretonneuxFrance
| | - Maèva Boudouin
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Julien Calvo
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Stéphane Prost
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
| | - Sylvain Clauser
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| | - Valérie Bardet
- Laboratoire Cellules Souches et Applications Thérapeutiques, UMR INSERM 1184Commissariat à l'Energie Atomique et Aux Energies AlternativesFontenay‐Aux‐RosesFrance
- Service d'Hématologie‐Immunologie‐Transfusion, AP‐HP. Université Paris‐Saclay, CHU Ambroise ParéUniversité Versailles‐Saint Quentin‐Université Paris‐SaclayMontigny le BretonneuxFrance
| |
Collapse
|
6
|
Ando K, Miyazaki Y. Myelodysplastic syndromes among atomic bomb survivors in Nagasaki: similarities to and differences from de novo and therapy-related cases. JOURNAL OF RADIATION RESEARCH 2024; 65:i88-i96. [PMID: 39679886 DOI: 10.1093/jrr/rrae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Indexed: 12/17/2024]
Abstract
Epidemiological studies for atomic bomb (A-bomb) survivors clearly demonstrated that A-bomb radiation increased the risk of hematological neoplasms, such as acute and chronic leukemia, and myelodysplastic syndromes (MDS) among survivors. Several studies on MDS among survivors investigated its characteristics, and it seems that MDS among survivors has different features from those seen in de novo MDS and therapy-related MDS. In this short review, we describe the differences of clinical features, chromosomal alterations and genome aberrations among them.
Collapse
Affiliation(s)
- Koji Ando
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yasushi Miyazaki
- Department of Hematology, Atomic Bomb Disease and Hibakusha Medicine Unit, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
do Nascimento MC, Pereira-Martins DA, Machado-Neto JA, Rego EM. Acute myeloid leukemia-derived bone marrow mesenchymal cells exhibit improved support for leukemic cell proliferation. Hematol Transfus Cell Ther 2024; 46 Suppl 6:S48-S52. [PMID: 38307829 PMCID: PMC11726071 DOI: 10.1016/j.htct.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION The bone marrow (BM) microenvironment plays a significant role in acute myeloid leukemia (AML) genesis and there is evidence that BM mesenchymal stromal cells (BMMSCs) can support leukemia progenitor cell proliferation and survival and provide resistance to cytotoxic therapies. HYPOTHESIS AND METHOD Nevertheless, currently unknown are the relevance of the spatial localization of AML cells relative to the BMMSCs and whether BMMSCs from patients with AML and healthy subjects have similar properties. To address these issues, we performed a differential gene expression analysis using RNA-sequencing data generated from healthy donors (HDs) and leukemic BMMSCs. RESULTS The Gene Set Enrichment Analysis (GSEA) revealed that leukemic BMMSCs were associated with the terms "positive regulation of cell cycle", "angiogenesis" and "signaling by the estimated glomerular filtration rate (eGFR)", whereas healthy donor (HD)-derived BMMSCs were associated with "programmed cell death in response to the reactive oxygen species (ROS)", "negative regulation of the cytochrome C from the mitochondria" and "interferon signaling". Next, we evaluated the mitochondrial superoxide production in AML cells in a co-culture layered model. The superoxide production was reduced in leukemic cells in close contact (adhered to the surface or beneath the cell layer) with BMMSCs, indicating lower oxidative stress. CONCLUSION Taken together, our results suggest that AML-derived BMMSCs are transcriptionally rewired and can reduce the metabolic stress of leukemic cells.
Collapse
Affiliation(s)
- Mariane Cristina do Nascimento
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | - Diego A Pereira-Martins
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil
| | | | - Eduardo M Rego
- Center for Cell-Based Therapy, Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil; Hematology Division, LIM31, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Singhal D, Kutyna MM, Hahn CN, Shah MV, Hiwase DK. Therapy-Related Myeloid Neoplasms: Complex Interactions among Cytotoxic Therapies, Genetic Factors, and Aberrant Microenvironment. Blood Cancer Discov 2024; 5:400-416. [PMID: 39422544 PMCID: PMC11528189 DOI: 10.1158/2643-3230.bcd-24-0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Therapy-related myeloid neoplasm (t-MN), characterized by its association with prior exposure to cytotoxic therapy, remains poorly understood and is a major impediment to long-term survival even in the era of novel targeted therapies due to its aggressive nature and treatment resistance. Previously, cytotoxic therapy-induced genomic changes in hematopoietic stem cells were considered sine qua non in pathogenesis; however, recent research demonstrates a complex interaction between acquired and hereditary genetic predispositions, along with a profoundly senescent bone marrow (BM) microenvironment. We review emerging data on t-MN risk factors and explore the intricate interplay among clonal hematopoiesis, genetic predisposition, and the abnormal BM microenvironment. Significance: t-MN represents a poorly understood blood cancer with extremely poor survival and no effective therapies. We provide a comprehensive review of recent preclinical research highlighting complex interaction among emerging therapies, hereditary and acquired genetic factors, and BM microenvironment. Understanding the risk factors associated with t-MN is crucial for clinicians, molecular pathologists, and cancer biologists to anticipate and potentially reduce its incidence in the future. Moreover, better understanding of the molecular pathogenesis of t-MN may enable preemptive screening and even intervention in high-risk patients.
Collapse
Affiliation(s)
- Deepak Singhal
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Monika M. Kutyna
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Christopher N. Hahn
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
- Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | | | - Devendra K. Hiwase
- Department of Haematology, Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
9
|
Bug DS, Moiseev IS, Porozov YB, Petukhova NV. Shedding light on the DICER1 mutational spectrum of uncertain significance in malignant neoplasms. Front Mol Biosci 2024; 11:1441180. [PMID: 39421690 PMCID: PMC11484276 DOI: 10.3389/fmolb.2024.1441180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
The Dicer protein is an indispensable player in such fundamental cell pathways as miRNA biogenesis and regulation of protein expression in a cell. Most recently, both germline and somatic mutations in DICER1 have been identified in diverse types of cancers, which suggests Dicer mutations can lead to cancer progression. In addition to well-known hotspot mutations in RNAase III domains, DICER1 is characterized by a wide spectrum of variants in all the functional domains; most are of uncertain significance and unstated clinical effects. Moreover, various new somatic DICER1 mutations continuously appear in cancer genome sequencing. The latest contemporary methods of variant effect prediction utilize machine learning algorithms on bulk data, yielding suboptimal correlation with biological data. Consequently, such analysis should be conducted based on the functional and structural characteristics of each protein, using a well-grounded targeted dataset rather than relying on large amounts of unsupervised data. Domains are the functional and evolutionary units of a protein; the analysis of the whole protein should be based on separate and independent examinations of each domain by their evolutionary reconstruction. Dicer represents a hallmark example of a multidomain protein, and we confirmed the phylogenetic multidomain approach being beneficial for the clinical effect prediction of Dicer variants. Because Dicer was suggested to have a putative role in hematological malignancies, we examined variants of DICER1 occurring outside the well-known hotspots of the RNase III domain in this type of cancer using phylogenetic reconstruction of individual domain history. Examined substitutions might disrupt the Dicer function, which was demonstrated by molecular dynamic simulation, where distinct structural alterations were observed for each mutation. Our approach can be utilized to study other multidomain proteins and to improve clinical effect evaluation.
Collapse
Affiliation(s)
- D. S. Bug
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| | - I. S. Moiseev
- R. M. Gorbacheva Scientific Research Institute of Pediatric Hematology and Transplantation, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Yu. B. Porozov
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
- Advitam Laboratory, Belgrade, Serbia
| | - N. V. Petukhova
- Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
| |
Collapse
|
10
|
Kim M, Kang D, Kim HS, Lee JM, Park S, Kwag D, Lee C, Hong Y, Na D, Koh Y, Sun CH, An H, Kim YJ, Kim Y. Influence of the Bone Marrow Microenvironment on Hematopoietic Stem Cell Behavior Post-Allogeneic Transplantation: Development of Clonal Hematopoiesis and Telomere Dynamics. Int J Mol Sci 2024; 25:10258. [PMID: 39408588 PMCID: PMC11477089 DOI: 10.3390/ijms251910258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential cure for myelodysplastic neoplasms (MDSs) and other hematologic malignancies. This study investigates post-transplantation genetic evolution and telomere dynamics in hematopoietic cells, with a focus on clonal hematopoiesis (CH). We conducted a longitudinal analysis of 21 MDS patients who underwent allo-HSCT between September 2009 and February 2015. Genetic profiles of hematopoietic cells from both recipients and donors were compared at equivalent pre- and post-transplantation time points. Targeted sequencing identified CH-associated mutations, and real-time quantitative PCR measured telomere length. Furthermore, we compared CH incidence between recipients and age-matched controls from the GENIE cohort from routine health checkups. Post-allo-HSCT, 38% of recipients developed somatic mutations not detected before transplantation, indicating de novo CH originating from donor cells. Compared to age-matched healthy controls, recipients showed a significantly higher incidence of CH, suggesting increased susceptibility to genetic changes post-transplant. Telomere length analysis also revealed accelerated shortening in transplanted cells, highlighting the heightened stress and proliferation demands in the new microenvironment. Our findings reveal a notable incidence of donor-derived CH in allo-HSCT recipients, alongside significant telomere attrition. This suggests the potential influence of the marrow microenvironment on genetic and molecular changes in hematopoietic cells.
Collapse
Affiliation(s)
- Myungshin Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dain Kang
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
| | - Hoon Seok Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jong-Mi Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Silvia Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Daehun Kwag
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chaeyeon Lee
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yuna Hong
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Duyeon Na
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea;
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Choong Hyun Sun
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Hongyul An
- NOBO Medicine, Inc., Seoul 04799, Republic of Korea; (C.H.S.); (H.A.)
| | - Yoo-Jin Kim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (S.P.); (D.K.)
- Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yonggoo Kim
- Catholic Genetic Laboratory Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (M.K.); (D.K.); (H.S.K.); (J.-M.L.); (C.L.); (Y.H.); (D.N.)
- Department of Laboratory Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
11
|
Wang W, Brown TJ, Barth BM. Influences on the Hematopoietic Stem Cell Niche. SCIBASE HEMATOLOGY & BLOOD DISORDERS 2024; 1:1002. [PMID: 39429505 PMCID: PMC11486556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Hematopoietic stem cells (HSCs) are supported by the bone marrow microenvironment to maintain normal production of blood cells. The niche may be considered an "ecosystem" that support the function of HSCs and other supportive cells. Alterations in the bone marrow niche are commonly observed in hematologic malignancies. Here, we review recent insights into the location and the molecular and cellular components of the bone marrow niche. Moreover, we discuss how the niche interacts with HSCs to drive the pathogenesis of hematopoietic malignancies. Overall, a better understanding of the influences on the HSC niche may drive therapeutic development targeting defective and aberrant hematopoiesis.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta GA 30322 USA
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824 USA
| | - Timothy J. Brown
- Division of Hematology and Oncology, Department of Medicine, University of Texas Southwestern Medical Center, Dallas TX 75390 USA
| | - Brian M. Barth
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham NH 03824 USA
- Department of Natural Sciences, University of Alaska Southeast, Juneau AK 99801 USA
| |
Collapse
|
12
|
Capasso G, Mouawad N, Castronuovo M, Ruggeri E, Visentin A, Trentin L, Frezzato F. Focal adhesion kinase as a new player in the biology of onco-hematological diseases: the starting evidence. Front Oncol 2024; 14:1446723. [PMID: 39281374 PMCID: PMC11392731 DOI: 10.3389/fonc.2024.1446723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/18/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase mainly found in the focal adhesion regions of the plasma membrane and it has a crucial role in migration and the remodeling of cellular morphology. FAK is also linked to several aspects of cancer biology, from cytokine production to angiogenesis, drug resistance, invasion, and metastasis, as well as epithelial-to-mesenchymal transition. The gene locus of FAK is frequently amplified in several human tumors, thus causing FAK overexpression in several cancers. Furthermore, FAK can influence extracellular matrix production and exosome secretion through cancer-associated fibroblasts, thus it has an important role in tumor microenvironment regulation. Although the role of FAK in solid tumors is well known, its importance in onco-hematological diseases remains poorly explored. This review collects studies related to FAK significance in onco-hematological diseases and their microenvironments. Overall, the importance of FAK in blood tumors is increasingly evident, but further research is required to confirm it as a new therapeutic target in hematological contexts.
Collapse
Affiliation(s)
- Guido Capasso
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Nayla Mouawad
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Maria Castronuovo
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Edoardo Ruggeri
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
13
|
Quarato ER, Salama NA, Calvi LM. Interplay Between Skeletal and Hematopoietic Cells in the Bone Marrow Microenvironment in Homeostasis and Aging. Curr Osteoporos Rep 2024; 22:416-432. [PMID: 38782850 DOI: 10.1007/s11914-024-00874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we discuss the most recent scientific advances on the reciprocal regulatory interactions between the skeletal and hematopoietic stem cell niche, focusing on immunomodulation and its interplay with the cell's mitochondrial function, and how this impacts osteoimmune health during aging and disease. RECENT FINDINGS Osteoimmunology investigates interactions between cells that make up the skeletal stem cell niche and immune system. Much work has investigated the complexity of the bone marrow microenvironment with respect to the skeletal and hematopoietic stem cells that regulate skeletal formation and immune health respectively. It has now become clear that these cellular components cooperate to maintain homeostasis and that dysfunction in their interaction can lead to aging and disease. Having a deeper, mechanistic appreciation for osteoimmune regulation will lead to better research perspective and therapeutics with the potential to improve the aging process, skeletal and hematologic regeneration, and disease targeting.
Collapse
Affiliation(s)
- Emily R Quarato
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
| | - Noah A Salama
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA.
| | - Laura M Calvi
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
14
|
Guilatco AJ, Shah MV, Weivoda MM. Senescence in the bone marrow microenvironment: A driver in development of therapy-related myeloid neoplasms. J Bone Oncol 2024; 47:100620. [PMID: 39072049 PMCID: PMC11280103 DOI: 10.1016/j.jbo.2024.100620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) are a growing concern due to the continued use of cytotoxic therapies to treat malignancies. Cytotoxic therapies have been shown to drive therapy-induced senescence in normal tissues, including in the bone marrow microenvironment (BMME), which plays a crucial role in supporting normal hematopoiesis. This review examines recent work that focuses on the contribution of BMME senescence to t-MN pathogenesis, as well as offers a perspective on potential opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Angelo Jose Guilatco
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Cancer Biology Program, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
15
|
Capp JP, Catania F, Thomas F. From genetic mosaicism to tumorigenesis through indirect genetic effects. Bioessays 2024; 46:e2300238. [PMID: 38736323 DOI: 10.1002/bies.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Genetic mosaicism has long been linked to aging, and several hypotheses have been proposed to explain the potential connections between mosaicism and susceptibility to cancer. It has been proposed that mosaicism may disrupt tissue homeostasis by affecting intercellular communications and releasing microenvironmental constraints within tissues. The underlying mechanisms driving these tissue-level influences remain unidentified, however. Here, we present an evolutionary perspective on the interplay between mosaicism and cancer, suggesting that the tissue-level impacts of genetic mosaicism can be attributed to Indirect Genetic Effects (IGEs). IGEs can increase the level of cellular stochasticity and phenotypic instability among adjacent cells, thereby elevating the risk of cancer development within the tissue. Moreover, as cells experience phenotypic changes in response to challenging microenvironmental conditions, these changes can initiate a cascade of nongenetic alterations, referred to as Indirect non-Genetic Effects (InGEs), which in turn catalyze IGEs among surrounding cells. We argue that incorporating both InGEs and IGEs into our understanding of the process of oncogenic transformation could trigger a major paradigm shift in cancer research with far-reaching implications for practical applications.
Collapse
Affiliation(s)
- Jean-Pascal Capp
- Toulouse Biotechnology Institute, INSA/University of Toulouse, CNRS, INRAE, Toulouse, France
| | - Francesco Catania
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290-University of Montpellier, Montpellier, France
| |
Collapse
|
16
|
Okamoto K. Crosstalk between bone and the immune system. J Bone Miner Metab 2024; 42:470-480. [PMID: 39060500 DOI: 10.1007/s00774-024-01539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Bone functions not only as a critical element of the musculoskeletal system but also serves as the primary lymphoid organ harboring hematopoietic stem cells (HSCs) and immune progenitor cells. The interdisciplinary field of osteoimmunology has illuminated the dynamic interactions between the skeletal and immune systems, vital for the maintenance of skeletal tissue homeostasis and the pathogenesis of immune and skeletal diseases. Aberrant immune activation stimulates bone cells such as osteoclasts and osteoblasts, disturbing the bone remodeling and leading to skeletal disorders as seen in autoimmune diseases like rheumatoid arthritis. On the other hand, intricate multicellular network within the bone marrow creates a specialized microenvironment essential for the maintenance and differentiation of HSCs and the progeny. Dysregulation of immune-bone crosstalk in the bone marrow environment can trigger tumorigenesis and exacerbated inflammation. A comprehensive deciphering of the complex "immune-bone crosstalk" leads to a deeper understanding of the pathogenesis of immune diseases as well as skeletal diseases, and might provide insight into potential therapeutic approaches.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Division of Immune Environment Dynamics, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
17
|
Kim JH, Schulte AJ, Sarver AL, Lee D, Angelos MG, Frantz AM, Forster CL, O'Brien TD, Cornax I, O'Sullivan MG, Cheng N, Lewellen M, Oseth L, Kumar S, Bullman S, Pedamallu CS, Goyal SM, Meyerson M, Lund TC, Breen M, Lindblad-Toh K, Dickerson EB, Kaufman DS, Modiano JF. Hemangiosarcoma Cells Promote Conserved Host-derived Hematopoietic Expansion. CANCER RESEARCH COMMUNICATIONS 2024; 4:1467-1480. [PMID: 38757809 PMCID: PMC11166094 DOI: 10.1158/2767-9764.crc-23-0441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells. In a series of xenografts, we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore, gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas, and possibly human angiosarcomas, maintain molecular properties that provide hematopoietic support and facilitate stromal reactions, suggesting their potential involvement in promoting the growth of hematopoietic tumors. SIGNIFICANCE We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation, providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.
Collapse
Affiliation(s)
- Jong Hyuk Kim
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida
- Intelligent Critical Care Center, University of Florida, Gainesville, Florida
- Artificial Intelligence Academic Initiative (AI) Center, University of Florida, Gainesville, Florida
| | - Ashley J. Schulte
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L. Sarver
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Institute for Health Informatics, University of Minnesota, Minneapolis, Minnesota
| | - Donghee Lee
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Mathew G. Angelos
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Microbiology, Immunology and Cancer Biology (MICaB) Graduate Program, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine, Division of Hematology and Oncology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aric M. Frantz
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Capstan Therapeutics, San Diego, California
| | - Colleen L. Forster
- The University of Minnesota Biological Materials Procurement Network (BioNet), University of Minnesota, Minneapolis, Minnesota
| | - Timothy D. O'Brien
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Ingrid Cornax
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Janssen Research and Development, LLC
| | - M. Gerard O'Sullivan
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Nuojin Cheng
- School of Mathematics, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota
- Applied Mathematics, University of Colorado Boulder, Boulder, Colorado
| | - Mitzi Lewellen
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - LeAnn Oseth
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Sunil Kumar
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Susan Bullman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Chandra Sekhar Pedamallu
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Sagar M. Goyal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
| | - Matthew Meyerson
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Troy C. Lund
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
- Cancer Genetics Program, University of North Carolina Lineberger Comprehensive Cancer Center, Raleigh, North Carolina
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Science of Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Erin B. Dickerson
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Dan S. Kaufman
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Department of Medicine (Division of Hematology, Oncology, and Transplantation), Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Division of Regenerative Medicine, Department of Medicine, University of California-San Diego, La Jolla, California
| | - Jaime F. Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St Paul, Minnesota
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
- Center for Engineering in Medicine, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
18
|
van Spronsen MF, Van Gassen S, Duetz C, Westers TM, Saeys Y, van de Loosdrecht AA. Myelodysplastic neoplasms dissected into indolent, leukaemic and unfavourable subtypes by computational clustering of haematopoietic stem and progenitor cells. Leukemia 2024; 38:1365-1377. [PMID: 38459168 PMCID: PMC11147773 DOI: 10.1038/s41375-024-02203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Myelodysplastic neoplasms (MDS) encompass haematological malignancies, which are characterised by dysplasia, ineffective haematopoiesis and the risk of progression towards acute myeloid leukaemia (AML). Myelodysplastic neoplasms are notorious for their heterogeneity: clinical outcomes range from a near-normal life expectancy to leukaemic transformation or premature death due to cytopenia. The Molecular International Prognostic Scoring System made progress in the dissection of MDS by clinical outcomes. To contribute to the risk stratification of MDS by immunophenotypic profiles, this study performed computational clustering of flow cytometry data of CD34+ cells in 67 MDS, 67 AML patients and 49 controls. Our data revealed heterogeneity also within the MDS-derived CD34+ compartment. In MDS, maintenance of lymphoid progenitors and megakaryocytic-erythroid progenitors predicted favourable outcomes, whereas expansion of granulocyte-monocyte progenitors increased the risk of leukaemic transformation. The proliferation of haematopoietic stem cells and common myeloid progenitors with downregulated CD44 expression, suggestive of impaired haematopoietic differentiation, characterised a distinct MDS subtype with a poor overall survival. This exploratory study demonstrates the prognostic value of known and previously unexplored CD34+ populations and suggests the feasibility of dissecting MDS into a more indolent, a leukaemic and another unfavourable subtype.
Collapse
Affiliation(s)
- Margot F van Spronsen
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Sofie Van Gassen
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Carolien Duetz
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Theresia M Westers
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Yvan Saeys
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Arjan A van de Loosdrecht
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
19
|
Frenz-Wiessner S, Fairley SD, Buser M, Goek I, Salewskij K, Jonsson G, Illig D, Zu Putlitz B, Petersheim D, Li Y, Chen PH, Kalauz M, Conca R, Sterr M, Geuder J, Mizoguchi Y, Megens RTA, Linder MI, Kotlarz D, Rudelius M, Penninger JM, Marr C, Klein C. Generation of complex bone marrow organoids from human induced pluripotent stem cells. Nat Methods 2024; 21:868-881. [PMID: 38374263 PMCID: PMC11093744 DOI: 10.1038/s41592-024-02172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.
Collapse
Affiliation(s)
- Stephanie Frenz-Wiessner
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Savannah D Fairley
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Buser
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Isabel Goek
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Kirill Salewskij
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - David Illig
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedicta Zu Putlitz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Petersheim
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yue Li
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pin-Hsuan Chen
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Kalauz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Raffaele Conca
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Technical University of Munich, Munich, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians-University Munich, Martinsried, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Remco T A Megens
- Institute of Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Biomedical Engineering (BME), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Monika I Linder
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Martina Rudelius
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany.
- Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
20
|
de Freitas FA, Levy D, Reichert CO, Sampaio-Silva J, Giglio PN, de Pádua Covas Lage LA, Demange MK, Pereira J, Bydlowski SP. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages. Int J Mol Sci 2024; 25:4748. [PMID: 38731966 PMCID: PMC11084554 DOI: 10.3390/ijms25094748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Juliana Sampaio-Silva
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Pedro Nogueira Giglio
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Luís Alberto de Pádua Covas Lage
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Marco Kawamura Demange
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Juliana Pereira
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Department of General Physics, Physics Institute, Sao Paulo University, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
21
|
Palani HK, Ganesan S, Balasundaram N, Venkatraman A, Korula A, Abraham A, George B, Mathews V. Ablation of Wnt signaling in bone marrow stromal cells overcomes microenvironment-mediated drug resistance in acute myeloid leukemia. Sci Rep 2024; 14:8404. [PMID: 38600158 PMCID: PMC11006665 DOI: 10.1038/s41598-024-58860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/03/2024] [Indexed: 04/12/2024] Open
Abstract
The survival of leukemic cells is significantly influenced by the bone marrow microenvironment, where stromal cells play a crucial role. While there has been substantial progress in understanding the mechanisms and pathways involved in this crosstalk, limited data exist regarding the impact of leukemic cells on bone marrow stromal cells and their potential role in drug resistance. In this study, we identify that leukemic cells prime bone marrow stromal cells towards osteoblast lineage and promote drug resistance. This biased differentiation of stroma is accompanied by dysregulation of the canonical Wnt signaling pathway. Inhibition of Wnt signaling in stroma reversed the drug resistance in leukemic cells, which was further validated in leukemic mice models. This study evaluates the critical role of leukemic cells in establishing a drug-resistant niche by influencing the bone marrow stromal cells. Additionally, it highlights the potential of targeting Wnt signaling in the stroma by repurposing an anthelmintic drug to overcome the microenvironment-mediated drug resistance.
Collapse
Affiliation(s)
- Hamenth Kumar Palani
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Saravanan Ganesan
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Nithya Balasundaram
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Arvind Venkatraman
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Anu Korula
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Aby Abraham
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Biju George
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India
| | - Vikram Mathews
- Department of Haematology, Christian Medical College, Ranipet Campus, Vellore, 632 517, India.
| |
Collapse
|
22
|
Mina A, Pavletic S, Aplan PD. The evolution of preclinical models for myelodysplastic neoplasms. Leukemia 2024; 38:683-691. [PMID: 38396286 PMCID: PMC10997513 DOI: 10.1038/s41375-024-02181-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Myelodysplastic Neoplasms (MDS) are a group of clonal disorders characterized by ineffective hematopoiesis and morphologic dysplasia. Clinical manifestations of MDS vary widely and are dictated in large part by a range of genetic aberrations. The lack of robust in vitro models for MDS has limited the ability to conduct high throughput drug screens, which in turn has hampered the development of novel therapies for MDS. There are very few well-characterized MDS cell lines, and the available cell lines expand poorly in vitro. Conventional xenograft mouse models can provide an in vivo vessel to provide growth of cancer cells, but human MDS cells engraft poorly. Three-dimensional (3D) scaffold models that form human "ossicles" represent a promising new approach and can reproduce the intricate communication between hematopoietic stem and progenitor cells and their environment. Genetically engineered mice utilize specific mutations and may not represent the entire array of human MDS; however, genetically engineered mice provided in vivo proof of principle for novel agents such as luspatercept, demonstrating the clinical utility of this approach. This review offers an overview of available preclinical MDS models and potential approaches to accelerate accurate clinical translation.
Collapse
Affiliation(s)
- Alain Mina
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Steven Pavletic
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Aplan
- Myeloid Malignancies Program, Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Mistry JJ, Young KA, Colom Díaz PA, Maestre IF, Levine RL, Trowbridge JJ. Mesenchymal Stromal Cell Senescence Induced by Dnmt3a -Mutant Hematopoietic Cells is a Targetable Mechanism Driving Clonal Hematopoiesis and Initiation of Hematologic Malignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587254. [PMID: 38585779 PMCID: PMC10996614 DOI: 10.1101/2024.03.28.587254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Clonal hematopoiesis (CH) can predispose to blood cancers due to enhanced fitness of mutant hematopoietic stem and progenitor cells (HSPCs), but the mechanisms driving this progression are not understood. We hypothesized that malignant progression is related to microenvironment-remodelling properties of CH-mutant HSPCs. Single-cell transcriptomic profiling of the bone marrow microenvironment in Dnmt3a R878H/+ mice revealed signatures of cellular senescence in mesenchymal stromal cells (MSCs). Dnmt3a R878H/+ HSPCs caused MSCs to upregulate the senescence markers SA-β-gal, BCL-2, BCL-xL, Cdkn1a (p21) and Cdkn2a (p16), ex vivo and in vivo . This effect was cell contact-independent and can be replicated by IL-6 or TNFα, which are produced by Dnmt3a R878H/+ HSPCs. Depletion of senescent MSCs in vivo reduced the fitness of Dnmt3a R878H/+ hematopoietic cells and the progression of CH to myeloid neoplasms using a sequentially inducible Dnmt3a ; Npm1 -mutant model. Thus, Dnmt3a -mutant HSPCs reprogram their microenvironment via senescence induction, creating a self-reinforcing niche favoring fitness and malignant progression. Statement of Significance Mesenchymal stromal cell senescence induced by Dnmt3a -mutant hematopoietic stem and progenitor cells drives clonal hematopoiesis and initiation of hematologic malignancy.
Collapse
|
24
|
de Jong MME, Chen L, Raaijmakers MHGP, Cupedo T. Bone marrow inflammation in haematological malignancies. Nat Rev Immunol 2024:10.1038/s41577-024-01003-x. [PMID: 38491073 DOI: 10.1038/s41577-024-01003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 03/18/2024]
Abstract
Tissue inflammation is a hallmark of tumour microenvironments. In the bone marrow, tumour-associated inflammation impacts normal niches for haematopoietic progenitor cells and mature immune cells and supports the outgrowth and survival of malignant cells residing in these niche compartments. This Review provides an overview of our current understanding of inflammatory changes in the bone marrow microenvironment of myeloid and lymphoid malignancies, using acute myeloid leukaemia and multiple myeloma as examples and highlights unique and shared features of inflammation in niches for progenitor cells and plasma cells. Importantly, inflammation exerts profoundly different effects on normal bone marrow niches in these malignancies, and we provide context for possible drivers of these divergent effects. We explore the role of tumour cells in inflammatory changes, as well as the role of cellular constituents of normal bone marrow niches, including myeloid cells and stromal cells. Integrating knowledge of disease-specific dynamics of malignancy-associated bone marrow inflammation will provide a necessary framework for future targeting of these processes to improve patient outcome.
Collapse
Affiliation(s)
- Madelon M E de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
25
|
Wang B, Reville PK, Yassouf MY, Jelloul FZ, Ly C, Desai PN, Wang Z, Borges P, Veletic I, Dasdemir E, Burks JK, Tang G, Guo S, Garza AI, Nasnas C, Vaughn NR, Baran N, Deng Q, Matthews J, Gunaratne PH, Antunes DA, Ekmekcioglu S, Sasaki K, Garcia MB, Cuglievan B, Hao D, Daver N, Green MR, Konopleva M, Futreal A, Post SM, Abbas HA. Comprehensive characterization of IFNγ signaling in acute myeloid leukemia reveals prognostic and therapeutic strategies. Nat Commun 2024; 15:1821. [PMID: 38418901 PMCID: PMC10902356 DOI: 10.1038/s41467-024-45916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Interferon gamma (IFNγ) is a critical cytokine known for its diverse roles in immune regulation, inflammation, and tumor surveillance. However, while IFNγ levels were elevated in sera of most newly diagnosed acute myeloid leukemia (AML) patients, its complex interplay in AML remains insufficiently understood. We aim to characterize these complex interactions through comprehensive bulk and single-cell approaches in bone marrow of newly diagnosed AML patients. We identify monocytic AML as having a unique microenvironment characterized by IFNγ producing T and NK cells, high IFNγ signaling, and immunosuppressive features. IFNγ signaling score strongly correlates with venetoclax resistance in primary AML patient cells. Additionally, IFNγ treatment of primary AML patient cells increased venetoclax resistance. Lastly, a parsimonious 47-gene IFNγ score demonstrates robust prognostic value. In summary, our findings suggest that inhibiting IFNγ is a potential treatment strategy to overcoming venetoclax resistance and immune evasion in AML patients.
Collapse
Affiliation(s)
- Bofei Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick K Reville
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mhd Yousuf Yassouf
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Z Jelloul
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Ly
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poonam N Desai
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- School of Biomedical Informatics, The University of Texas Health Science Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamella Borges
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ivo Veletic
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enes Dasdemir
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Jared K Burks
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guilin Tang
- Department of Hematopathology, Division of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shengnan Guo
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Araceli Isabella Garza
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cedric Nasnas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole R Vaughn
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jairo Matthews
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preethi H Gunaratne
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Dinler A Antunes
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Suhendan Ekmekcioglu
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koji Sasaki
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam B Garcia
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Branko Cuglievan
- Department of Pediatrics, Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, China
| | - Naval Daver
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael R Green
- Department of Lymphoma & Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marina Konopleva
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew Futreal
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sean M Post
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Filipek-Gorzała J, Kwiecińska P, Szade A, Szade K. The dark side of stemness - the role of hematopoietic stem cells in development of blood malignancies. Front Oncol 2024; 14:1308709. [PMID: 38440231 PMCID: PMC10910019 DOI: 10.3389/fonc.2024.1308709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024] Open
Abstract
Hematopoietic stem cells (HSCs) produce all blood cells throughout the life of the organism. However, the high self-renewal and longevity of HSCs predispose them to accumulate mutations. The acquired mutations drive preleukemic clonal hematopoiesis, which is frequent among elderly people. The preleukemic state, although often asymptomatic, increases the risk of blood cancers. Nevertheless, the direct role of preleukemic HSCs is well-evidenced in adult myeloid leukemia (AML), while their contribution to other hematopoietic malignancies remains less understood. Here, we review the evidence supporting the role of preleukemic HSCs in different types of blood cancers, as well as present the alternative models of malignant evolution. Finally, we discuss the clinical importance of preleukemic HSCs in choosing the therapeutic strategies and provide the perspective on further studies on biology of preleukemic HSCs.
Collapse
Affiliation(s)
- Jadwiga Filipek-Gorzała
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Patrycja Kwiecińska
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
27
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
28
|
Ngo AD, Nguyen HL, Caglayan S, Chu DT. RNA therapeutics for the treatment of blood disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:273-286. [PMID: 38360003 DOI: 10.1016/bs.pmbts.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Blood disorders are defined as diseases related to the structure, function, and formation of blood cells. These diseases lead to increased years of life loss, reduced quality of life, and increased financial burden for social security systems around the world. Common blood disorder treatments such as using chemical drugs, organ transplants, or stem cell therapy have not yet approached the best goals, and treatment costs are also very high. RNA with a research history dating back several decades has emerged as a potential method to treat hematological diseases. A number of clinical trials have been conducted to pave the way for the use of RNA molecules to cure blood disorders. This novel approach takes advantage of regulatory mechanisms and the versatility of RNA-based oligonucleotides to target genes and cellular pathways involved in the pathogenesis of specific diseases. Despite positive results, currently, there is no RNA drug to treat blood-related diseases approved or marketed. Before the clinical adoption of RNA-based therapies, challenges such as safe delivery of RNA molecules to the target site and off-target effects of injected RNA in the body need to be addressed. In brief, RNA-based therapies open novel avenues for the treatment of hematological diseases, and clinical trials for approval and practical use of RNA-targeted are crucial.
Collapse
Affiliation(s)
- Anh Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Hoang Lam Nguyen
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | | | - Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
29
|
Özdemir C, Muratoğlu B, Özel BN, Alpdündar-Bulut E, Tonyalı G, Ünal Ş, Uçkan-Çetinkaya D. Multiparametric analysis of etoposide exposed mesenchymal stem cells and Fanconi anemia cells: implications in development of secondary myeloid malignancy. Clin Exp Med 2023; 23:4511-4524. [PMID: 37179284 DOI: 10.1007/s10238-023-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Secondary acute myeloid leukemia (sAML) may develop following a prior therapy or may evolve from an antecedent hematological disorder such as Fanconi Anemia (FA). Pathophysiology of leukemic evolution is not clear. Etoposide (Eto) is a chemotherapeutic agent implicated in development of sAML. FA is an inherited bone marrow (BM) failure disease characterized by genomic instability and xenobiotic susceptibility. Here, we hypothesized that alterations in the BM niche may play a critical/driver role in development of sAML in both conditions. Expression of selected genes involved in xenobiotic metabolism, DNA double-strand break response, endoplasmic reticulum (ER) stress, heat shock response and cell cycle regulation were determined in BM mesenchymal stem cells (MSCs) of healthy controls and FA patients at steady state and upon exposure to Eto at different concentrations and in recurrent doses. Expression of CYPA1, p53, CCNB1, Dicer1, CXCL12, FLT3L and TGF-Beta genes were significantly downregulated in FA-MSCs compared with healthy controls. Eto exposure induced significant alterations in healthy BM-MSCs with increased expression of CYP1A1, GAD34, ATF4, NUPR1, CXCL12, KLF4, CCNB1 and nuclear localization of Dicer1. Interestingly, FA-MSCs did not show significant alterations in these genes upon Eto exposure. As opposed to healthy MSCs DICER1 gene expression and intracellular localization was not altered on FA BM-MSCs after Eto treatment. These results showed that Eto is a highly potent molecule and has pleiotropic effects on BM-MSCs, FA cells show altered expression profile compared to healthy controls and Eto exposure on FA cells shows differential profile than healthy controls.
Collapse
Affiliation(s)
- Cansu Özdemir
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
| | - Bihter Muratoğlu
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Buse Nurten Özel
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Esin Alpdündar-Bulut
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Gülsena Tonyalı
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Şule Ünal
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
- Research Center for Fanconi Anemia and Other IBMFSs, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey
| | - Duygu Uçkan-Çetinkaya
- Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Division of Hematology-Oncology, Faculty of Medicine, Department of Pediatrics, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
- Research Center for Fanconi Anemia and Other IBMFSs, Hacettepe University, 06100 Gevher Nesibe Street, Sihhiye, Altındağ, Ankara, Turkey.
| |
Collapse
|
30
|
Kfoury YS, Ji F, Jain E, Mazzola M, Schiroli G, Papazian A, Mercier F, Sykes DB, Kiem A, Randolph M, Calvi LM, Abdel-Wahab O, Sadreyev RI, Scadden DT. The bone marrow stroma in human myelodysplastic syndrome reveals alterations that regulate disease progression. Blood Adv 2023; 7:6608-6623. [PMID: 37450380 PMCID: PMC10628805 DOI: 10.1182/bloodadvances.2022008268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Myelodysplastic syndromes (MDSs) are a heterogenous group of diseases affecting the hematopoietic stem cell that are curable only by stem cell transplantation. Both hematopoietic cell intrinsic changes and extrinsic signals from the bone marrow (BM) niche seem to ultimately lead to MDS. Animal models of MDS indicate that alterations in specific mesenchymal progenitor subsets in the BM microenvironment can induce or select for abnormal hematopoietic cells. Here, we identify a subset of human BM mesenchymal cells marked by the expression of CD271, CD146, and CD106. This subset of human mesenchymal cells is comparable with mouse mesenchymal cells that, when perturbed, result in an MDS-like syndrome. Its transcriptional analysis identified Osteopontin (SPP1) as the most overexpressed gene. Selective depletion of Spp1 in the microenvironment of the mouse MDS model, Vav-driven Nup98-HoxD13, resulted in an accelerated progression as demonstrated by increased chimerism, higher mutant myeloid cell burden, and a more pronounced anemia when compared with that in wild-type microenvironment controls. These data indicate that molecular perturbations can occur in specific BM mesenchymal subsets of patients with MDS. However, the niche adaptations to dysplastic clones include Spp1 overexpression that can constrain disease fitness and potentially progression. Therefore, niche changes with malignant disease can also serve to protect the host.
Collapse
Affiliation(s)
- Youmna S. Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Esha Jain
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael Mazzola
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Ani Papazian
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Francois Mercier
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Anna Kiem
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Mark Randolph
- Division of Plastic and Reconstructive surgery, Massachusetts General Hospital, Boston, MA
| | - Laura M. Calvi
- Department of Medicine, University of Rochester School of Medicine, Rochester, NY
| | - Omar Abdel-Wahab
- Department of Medicine, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ruslan I. Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David T. Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| |
Collapse
|
31
|
Kaszuba CM, Rodems BJ, Sharma S, Franco EI, Ashton JM, Calvi LM, Bajaj J. Identifying Bone Marrow Microenvironmental Populations in Myelodysplastic Syndrome and Acute Myeloid Leukemia. J Vis Exp 2023:10.3791/66093. [PMID: 38009736 PMCID: PMC10849042 DOI: 10.3791/66093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
The bone marrow microenvironment consists of distinct cell populations, such as mesenchymal stromal cells, endothelial cells, osteolineage cells, and fibroblasts, which provide support for hematopoietic stem cells (HSCs). In addition to supporting normal HSCs, the bone marrow microenvironment also plays a role in the development of hematopoietic stem cell disorders, such as myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). MDS-associated mutations in HSCs lead to a block in differentiation and progressive bone marrow failure, especially in the elderly. MDS can often progress to therapy-resistant AML, a disease characterized by a rapid accumulation of immature myeloid blasts. The bone marrow microenvironment is known to be altered in patients with these myeloid neoplasms. Here, a comprehensive protocol to isolate and phenotypically characterize bone marrow microenvironmental cells from murine models of myelodysplastic syndrome and acute myeloid leukemia is described. Isolating and characterizing changes in the bone marrow niche populations can help determine their role in disease initiation and progression and may lead to the development of novel therapeutics targeting cancer-promoting alterations in the bone marrow stromal populations.
Collapse
Affiliation(s)
- Christina M Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - Benjamin J Rodems
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Sonali Sharma
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center
| | - Edgardo I Franco
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Engineering, University of Rochester
| | - John M Ashton
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center; Genomics Research Center, University of Rochester Medical Center
| | - Laura M Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center; Division of Endocrinology and Metabolism, Department of Medicine, University of Rochester Medical Center
| | - Jeevisha Bajaj
- Wilmot Cancer Institute, University of Rochester Medical Center; Department of Biomedical Genetics, University of Rochester Medical Center;
| |
Collapse
|
32
|
Giallongo C, Dulcamare I, Giallongo S, Duminuco A, Pieragostino D, Cufaro MC, Amorini AM, Lazzarino G, Romano A, Parrinello N, Di Rosa M, Broggi G, Caltabiano R, Caraglia M, Scrima M, Pasquale LS, Tathode MS, Li Volti G, Motterlini R, Di Raimondo F, Tibullo D, Palumbo GA. MacroH2A1.1 as a crossroad between epigenetics, inflammation and metabolism of mesenchymal stromal cells in myelodysplastic syndromes. Cell Death Dis 2023; 14:686. [PMID: 37852977 PMCID: PMC10584900 DOI: 10.1038/s41419-023-06197-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 10/20/2023]
Abstract
Ineffective hematopoiesis is a hallmark of myelodysplastic syndromes (MDS). Hematopoietic alterations in MDS patients strictly correlate with microenvironment dysfunctions, eventually affecting also the mesenchymal stromal cell (MSC) compartment. Stromal cells are indeed epigenetically reprogrammed to cooperate with leukemic cells and propagate the disease as "tumor unit"; therefore, changes in MSC epigenetic profile might contribute to the hematopoietic perturbations typical of MDS. Here, we unveil that the histone variant macroH2A1 (mH2A1) regulates the crosstalk between epigenetics and inflammation in MDS-MSCs, potentially affecting their hematopoietic support ability. We show that the mH2A1 splicing isoform mH2A1.1 accumulates in MDS-MSCs, correlating with the expression of the Toll-like receptor 4 (TLR4), an important pro-tumor activator of MSC phenotype associated to a pro-inflammatory behavior. MH2A1.1-TLR4 axis was further investigated in HS-5 stromal cells after ectopic mH2A1.1 overexpression (mH2A1.1-OE). Proteomic data confirmed the activation of a pro-inflammatory signature associated to TLR4 and nuclear factor kappa B (NFkB) activation. Moreover, mH2A1.1-OE proteomic profile identified several upregulated proteins associated to DNA and histones hypermethylation, including S-adenosylhomocysteine hydrolase, a strong inhibitor of DNA methyltransferase and of the methyl donor S-adenosyl-methionine (SAM). HPLC analysis confirmed higher SAM/SAH ratio along with a metabolic reprogramming. Interestingly, an increased LDHA nuclear localization was detected both in mH2A1.1-OE cells and MDS-MSCs, probably depending on MSC inflammatory phenotype. Finally, coculturing healthy mH2A1.1-OE MSCs with CD34+ cells, we found a significant reduction in the number of CD34+ cells, which was reflected in a decreased number of colony forming units (CFU-Cs). These results suggest a key role of mH2A1.1 in driving the crosstalk between epigenetic signaling, inflammation, and cell metabolism networks in MDS-MSCs.
Collapse
Affiliation(s)
- C Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - I Dulcamare
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - S Giallongo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy.
| | - A Duminuco
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - D Pieragostino
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - M C Cufaro
- Department of Innovative Technologies and Medicine & Odontoiatry, University G. D'Annunzio, Chieti-Pescara, Italy
- Analytical Biochemistry and Proteomics Laboratory, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - A M Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Lazzarino
- Departmental Faculty of Medicine and Surgery, UniCamillus-Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - A Romano
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - N Parrinello
- Division of Hematology, AOU Policlinico, Catania, Italy
| | - M Di Rosa
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G Broggi
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - R Caltabiano
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - M Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - L S Pasquale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - M S Tathode
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Ariano Irpino, Italy
| | - G Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| | - R Motterlini
- Faculty of Health, University Paris Est Créteil, INSERM, IMRB, Créteil, France
| | - F Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - D Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - G A Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| |
Collapse
|
33
|
Sabbah R, Saadi S, Shahar-Gabay T, Gerassy S, Yehudai-Resheff S, Zuckerman T. Abnormal adipogenic signaling in the bone marrow mesenchymal stem cells contributes to supportive microenvironment for leukemia development. Cell Commun Signal 2023; 21:277. [PMID: 37817179 PMCID: PMC10563260 DOI: 10.1186/s12964-023-01231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/16/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is an aggressive hematological malignancy, associated with unfavorable patient outcome, primarily due to disease relapse. Mesenchymal stem cells (MSCs) residing in the bone marrow (BM) niche are the source of mesenchyma-derived subpopulations, including adipocytes, and osteocytes, that are critical for normal hematopoiesis. This study aimed to characterize BM-derived adipocyte/osteocyte fractions and their crosstalk with AML cells as a potential mechanism underlying leukemogenesis. METHODS BM cell subpopulations derived from primary AML patients were evaluated using humanized ex-vivo and in-vivo models, established for this study. The models comprised AML blasts, normal hematopoietic stem and progenitor cells and mesenchymal stromal subpopulations. ELISA, FACS analysis, colony forming unit assay, whole exome sequencing and real-time qPCR were employed to assess the differentiation capacity, genetic status, gene expression and function of these cell fractions. To explore communication pathways between AML cells and BM subpopulations, levels of signaling mediators, including cytokines and chemokines, were measured using the ProcartaPlex multiplex immunoassay. RESULTS The study revealed deficiencies in adipogenic/osteogenic differentiation of BM-MSCs derived from AML patients, with adipocytes directly promoting survival and clonogenicity of AML cells in-vitro. In whole exome sequencing of BM-MSC/stromal cells, the AHNAK2 gene, associated with the stimulation of adipocyte differentiation, was found to be mutated and significantly under-expressed, implying its abnormal function in AML. The evaluation of communication pathways between AML cells and BM subpopulations demonstrated pronounced alterations in the crosstalk between these cell fractions. This was reflected by significantly elevated levels of signaling mediators cytokines/chemokines, in AML-induced adipocytes/osteocytes compared to non-induced MSCs, indicating abnormal hematopoiesis. Furthermore, in-vivo experiments using a fully humanized 3D scaffold model, showed that AML-induced adipocytes were the dominant component of the tumor microenvironment, providing preferential support to leukemia cell survival and proliferation. CONCLUSIONS This study has disclosed direct contribution of impaired functional, genetic and molecular properties of AML patient-derived adipocytes to effective protection of AML blasts from apoptosis and to stimulation of their growth in vitro and in vivo, which overall leads to disease propagation and relapse. The detected AHNAK2 gene mutations in AML-MSCs point to their involvement in the mechanism underlying abnormal adipogenesis. Video Abstract.
Collapse
Affiliation(s)
- Rawan Sabbah
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Sahar Saadi
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Tal Shahar-Gabay
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel
| | - Shiran Gerassy
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
| | - Shlomit Yehudai-Resheff
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel
| | - Tsila Zuckerman
- Clinical Research Institute at Rambam, Rambam Health Care Campus, 3109601, Haifa, Israel.
- The Ruth and Bruce Rappaport Faculty of Medicine, 3109601, Technion, Haifa, Israel.
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, 8, Ha'Aliya Street, 3109601, Haifa, Israel.
| |
Collapse
|
34
|
Sandhow L, Cai H, Leonard E, Xiao P, Tomaipitinca L, Månsson A, Kondo M, Sun X, Johansson AS, Tryggvason K, Kasper M, Järås M, Qian H. Skin mesenchymal niches maintain and protect AML-initiating stem cells. J Exp Med 2023; 220:e20220953. [PMID: 37516911 PMCID: PMC10373345 DOI: 10.1084/jem.20220953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 05/10/2023] [Accepted: 06/29/2023] [Indexed: 07/31/2023] Open
Abstract
Leukemia cutis or leukemic cell infiltration in skin is one of the common extramedullary manifestations of acute myeloid leukemia (AML) and signifies a poorer prognosis. However, its pathogenesis and maintenance remain understudied. Here, we report massive AML cell infiltration in the skin in a transplantation-induced MLL-AF9 AML mouse model. These AML cells could regenerate AML after transplantation. Prospective niche characterization revealed that skin harbored mesenchymal progenitor cells (MPCs) with a similar phenotype as BM mesenchymal stem cells. These skin MPCs protected AML-initiating stem cells (LSCs) from chemotherapy in vitro partially via mitochondrial transfer. Furthermore, Lama4 deletion in skin MPCs promoted AML LSC proliferation and chemoresistance. Importantly, more chemoresistant AML LSCs appeared to be retained in Lama4-/- mouse skin after cytarabine treatment. Our study reveals the characteristics and previously unrecognized roles of skin mesenchymal niches in maintaining and protecting AML LSCs during chemotherapy, meriting future exploration of their impact on AML relapse.
Collapse
Affiliation(s)
- Lakshmi Sandhow
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Huan Cai
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elory Leonard
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Pingnan Xiao
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Luana Tomaipitinca
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alma Månsson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Makoto Kondo
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xiaoyan Sun
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Marcus Järås
- Department of Clinical Genetics, Lund University, Lund, Sweden
| | - Hong Qian
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
35
|
Wong H, Sugimura R. Immune-epigenetic crosstalk in haematological malignancies. Front Cell Dev Biol 2023; 11:1233383. [PMID: 37808081 PMCID: PMC10551137 DOI: 10.3389/fcell.2023.1233383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Haematological malignancies comprise a diverse set of lymphoid and myeloid neoplasms which can arise during any stage of haematopoiesis in the bone marrow. Accumulating evidence suggests that chronic inflammation generated by inflammatory cytokines secreted by tumour and the tumour-associated cells within the bone marrow microenvironment initiates signalling pathways in malignant cells, resulting in activation of master transcription factors including Smads, STAT3, and NF-κB which confer cancer stem cell phenotypes and drive disease progression. Deciphering the molecular mechanisms for how immune cells interact with malignant cells to induce such epigenetic modifications, specifically DNA methylation, histone modification, expression of miRNAs and lnRNAs to perturbate haematopoiesis could provide new avenues for developing novel targeted therapies for haematological malignancies. Here, the complex positive and negative feedback loops involved in inflammatory cytokine-induced cancer stem cell generation and drug resistance are reviewed to highlight the clinical importance of immune-epigenetic crosstalk in haematological malignancies.
Collapse
Affiliation(s)
| | - Ryohichi Sugimura
- School of Biomedical Sciences, Lee Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
36
|
Fei MY, Wang Y, Chang BH, Xue K, Dong F, Huang D, Li XY, Li ZJ, Hu CL, Liu P, Wu JC, Yu PC, Hong MH, Chen SB, Xu CH, Chen BY, Jiang YL, Liu N, Zhao C, Jin JC, Hou D, Chen XC, Ren YY, Deng CH, Zhang JY, Zong LJ, Wang RJ, Gao FF, Liu H, Zhang QL, Wu LY, Yan J, Shen S, Chang CK, Sun XJ, Wang L. The non-cell-autonomous function of ID1 promotes AML progression via ANGPTL7 from the microenvironment. Blood 2023; 142:903-917. [PMID: 37319434 PMCID: PMC10644073 DOI: 10.1182/blood.2022019537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/04/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The bone marrow microenvironment (BMM) can regulate leukemia stem cells (LSCs) via secreted factors. Increasing evidence suggests that dissecting the mechanisms by which the BMM maintains LSCs may lead to the development of effective therapies for the eradication of leukemia. Inhibitor of DNA binding 1 (ID1), a key transcriptional regulator in LSCs, previously identified by us, controls cytokine production in the BMM, but the role of ID1 in acute myeloid leukemia (AML) BMM remains obscure. Here, we report that ID1 is highly expressed in the BMM of patients with AML, especially in BM mesenchymal stem cells, and that the high expression of ID1 in the AML BMM is induced by BMP6, secreted from AML cells. Knocking out ID1 in mesenchymal cells significantly suppresses the proliferation of cocultured AML cells. Loss of Id1 in the BMM results in impaired AML progression in AML mouse models. Mechanistically, we found that Id1 deficiency significantly reduces SP1 protein levels in mesenchymal cells cocultured with AML cells. Using ID1-interactome analysis, we found that ID1 interacts with RNF4, an E3 ubiquitin ligase, and causes a decrease in SP1 ubiquitination. Disrupting the ID1-RNF4 interaction via truncation in mesenchymal cells significantly reduces SP1 protein levels and delays AML cell proliferation. We identify that the target of Sp1, Angptl7, is the primary differentially expression protein factor in Id1-deficient BM supernatant fluid to regulate AML progression in mice. Our study highlights the critical role of ID1 in the AML BMM and aids the development of therapeutic strategies for AML.
Collapse
Affiliation(s)
- Ming-Yue Fei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bin-He Chang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kai Xue
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xi-Ya Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zi-Juan Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng-Long Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ping Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji-Chuan Wu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng-Cheng Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ming-Hua Hong
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Shu-Bei Chen
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University School of Life Sciences and Biotechnology, Shanghai, China
| | - Chun-Hui Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing-Yi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Lun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chong Zhao
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia-Cheng Jin
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Dan Hou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xin-Chi Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Yi Ren
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chu-Han Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Ying Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li-juan Zong
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rou-Jia Wang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fei-Fei Gao
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Eighth People’s Hospital, Shanghai, China
| | - Hui Liu
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai, China
| | - Qun-Ling Zhang
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ling-Yun Wu
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Diamond Bay Institute of Hematology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, and National Children's Medical Center, Shanghai, China
| | - Chun-Kang Chang
- Department of Hematology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiao-Jian Sun
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Life Sciences and Biotechnology, Shanghai Jiao Tong University School of Life Sciences and Biotechnology, Shanghai, China
| | - Lan Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Chen L, Pronk E, van Dijk C, Bian Y, Feyen J, van Tienhoven T, Yildirim M, Pisterzi P, de Jong MM, Bastidas A, Hoogenboezem RM, Wevers C, Bindels EM, Löwenberg B, Cupedo T, Sanders MA, Raaijmakers MH. A Single-Cell Taxonomy Predicts Inflammatory Niche Remodeling to Drive Tissue Failure and Outcome in Human AML. Blood Cancer Discov 2023; 4:394-417. [PMID: 37470778 PMCID: PMC10472197 DOI: 10.1158/2643-3230.bcd-23-0043] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/09/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023] Open
Abstract
Cancer initiation is orchestrated by an interplay between tumor-initiating cells and their stromal/immune environment. Here, by adapted single-cell RNA sequencing, we decipher the predicted signaling between tissue-resident hematopoietic stem/progenitor cells (HSPC) and their neoplastic counterparts with their native niches in the human bone marrow. LEPR+ stromal cells are identified as central regulators of hematopoiesis through predicted interactions with all cells in the marrow. Inflammatory niche remodeling and the resulting deprivation of critical HSPC regulatory factors are predicted to repress high-output hematopoietic stem cell subsets in NPM1-mutated acute myeloid leukemia (AML), with relative resistance of clonal cells. Stromal gene signatures reflective of niche remodeling are associated with reduced relapse rates and favorable outcomes after chemotherapy across all genetic risk categories. Elucidation of the intercellular signaling defining human AML, thus, predicts that inflammatory remodeling of stem cell niches drives tissue repression and clonal selection but may pose a vulnerability for relapse-initiating cells in the context of chemotherapeutic treatment. SIGNIFICANCE Tumor-promoting inflammation is considered an enabling characteristic of tumorigenesis, but mechanisms remain incompletely understood. By deciphering the predicted signaling between tissue-resident stem cells and their neoplastic counterparts with their environment, we identify inflammatory remodeling of stromal niches as a determinant of normal tissue repression and clinical outcomes in human AML. See related commentary by Lisi-Vega and Méndez-Ferrer, p. 349. This article is featured in Selected Articles from This Issue, p. 337.
Collapse
Affiliation(s)
- Lanpeng Chen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eline Pronk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Claire van Dijk
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Yujie Bian
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Jacqueline Feyen
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tim van Tienhoven
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Meltem Yildirim
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Paola Pisterzi
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Madelon M.E. de Jong
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Alejandro Bastidas
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | - Chiel Wevers
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Eric M. Bindels
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Bob Löwenberg
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tom Cupedo
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Mathijs A. Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | |
Collapse
|
38
|
Falconi G, Galossi E, Hajrullaj H, Fabiani E, Voso MT. Bone Marrow Microenvironment Involvement in t-MN: Focus on Mesenchymal Stem Cells. Mediterr J Hematol Infect Dis 2023; 15:e2023055. [PMID: 37705521 PMCID: PMC10497308 DOI: 10.4084/mjhid.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023] Open
Abstract
Therapy-related myeloid neoplasms (t-MN) are a late complication of cytotoxic therapy (CT) used in the treatment of both malignant and non-malignant diseases. Historically, t-MN has been considered to be a direct consequence of DNA damage induced in normal hematopoietic stem or progenitor cells (HSPC) by CT. However, we now know that treatment-induced mutations in HSC are not the only players involved in t-MN development, but additional factors may contribute to the onset of t-MN. One of the known drivers involved in this field is the bone marrow microenvironment (BMM) and, in particular, bone marrow mesenchymal stem cells (BM-MSC), whose role in t-MN pathogenesis is the topic of this mini-review. BM-MSCs, physiologically, support HSC maintenance, self-renewal, and differentiation through hematopoietic-stromal interactions and the production of cytokines. In addition, BM-MSCs maintain the stability of the BM immune microenvironment and reduce the damage caused to HSC by stress stimuli. In the t-MN context, chemo/radiotherapy may induce damage to the BM-MSC and likewise alter BM-MSC functions by promoting pro-inflammatory response, clonal selection and/or the production of factors that may favor malignant hematopoiesis. Over the last decade, it has been shown that BM-MSC isolated from patients with de novo and therapy-related MN exhibit decreased proliferative and clonogenic capacity, altered morphology, increased senescence, defective osteogenic differentiation potential, impaired immune-regulatory properties, and reduced ability to support HSC growth and differentiation, as compared to normal BM-MSC. Although the understanding of the genetic and gene expression profile associated with ex vivo-expanded t-MN-MSCs remains limited and debatable, its potential role in prognostic and therapeutic terms is acting as a flywheel of attraction for many researchers.
Collapse
Affiliation(s)
- Giulia Falconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Galossi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - H Hajrullaj
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - E Fabiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
39
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
40
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
41
|
Stamp J, DenAdel A, Weinreich D, Crawford L. Leveraging the genetic correlation between traits improves the detection of epistasis in genome-wide association studies. G3 (BETHESDA, MD.) 2023; 13:jkad118. [PMID: 37243672 PMCID: PMC10484060 DOI: 10.1093/g3journal/jkad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/11/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Epistasis, commonly defined as the interaction between genetic loci, is known to play an important role in the phenotypic variation of complex traits. As a result, many statistical methods have been developed to identify genetic variants that are involved in epistasis, and nearly all of these approaches carry out this task by focusing on analyzing one trait at a time. Previous studies have shown that jointly modeling multiple phenotypes can often dramatically increase statistical power for association mapping. In this study, we present the "multivariate MArginal ePIstasis Test" (mvMAPIT)-a multioutcome generalization of a recently proposed epistatic detection method which seeks to detect marginal epistasis or the combined pairwise interaction effects between a given variant and all other variants. By searching for marginal epistatic effects, one can identify genetic variants that are involved in epistasis without the need to identify the exact partners with which the variants interact-thus, potentially alleviating much of the statistical and computational burden associated with conventional explicit search-based methods. Our proposed mvMAPIT builds upon this strategy by taking advantage of correlation structure between traits to improve the identification of variants involved in epistasis. We formulate mvMAPIT as a multivariate linear mixed model and develop a multitrait variance component estimation algorithm for efficient parameter inference and P-value computation. Together with reasonable model approximations, our proposed approach is scalable to moderately sized genome-wide association studies. With simulations, we illustrate the benefits of mvMAPIT over univariate (or single-trait) epistatic mapping strategies. We also apply mvMAPIT framework to protein sequence data from two broadly neutralizing anti-influenza antibodies and approximately 2,000 heterogeneous stock of mice from the Wellcome Trust Centre for Human Genetics. The mvMAPIT R package can be downloaded at https://github.com/lcrawlab/mvMAPIT.
Collapse
Affiliation(s)
- Julian Stamp
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
| | - Alan DenAdel
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
| | - Daniel Weinreich
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02906, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI 02906, USA
- Department of Biostatistics, Brown University, Providence, RI 02903, USA
- Microsoft Research New England, Cambridge, MA 02142, USA
| |
Collapse
|
42
|
Götze KS. Flipping the switch in the stem cell niche. Blood 2023; 142:404-406. [PMID: 37535369 DOI: 10.1182/blood.2023021286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
|
43
|
Feng J, Hsu PF, Esteva E, Labella R, Wang Y, Khodadadi-Jamayran A, Pucella J, Liu CZ, Arbini AA, Tsirigos A, Kousteni S, Reizis B. Haplodeficiency of the 9p21 tumor suppressor locus causes myeloid disorders driven by the bone marrow microenvironment. Blood 2023; 142:460-476. [PMID: 37267505 DOI: 10.1182/blood.2022018512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
The chromosome 9p21 locus comprises several tumor suppressor genes including MTAP, CDKN2A, and CDKN2B, and its homo- or heterozygous deletion is associated with reduced survival in multiple cancer types. We report that mice with germ line monoallelic deletion or induced biallelic deletion of the 9p21-syntenic locus (9p21s) developed a fatal myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN)-like disease associated with aberrant trabecular bone formation and/or fibrosis in the bone marrow (BM). Reciprocal BM transfers and conditional targeting of 9p21s suggested that the disease originates in the BM stroma. Single-cell analysis of 9p21s-deficient BM stroma revealed the expansion of chondrocyte and osteogenic precursors, reflected in increased osteogenic differentiation in vitro. It also showed reduced expression of factors maintaining hematopoietic stem/progenitor cells, including Cxcl12. Accordingly, 9p21s-deficient mice showed reduced levels of circulating Cxcl12 and concomitant upregulation of the profibrotic chemokine Cxcl13 and the osteogenesis- and fibrosis-related multifunctional glycoprotein osteopontin/Spp1. Our study highlights the potential of mutations in the BM microenvironment to drive MDS/MPN-like disease.
Collapse
Affiliation(s)
- Jue Feng
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Pei-Feng Hsu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Rossella Labella
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY
| | - Yueyang Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Alireza Khodadadi-Jamayran
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY
| | - Joseph Pucella
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Cynthia Z Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Arnaldo A Arbini
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| | - Aristotelis Tsirigos
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY
| | - Stavroula Kousteni
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY
- Edward P. Evans Center for Myelodysplastic Syndromes, Columbia University Medical Center, New York, NY
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
44
|
Zhang X, Yang X, Ma L, Zhang Y, Wei J. Immune dysregulation and potential targeted therapy in myelodysplastic syndrome. Ther Adv Hematol 2023; 14:20406207231183330. [PMID: 37547364 PMCID: PMC10399277 DOI: 10.1177/20406207231183330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/02/2023] [Indexed: 08/08/2023] Open
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematological diseases and a high risk for transformation to acute myeloid leukemia (AML). The identification of key genetic alterations in MDS has enhanced our understanding of the pathogenesis and evolution. In recent years, it has been found that both innate and adaptive immune signaling are activated in the hematopoietic niche of MDS with aberrant cytokine secretion in the bone marrow microenvironment. It is also clear that immune dysregulation plays an important role in the occurrence and progression of MDS, especially the destruction of the bone marrow microenvironment, including hematopoiesis and stromal components. The purpose of this review is to explore the role of immune cells, the immune microenvironment, and cytokines in the pathogenesis of MDS. Insights into the mechanisms of these variants may facilitate the development of novel effective treatments to prevent disease progression.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yicheng Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education
- National Health Commission (NHC)
- Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei 430030, China
- Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, and Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi 030032, China
- Sino-German Joint Oncological Research Laboratory, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi 030032, China
| |
Collapse
|
45
|
Yuan N, Wei W, Ji L, Qian J, Jin Z, Liu H, Xu L, Li L, Zhao C, Gao X, He Y, Wang M, Tang L, Fang Y, Wang J. Young donor hematopoietic stem cells revitalize aged or damaged bone marrow niche by transdifferentiating into functional niche cells. Aging Cell 2023; 22:e13889. [PMID: 37226323 PMCID: PMC10410009 DOI: 10.1111/acel.13889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as "nonhematopoietic" sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.
Collapse
Affiliation(s)
- Na Yuan
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
- The Department of OrthopedicsThe Affiliated Ninth Suzhou Hospital of Soochow UniversitySuzhouChina
| | - Wen Wei
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
- The Department of OrthopedicsThe Affiliated Ninth Suzhou Hospital of Soochow UniversitySuzhouChina
| | - Li Ji
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Jiawei Qian
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Zhicong Jin
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Hong Liu
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
- Institute of Blood and Marrow Transplantation, Jiangsu Institute of HematologyThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Li Xu
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
| | - Lei Li
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Chen Zhao
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Xueqin Gao
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
| | - Yulong He
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
| | | | | | - Yixuan Fang
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
- The Department of OrthopedicsThe Affiliated Ninth Suzhou Hospital of Soochow UniversitySuzhouChina
| | - Jianrong Wang
- Research Center for Blood Engineering and ManufacturingCyrus Tang Medical Institute, Suzhou Medical College of Soochow UniversitySuzhouChina
- State Key Laboratory of Radiation Medicine and ProtectionNational Research Center for Hematological Diseases, Collaborative Innovation Center of Hematology, Soochow UniversitySuzhouChina
- The Department of OrthopedicsThe Affiliated Ninth Suzhou Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
46
|
Gao D, Hong F, He A. The role of bone marrow microenvironment on CAR-T efficacy in haematologic malignancies. Scand J Immunol 2023; 98:e13273. [PMID: 39007933 DOI: 10.1111/sji.13273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/30/2023] [Accepted: 04/19/2023] [Indexed: 07/16/2024]
Abstract
In recent years, chimeric antigen receptor-T (CAR-T) cell therapy has emerged as a novel immunotherapy method. It has shown significant therapeutic efficacy in the treatment of haematological B cell malignancies. In particular, the CAR-T therapy targeting CD19 has yielded unprecedented efficacy for acute B-lymphocytic leukaemia (B-ALL) and non-Hodgkin's lymphoma (NHL). In haematologic malignancies, tumour stem cells are more prone to stay in the regulatory bone marrow (BM) microenvironment (called niches), which provides a protective environment against immune attack. However, how the BM microenvironment affects the anti-tumour efficacy of CAR-T cells and its underlying mechanism is worthy of attention. In this review, we discuss the role of the BM microenvironment on the efficacy of CAR-T in haematological malignancies and propose corresponding strategies to enhance the anti-tumour activity of CAR-T therapy.
Collapse
Affiliation(s)
- Dandan Gao
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fei Hong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aili He
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- National-Local Joint Engineering Research Center of Biodiagnostics & Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
47
|
Dolinska M, Cai H, Månsson A, Shen J, Xiao P, Bouderlique T, Li X, Leonard E, Chang M, Gao Y, Medina JP, Kondo M, Sandhow L, Johansson AS, Deneberg S, Söderlund S, Jädersten M, Ungerstedt J, Tobiasson M, Östman A, Mustjoki S, Stenke L, Le Blanc K, Hellström-Lindberg E, Lehmann S, Ekblom M, Olsson-Strömberg U, Sigvardsson M, Qian H. Characterization of the bone marrow niche in patients with chronic myeloid leukemia identifies CXCL14 as a new therapeutic option. Blood 2023; 142:73-89. [PMID: 37018663 PMCID: PMC10651879 DOI: 10.1182/blood.2022016896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 02/08/2023] [Accepted: 02/26/2023] [Indexed: 04/07/2023] Open
Abstract
Although tyrosine kinase inhibitors (TKIs) are effective in treating chronic myeloid leukemia (CML), they often fail to eradicate the leukemia-initiating stem cells (LSCs), causing disease persistence and relapse. Evidence indicates that LSC persistence may be because of bone marrow (BM) niche protection; however, little is known about the underlying mechanisms. Herein, we molecularly and functionally characterize BM niches in patients with CML at diagnosis and reveal the altered niche composition and function in these patients. Long-term culture initiating cell assay showed that the mesenchymal stem cells from patients with CML displayed an enhanced supporting capacity for normal and CML BM CD34+CD38- cells. Molecularly, RNA sequencing detected dysregulated cytokine and growth factor expression in the BM cellular niches of patients with CML. Among them, CXCL14 was lost in the BM cellular niches in contrast to its expression in healthy BM. Restoring CXCL14 significantly inhibited CML LSC maintenance and enhanced their response to imatinib in vitro, and CML engraftment in vivo in NSG-SGM3 mice. Importantly, CXCL14 treatment dramatically inhibited CML engraftment in patient-derived xenografted NSG-SGM3 mice, even to a greater degree than imatinib, and this inhibition persisted in patients with suboptimal TKI response. Mechanistically, CXCL14 upregulated inflammatory cytokine signaling but downregulated mTOR signaling and oxidative phosphorylation in CML LSCs. Together, we have discovered a suppressive role of CXCL14 in CML LSC growth. CXCL14 might offer a treatment option targeting CML LSCs.
Collapse
MESH Headings
- Animals
- Mice
- Bone Marrow/metabolism
- Chemokines, CXC/metabolism
- Chemokines, CXC/pharmacology
- Chemokines, CXC/therapeutic use
- Cytokines/metabolism
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Neoplastic Stem Cells/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction
Collapse
Affiliation(s)
- Monika Dolinska
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Huan Cai
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Alma Månsson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Jingyi Shen
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Pingnan Xiao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Xidan Li
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Elory Leonard
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Marcus Chang
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Yuchen Gao
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Juan Pablo Medina
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Makoto Kondo
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Lakshmi Sandhow
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Anne-Sofie Johansson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Deneberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Stina Söderlund
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Martin Jädersten
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Johanna Ungerstedt
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Tobiasson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
- Translational Immunology Research Program, Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Leif Stenke
- Division of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Katarina Le Blanc
- Division of Clinical Immunology & Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Hellström-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Sören Lehmann
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Marja Ekblom
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Ulla Olsson-Strömberg
- Division of Hematology, Department of Medical Science, University Hospital, Uppsala, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Lund, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hong Qian
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Balandrán JC, Lasry A, Aifantis I. The Role of Inflammation in the Initiation and Progression of Myeloid Neoplasms. Blood Cancer Discov 2023; 4:254-266. [PMID: 37052531 PMCID: PMC10320626 DOI: 10.1158/2643-3230.bcd-22-0176] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Myeloid malignancies are devastating hematologic cancers with limited therapeutic options. Inflammation is emerging as a novel driver of myeloid malignancy, with important implications for tumor composition, immune response, therapeutic options, and patient survival. Here, we discuss the role of inflammation in normal and malignant hematopoiesis, from clonal hematopoiesis to full-blown myeloid leukemia. We discuss how inflammation shapes clonal output from hematopoietic stem cells, how inflammation alters the immune microenvironment in the bone marrow, and novel therapies aimed at targeting inflammation in myeloid disease. SIGNIFICANCE Inflammation is emerging as an important factor in myeloid malignancies. Understanding the role of inflammation in myeloid transformation, and the interplay between inflammation and other drivers of leukemogenesis, may yield novel avenues for therapy.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Audrey Lasry
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| | - Iannis Aifantis
- Department of Pathology and Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York
| |
Collapse
|
49
|
Hoover MY, Ambrosi TH, Steininger HM, Koepke LS, Wang Y, Zhao L, Murphy MP, Alam AA, Arouge EJ, Butler MGK, Takematsu E, Stavitsky SP, Hu S, Sahoo D, Sinha R, Morri M, Neff N, Bishop J, Gardner M, Goodman S, Longaker M, Chan CKF. Purification and functional characterization of novel human skeletal stem cell lineages. Nat Protoc 2023; 18:2256-2282. [PMID: 37316563 PMCID: PMC10495180 DOI: 10.1038/s41596-023-00836-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
Human skeletal stem cells (hSSCs) hold tremendous therapeutic potential for developing new clinical strategies to effectively combat congenital and age-related musculoskeletal disorders. Unfortunately, refined methodologies for the proper isolation of bona fide hSSCs and the development of functional assays that accurately recapitulate their physiology within the skeleton have been lacking. Bone marrow-derived mesenchymal stromal cells (BMSCs), commonly used to describe the source of precursors for osteoblasts, chondrocytes, adipocytes and stroma, have held great promise as the basis of various approaches for cell therapy. However, the reproducibility and clinical efficacy of these attempts have been obscured by the heterogeneous nature of BMSCs due to their isolation by plastic adherence techniques. To address these limitations, our group has refined the purity of individual progenitor populations that are encompassed by BMSCs by identifying defined populations of bona fide hSSCs and their downstream progenitors that strictly give rise to skeletally restricted cell lineages. Here, we describe an advanced flow cytometric approach that utilizes an extensive panel of eight cell surface markers to define hSSCs; bone, cartilage and stromal progenitors; and more differentiated unipotent subtypes, including an osteogenic subset and three chondroprogenitors. We provide detailed instructions for the FACS-based isolation of hSSCs from various tissue sources, in vitro and in vivo skeletogenic functional assays, human xenograft mouse models and single-cell RNA sequencing analysis. This application of hSSC isolation can be performed by any researcher with basic skills in biology and flow cytometry within 1-2 days. The downstream functional assays can be performed within a range of 1-2 months.
Collapse
Affiliation(s)
- Malachia Y Hoover
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas H Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA, USA
| | - Holly M Steininger
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Lauren S Koepke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Matthew P Murphy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Alina A Alam
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Elizabeth J Arouge
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - M Gohazrua K Butler
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eri Takematsu
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Suzan P Stavitsky
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Serena Hu
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Debashis Sahoo
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Maurizio Morri
- Chan Zuckerberg BioHub, San Francisco, CA, USA
- Altos Labs, Redwood City, CA, USA
| | - Norma Neff
- Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Julius Bishop
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Michael Gardner
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford Hospitals and Clinics, Stanford, CA, USA
| | - Michael Longaker
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Charles K F Chan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA.
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
50
|
Tomasoni C, Pievani A, Rambaldi B, Biondi A, Serafini M. A Question of Frame: The Role of the Bone Marrow Stromal Niche in Myeloid Malignancies. Hemasphere 2023; 7:e896. [PMID: 37234820 PMCID: PMC10208717 DOI: 10.1097/hs9.0000000000000896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.
Collapse
Affiliation(s)
- Chiara Tomasoni
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Benedetta Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Andrea Biondi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|