1
|
Ma A, Zhang Y, Chen J, Sun L, Hong G. Differential expression of osteoblast-like cells on self-organized titanium dioxide nanotubes. J Dent Sci 2024; 19:S26-S37. [PMID: 39807437 PMCID: PMC11725137 DOI: 10.1016/j.jds.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Indexed: 01/16/2025] Open
Abstract
Background/purpose Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters. Materials and methods TNT structures were fabricated by anodizing titanium foil at voltages ranging from 15V to 70V and annealed at 450 °C. Surface morphology and wettability were characterized using field emission scanning electron microscopy and water contact angle measurements, respectively. MC3T3-E1 and Saos-2 cells were cultured to evaluate biocompatibility. Early cell morphology and adhesion were visualized by scanning electron microscopy. Cell proliferation was quantified using CCK-8 assays, and differentiation was assessed through alkaline phosphatase assays. Osteogenesis-related gene expression was analyzed by real-time polymerase chain reaction (PCR), measuring runt-related transcription factor 2 (Runx-2), alkaline phosphatase (ALP), collagen type 1 (COL-1), osteocalcin (OCN), and Osteopontin (OPN) gene levels. Results Our results found that Saos-2 cells may be more suitable for TNT-related studies compared to MC3T3-E1 cells. Notably, the 65V nanotube group, with a diameter of 135.9 ± 15.83 nm, demonstrated the most significant osteogenic effect in our assays. Conclusion We propose that the use and screening of multiple cell lines prior to the evaluation of biomaterials can lead to more accurate in vitro experiments, thereby enhancing the reliability of biomaterial research.
Collapse
Affiliation(s)
- Aobo Ma
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yiding Zhang
- Department of Periodontology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Junduo Chen
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Lu Sun
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Prosthodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- Department of Prosthodontics, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
3
|
Deng Z, Yu L, Kuang Y, Zhou Z, Li X. Highly Ordered Nanotube-Like Microstructure on Titanium Dental Implant Surface Fabricated via Anodization Enhanced Cell Adhesion and Migration of Human Gingival Fibroblasts. Int J Nanomedicine 2024; 19:2469-2485. [PMID: 38476279 PMCID: PMC10929655 DOI: 10.2147/ijn.s448743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Background Titanium (Ti) surface with nanotubes array via anodization has been used in dental implants to enhance bone regeneration but little research was carried out to evaluate whether the presence of highly ordered or disorderly distributed nanotubes array on titanium surface would have an effect on cell behaviors of gingival fibroblasts. Methods The present study fabricated nanotubes arrays with varied topography under different constant voltage of electrochemical anodization in fluorine-containing electrolyte. Human gingival fibroblasts (HGFs) from extracted third molar were harvested and co-cultured with titanium disks with different nanotubes topography. Then cell behaviors of gingival fibroblasts including cell proliferation, adhesive morphology and cell migration were estimated to investigate the influence of titanium nanotubes on cell biology. Besides, gene and protein expression of adhesion molecule (integrin β1/β4/α6, fibronectin, intracellular adhesion molecule-1 and collagen type I) were detected to evaluate the influence of different surfaces on cell adhesion. Results Highly ordered arrays of nanotubes with pore diameter of 60 nm and 100 nm were fabricated under 30 and 40 V of anodization (TNT-30 and TNT-40) while disorderedly distributed nanotube arrays formed on the titanium surface under 50 V of anodization (TNT-50). Our results demonstrated that compared with raw titanium surface and disorderly nanotubes, surface with orderly nanotubes array increased cell area and aspect ratio, as well as cell migration ability in the early phase of cell adhesion (p<0.05). Besides, compared with raw titanium surface, gene and protein expression of adhesion molecules were upregulated in nanotubes groups to different extents, no matter whether in an orderly or disorderly array. Conclusion Within the limitations of our study, we conclude that compared with raw titanium surface, the presence of nanotubes array on titanium surface could enhance cells adhesion and cell migration in the early phase. And compared with disorderly distributed nanotubes, highly ordered nanotubes array might provide a much more favorable surface for gingival fibroblasts to achieve a tight adhesion on the materials.
Collapse
Affiliation(s)
- Zhaoming Deng
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Lerong Yu
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Yishen Kuang
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Ziyao Zhou
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| | - Xiangwei Li
- Department of Stomatology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai City, 519000, People’s Republic of China
| |
Collapse
|
4
|
Song YW, Maekawa S, Sasaki K, Yoshida D, Nagai M, Ishikawa-Nagai S, Da Silva J, Kim DM, Chen CY. Microscopic in-situ analysis of the mucosal healing around implants treated by protease activated receptor 4-agonist peptide or perpendicularly protruded type I collagen in rats. J Biomed Mater Res B Appl Biomater 2024; 112:e35330. [PMID: 37737549 DOI: 10.1002/jbm.b.35330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/08/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023]
Abstract
Enhanced mucosal sealing around titanium implants can reduce complications such as peri-implantitis. The present study aims to investigate the mucosal healing at the early stage around the protease activated receptor 4-agonist peptide (PAR4-AP)- or perpendicularly protruded type I collagen (pCol)-treated titanium implants. A total of 72 implants were placed in 36 rats in the study. Following extractions, two tissue-level implants among the following three different surfaces, PAR4-AP-coated (PAR4 group, n = 24), pCol-treated (pCol group, n = 24) and non-treated (control group, n = 24) ones, were placed in the maxillae of each rat based on a split-mouth design. The specimens retrieved at 8 h (n = 8 per group), 3 days (n = 8 per group), and 2 weeks (n = 8 per group), were immunostained and tissue-cleared, and the signals of laminin-5 and collagen fibers were observed under multiphoton microscopy. Statistical analyses were performed using linear mixed model with post hoc tests to compare differences between the groups. While there was no intergroup difference at 8 h, the laminin-5 at 3 days was more abundant near the PAR4-group-surface, and its area was significantly larger in the PAR4 group (0.0204 ± 0.0194 mm2 ) than the control (0.0019 ± 0.0025 mm2 , p = .001) and pCol (0.0023 ± 0.0022 mm2 , p < .001) groups. The pCol group showed a significantly larger area of collagen fibers (0.0230 ± 0.0148 mm2 ) compared to the control (0.0035 ± 0.0051 mm2 , p = .002) and PAR4 (0.0031 ± 0.0057 mm2 , p < .001) groups at 3 days. At 3 days and 2 weeks, the collagen fiber orientation of the pCol group showed a more perpendicular manner compared to the control and PAR4 groups. The signal of basal lamina and collagen fibers were stronger around the PAR4-AP- and pCol-treated titanium surfaces, respectively during the early healing stage. This could have implications for improved mucosal sealing around dental implants, potentially reducing complications such as peri-implantitis.
Collapse
Affiliation(s)
- Young Woo Song
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Periodontology, Gangnam Severance Hospital, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - Shogo Maekawa
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keito Sasaki
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Prosthodontics and Oral Implantology, School of Dental Medicine, Iwate Medical University, Morioka, Japan
| | - Daichi Yoshida
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
- Department of Prosthodontics and Oral Implantology, School of Dental Medicine, Iwate Medical University, Morioka, Japan
| | - Masazumi Nagai
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Shigemi Ishikawa-Nagai
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - John Da Silva
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - David Minjoon Kim
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Chia-Yu Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Pekel H, Ilter M, Sensoy O. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. J Biomol Struct Dyn 2022; 40:7167-7182. [PMID: 33847241 PMCID: PMC8054500 DOI: 10.1080/07391102.2021.1910571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2020] [Accepted: 02/28/2021] [Indexed: 11/22/2022]
Abstract
Coronavirus disease-2019 (COVID-19) was firstly reported in Wuhan, China, towards the end of 2019, and emerged as a pandemic. The spread and lethality rates of the COVID-19 have ignited studies that focus on the development of therapeutics for either treatment or prophylaxis purposes. In parallel, drug repurposing studies have also come into prominence. Herein, we aimed at having a holistic understanding of conformational and dynamical changes induced by an experimentally characterized inhibitor on main protease (Mpro) which would enable the discovery of novel inhibitors. To this end, we performed molecular dynamics simulations using crystal structures of apo and α-ketoamide 13b-bound Mpro homodimer. Analysis of trajectories pertaining to apo Mpro revealed a new target site, which is located at the homodimer interface, next to the catalytic dyad. Thereafter, we performed ensemble-based virtual screening by exploiting the ZINC and DrugBank databases and identified three candidate molecules, namely eluxadoline, diosmin, and ZINC02948810 that could invoke local and global conformational rearrangements which were also elicited by α-ketoamide 13b on the catalytic dyad of Mpro. Furthermore, ZINC23881687 stably interacted with catalytically important residues Glu166 and Ser1 and the target site throughout the simulation. However, it gave positive binding energy, presumably, due to displaying higher flexibility that might dominate the entropic term, which is not included in the MM-PBSA method. Finally, ZINC20425029, whose mode of action was different, modulated dynamical properties of catalytically important residue, Ala285. As such, this study presents valuable findings that might be used in the development of novel therapeutics against Mpro.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hanife Pekel
- Department of Pharmacy Services, Vocational School of Health Services, Istanbul Medipol University, Istanbul, Turkey
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Metehan Ilter
- Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Ozge Sensoy
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Computer Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
6
|
Establishment of Biomimetic Soft Tissue Integration with the Surface of Zirconia Fused with Platelet-Activating Peptide. MATERIALS 2022; 15:ma15134597. [PMID: 35806723 PMCID: PMC9267760 DOI: 10.3390/ma15134597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/04/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 01/25/2023]
Abstract
Soft tissue sealing around zirconia (ZrO2) abutment is critical for the long-term stability of dental implants. The goal of the study is to develop a strong basal lamina (BL)-mediated epithelial attachment to ZrO2 via a novel physicochemical immobilization method. An electrophoretic fusion (EPF) method was applied to fuse a phosphonic acid (PA) linker to ZrO2 discs. Bindings of the PA linker and the following protease activated receptor 4 (PAR4) were verified by Fourier-transform infrared spectroscopy (FITR). Then, ZrO2 discs were doped in platelet-rich plasma (PRP). Platelet-derived growth factor (PDGF) was measured to assess platelet activation. PRP-doped discs were subsequently co-cultured with human gingival epithelial cells (OBA9) to evaluate establishment of basal lamina-mediated epithelial attachment. The EPF method achieved robust immobilization of the PA linker and PAR4 onto the ZrO2 surface. The resultant PAR4-coupled ZrO2 successfully induced platelet aggregation and activation. Furthermore, a BL-mediated epithelial attachment was established. The results are significant for clinical application to minimize the risk of developing peri-implant diseases.
Collapse
|
7
|
Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biol Macromol 2022; 208:833-843. [PMID: 35367473 DOI: 10.1016/j.ijbiomac.2022.03.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Dental implants have been widely accepted as an ideal therapy to replace the missing teeth for its good performance in aspects of mechanical properties and aesthetic outcomes. Its restorative success is contributed by not only the successful osseointegration of the implant but also the tight soft tissue integration, especially the collagen fibers, in the transmucosal region. Soft tissue attaching to the dental implant/abutment is overall similar, but in some aspects distinct with that seen around natural teeth and soft tissue integration can be enhanced via several surface modification methods. This review is going to focus on the current knowledge of the transmucosal zone around the dental implants (compared with natural teeth), and latest strategies in use to fine-tune the collagen fibers assembly in the connective tissue, in an attempt to enhance soft tissue integration.
Collapse
|
8
|
Ultraviolet Treatment of Titanium to Enhance Adhesion and Retention of Oral Mucosa Connective Tissue and Fibroblasts. Int J Mol Sci 2021; 22:ijms222212396. [PMID: 34830275 PMCID: PMC8617952 DOI: 10.3390/ijms222212396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/16/2023] Open
Abstract
Peri-implantitis is an unsolved but critical problem with dental implants. It is postulated that creating a seal of gingival soft tissue around the implant neck is key to preventing peri-implantitis. The objective of this study was to determine the effect of UV surface treatment of titanium disks on the adhesion strength and retention time of oral connective tissues as well as on the adherence of mucosal fibroblasts. Titanium disks with a smooth machined surface were prepared and treated with UV light for 15 min. Keratinized mucosal tissue sections (3 × 3 mm) from rat palates were incubated for 24 h on the titanium disks. The adhered tissue sections were then mechanically detached by agitating the culture dishes. The tissue sections remained adherent for significantly longer (15.5 h) on the UV-treated disks than on the untreated control disks (7.5 h). A total of 94% of the tissue sections were adherent for 5 h or longer on the UV-treated disks, whereas only 50% of the sections remained on the control disks for 5 h. The adhesion strength of the tissue sections to the titanium disks, as measured by tensile testing, was six times greater after UV treatment. In the culture studies, mucosal fibroblasts extracted from rat palates were attached to titanium disks by incubating for 24, 48, or 96 h. The number of attached cells was consistently 15–30% greater on the UV-treated disks than on the control disks. The cells were then subjected to mechanical or chemical (trypsinization) detachment. After mechanical detachment, the residual cell rates on the UV-treated surfaces after 24 and 48 h of incubation were 35% and 25% higher, respectively, than those on the control surfaces. The remaining rate after chemical detachment was 74% on the control surface and 88% on the UV-treated surface for the cells cultured for 48 h. These trends were also confirmed in mouse embryonic fibroblasts, with an intense expression of vinculin, a focal adhesion protein, on the UV-treated disks even after detachment. The UV-treated titanium was superhydrophilic, whereas the control titanium was hydrophobic. X-ray photoelectron spectroscopy (XPS) chemical analysis revealed that the amount of carbon at the surface was significantly reduced after UV treatment, while the amount of TiOH molecules was increased. These ex vivo and in vitro results indicate that the UV treatment of titanium increases the adhesion and retention of oral mucosa connective tissue as a result of increased resistance of constituent fibroblasts against exogenous detachment, both mechanically and chemically, as well as UV-induced physicochemical changes of the titanium surface.
Collapse
|
9
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
10
|
Liu CF, Chang KC, Sun YS, Nguyen DT, Huang HH. Combining Sandblasting, Alkaline Etching, and Collagen Immobilization to Promote Cell Growth on Biomedical Titanium Implants. Polymers (Basel) 2021; 13:polym13152550. [PMID: 34372152 PMCID: PMC8347351 DOI: 10.3390/polym13152550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Our objective in this study was to promote the growth of bone cells on biomedical titanium (Ti) implant surfaces via surface modification involving sandblasting, alkaline etching, and type I collagen immobilization using the natural cross-linker genipin. The resulting surface was characterized in terms topography, roughness, wettability, and functional groups, respectively using field emission scanning electron microscopy, 3D profilometry, and attenuated total reflection-Fourier transform infrared spectroscopy. We then evaluated the adhesion, proliferation, initial differentiation, and mineralization of human bone marrow mesenchymal stem cells (hMSCs). Results show that sandblasting treatment greatly enhanced surface roughness to promote cell adhesion and proliferation and that the immobilization of type I collagen using genipin enhanced initial cell differentiation as well as mineralization in the extracellular matrix of hMSCs. Interestingly, the nano/submicro-scale pore network and/or hydrophilic features on sandblasted rough Ti surfaces were insufficient to promote cell growth. However, the combination of all proposed surface treatments produced ideal surface characteristics suited to Ti implant applications.
Collapse
Affiliation(s)
- Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
| | - Kai-Chun Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ying-Sui Sun
- School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan;
| | - Diem Thuy Nguyen
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-F.L.); (D.T.N.)
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei 103, Taiwan
- Correspondence: ; Tel.: +886-2-28267068
| |
Collapse
|