1
|
Lee Y, Cheng KC, Lin YM, Lu CC, Lee KC. Prognostic value of neutrophil-to-lymphocyte ratios pre- and post-surgery in stage III CRC: a study of 2,742 patients. Int J Colorectal Dis 2024; 39:206. [PMID: 39702682 PMCID: PMC11659361 DOI: 10.1007/s00384-024-04789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
PURPOSE Stage III colorectal cancer (CRC) is typically treated with surgery; however, it has a high recurrence rate and inconsistent benefits from postoperative chemotherapy. Inflammatory markers like the neutrophil-to-lymphocyte ratio (NLR) have shown prognostic value in various cancers. However, the prognostic significance of NLR measured before and after CRC surgery is not clear. This study aims to clarify the prognostic value of the combination of pre- and post-surgery NLR in stage III CRC patients. METHODS Patients with stage III CRC treated between 2001 and 2022 were retrospectively analyzed using data from the Chang Gung Medical Research Database. Patients were categorized into 4 groups based on their pre- and post-operative NLR levels. Kaplan-Meier survival analysis and Cox proportional hazard models were used to assess the associations between NLR levels and overall survival (OS), disease-free survival (DFS), and cancer-specific survival (CSS). RESULTS Data from 2,742 patients, median age of 62 years and 54% male, were analyzed. After adjustment, patients in Group IV, with high NLR values both before and after surgery, had greater risks of worse DFS (adjusted hazard ratio [aHR] = 1.30, 95% confidence interval [CI]: 1.13-1.50), OS (aHR = 1.36, 95% CI: 1.14-1.63), and CSS (aHR = 1.27, 95% CI: 1.04-1.55) compared to Group I. CONCLUSIONS High NLR levels before and after surgery is a strong predictor of poor outcomes in stage III CRC patients. The findings suggest that monitoring NLR at both time points can be a valuable prognostic tool, guiding postoperative care and treatment strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Yun Lee
- Division of Colon and Rectum Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Road, Niaosong District, Kaohsiung City, 833401, Taiwan
- Division of Colon and Rectum Surgery, Department ofSurgery, Kaohsiung Municipal Feng-Shan Hospital, No.42, Jingwu Road., Fengshan District, Kaohsiung City, 83062, Taiwan
| | - Kung-Chuan Cheng
- Division of Colon and Rectum Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Road, Niaosong District, Kaohsiung City, 833401, Taiwan.
- Division of Colon and Rectum Surgery, Department ofSurgery, Kaohsiung Municipal Feng-Shan Hospital, No.42, Jingwu Road., Fengshan District, Kaohsiung City, 83062, Taiwan.
| | - Yueh-Ming Lin
- Division of Colon and Rectum Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Road, Niaosong District, Kaohsiung City, 833401, Taiwan
- Division of Colon and Rectum Surgery, Department ofSurgery, Kaohsiung Municipal Feng-Shan Hospital, No.42, Jingwu Road., Fengshan District, Kaohsiung City, 83062, Taiwan
| | - Chien-Chang Lu
- Division of Colon and Rectum Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Road, Niaosong District, Kaohsiung City, 833401, Taiwan
| | - Ko-Chao Lee
- Division of Colon and Rectum Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, No.123, Dapi Road, Niaosong District, Kaohsiung City, 833401, Taiwan
- Division of Colon and Rectum Surgery, Department ofSurgery, Kaohsiung Municipal Feng-Shan Hospital, No.42, Jingwu Road., Fengshan District, Kaohsiung City, 83062, Taiwan
| |
Collapse
|
2
|
Semba T, Ishimoto T. Spatial analysis by current multiplexed imaging technologies for the molecular characterisation of cancer tissues. Br J Cancer 2024; 131:1737-1747. [PMID: 39438630 PMCID: PMC11589153 DOI: 10.1038/s41416-024-02882-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Tumours are composed of tumour cells and the surrounding tumour microenvironment (TME), and the molecular characterisation of the various elements of the TME and their interactions is essential for elucidating the mechanisms of tumour progression and developing better therapeutic strategies. Multiplex imaging is a technique that can quantify the expression of multiple protein markers on the same tissue section while maintaining spatial positioning, and this method has been rapidly developed in cancer research in recent years. Many multiplex imaging technologies and spatial analysis methods are emerging, and the elucidation of their principles and features is essential. In this review, we provide an overview of the latest multiplex imaging techniques by type of imaging and staining method and an introduction to image analysis methods, primarily focusing on spatial cellular properties, providing deeper insight into tumour organisation and spatial molecular biology in the TME.
Collapse
Affiliation(s)
- Takashi Semba
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Takatsugu Ishimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.
| |
Collapse
|
3
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JH. Spatial effects of infiltrating T cells on neighbouring cancer cells and prognosis in stage III CRC patients. J Pathol 2024; 264:148-159. [PMID: 39092716 DOI: 10.1002/path.6327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 08/04/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single-cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil (5FU)-based chemotherapy. Images underwent segmentation for tumour, stroma, and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell-T-cell interactions at single-cell level. In our discovery cohort (Memorial Sloan Kettering samples), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (Huntsville Clearview Cancer Center samples) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between the percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (discovery cohort: p = 0.07; validation cohort: p = 0.19). We next utilised our region-based nearest neighbour approach to determine the spatial relationships between cytotoxic T cells, helper T cells, and cancer cell clusters. In both cohorts, we found that shorter distance between cytotoxic T cells, T helper cells, and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (discovery cohort: p = 0.01; validation cohort: p = 0.003). © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Canan Firat
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Nil Urganci
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, New York, NY, USA
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center (formerly GE Research Center), Niskayuna, NY, USA
| | - Jochen Hm Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Kazemi A, Rasouli-Saravani A, Gharib M, Albuquerque T, Eslami S, Schüffler PJ. A systematic review of machine learning-based tumor-infiltrating lymphocytes analysis in colorectal cancer: Overview of techniques, performance metrics, and clinical outcomes. Comput Biol Med 2024; 173:108306. [PMID: 38554659 DOI: 10.1016/j.compbiomed.2024.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
The incidence of colorectal cancer (CRC), one of the deadliest cancers around the world, is increasing. Tissue microenvironment (TME) features such as tumor-infiltrating lymphocytes (TILs) can have a crucial impact on diagnosis or decision-making for treating patients with CRC. While clinical studies showed that TILs improve the host immune response, leading to a better prognosis, inter-observer agreement for quantifying TILs is not perfect. Incorporating machine learning (ML) based applications in clinical routine may promote diagnosis reliability. Recently, ML has shown potential for making progress in routine clinical procedures. We aim to systematically review the TILs analysis based on ML in CRC histological images. Deep learning (DL) and non-DL techniques can aid pathologists in identifying TILs, and automated TILs are associated with patient outcomes. However, a large multi-institutional CRC dataset with a diverse and multi-ethnic population is necessary to generalize ML methods.
Collapse
Affiliation(s)
- Azar Kazemi
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Institute of General and Surgical Pathology, Technical University of Munich, Munich, Germany.
| | - Ashkan Rasouli-Saravani
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Gharib
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Saeid Eslami
- Department of Medical Informatics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Informatics, University of Amsterdam, Amsterdam, the Netherlands.
| | - Peter J Schüffler
- Institute of General and Surgical Pathology, Technical University of Munich, Munich, Germany; TUM School of Computation, Information and Technology, Technical University of Munich, Munich, Germany; Munich Center for Machine Learning, Munich, Germany; Munich Data Science Institute, Munich, Germany.
| |
Collapse
|
7
|
Azimi M, Cho S, Bozkurt E, McDonough E, Kisakol B, Matveeva A, Salvucci M, Dussmann H, McDade S, Firat C, Urganci N, Shia J, Longley DB, Ginty F, Prehn JHM. Spatial Effects of Infiltrating T cells on Neighbouring Cancer Cells and Prognosis in Stage III CRC patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.30.577720. [PMID: 38352309 PMCID: PMC10862776 DOI: 10.1101/2024.01.30.577720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2024]
Abstract
Colorectal cancer (CRC) is one of the most frequently occurring cancers, but prognostic biomarkers identifying patients at risk of recurrence are still lacking. In this study, we aimed to investigate in more detail the spatial relationship between intratumoural T cells, cancer cells, and cancer cell hallmarks, as prognostic biomarkers in stage III colorectal cancer patients. We conducted multiplexed imaging of 56 protein markers at single cell resolution on resected fixed tissue from stage III CRC patients who received adjuvant 5-fluorouracil-based chemotherapy. Images underwent segmentation for tumour, stroma and immune cells, and cancer cell 'state' protein marker expression was quantified at a cellular level. We developed a Python package for estimation of spatial proximity, nearest neighbour analysis focusing on cancer cell - T cell interactions at single-cell level. In our discovery cohort (MSK), we processed 462 core samples (total number of cells: 1,669,228) from 221 adjuvant 5FU-treated stage III patients. The validation cohort (HV) consisted of 272 samples (total number of cells: 853,398) from 98 stage III CRC patients. While there were trends for an association between percentage of cytotoxic T cells (across the whole cancer core), it did not reach significance (Discovery cohort: p = 0.07, Validation cohort: p = 0.19). We next utilized our region-based nearest neighbourhood approach to determine the spatial relationships between cytotoxic T cells, helper T cells and cancer cell clusters. In the both cohorts, we found that lower distance between cytotoxic T cells, T helper cells and cancer cells was significantly associated with increased disease-free survival. An unsupervised trained model that clustered patients based on the median distance between immune cells and cancer cells, as well as protein expression profiles, successfully classified patients into low-risk and high-risk groups (Discovery cohort: p = 0.01, Validation cohort: p = 0.003).
Collapse
Affiliation(s)
- Mohammadreza Azimi
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Emir Bozkurt
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Elizabeth McDonough
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Batuhan Kisakol
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Manuela Salvucci
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Heiko Dussmann
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Simon McDade
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | | | | | - Jinru Shia
- Memorial Sloan Kettering Cancer Centre, NY
| | - Daniel B Longley
- School of Medicine, Dentistry and Biomedical Sciences, Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA (formerly GE Research Center)
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, RCSI Centre for Systems Medicine, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin 2, Ireland
| |
Collapse
|
8
|
Chadwick C, De Jesus M, Ginty F, Martinez JS. Pathobiology of Candida auris infection analyzed by multiplexed imaging and single cell analysis. PLoS One 2024; 19:e0293011. [PMID: 38232081 DOI: 10.1371/journal.pone.0293011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Accepted: 10/03/2023] [Indexed: 01/19/2024] Open
Abstract
Fungal organisms contribute to significant human morbidity and mortality and Candida auris (C. auris) infections are of utmost concern due to multi-drug resistant strains and persistence in critical care and hospital settings. Pathogenesis and pathology of C. auris is still poorly understood and in this study, we demonstrate how the use of multiplex immunofluorescent imaging (MxIF) and single-cell analysis can contribute to a deeper understanding of fungal infections within organs. We used two different neutrophil depletion murine models (treated with either 1A8-an anti-Ly6G antibody, or RB6-8C5-an anti-Ly6G/Ly6C antibody; both 1A8 and RB6-8C5 antibodies have been shown to deplete neutrophils) and compared to wildtype, non-neutropenic mice. Following pathologist assessment, fixed samples underwent MxIF imaging using a C. albicans antibody (shown to be cross-reactive to C. auris) and immune cell biomarkers-CD3 (T cells), CD68 (macrophages), B220 (B cells), CD45 (monocytes), and Ly6G (neutrophils) to quantify organ specific immune niches. MxIF analysis highlighted the heterogenous distribution of C. auris infection within heart, kidney, and brain 7 days post-infection. Size and number of fungal abscesses was greatest in the heart and lowest in brain. Infected mice had an increased count of CD3+, CD68+, B220+, and CD45+ immune cells, concentrated around C. auris abscesses. CD68+ cells were predominant in wildtype (non-neutropenic mice) and CD3+/CD45+ cells were predominant in neutropenic mice, with B cells being the least abundant. These findings suggest a Th2 driven immune response in neutropenic C. auris infection mice models. This study demonstrates the value of MxIF to broaden understanding of C. auris pathobiology, and mechanistic understanding of fungal infections.
Collapse
Affiliation(s)
| | - Magdia De Jesus
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, United States of America
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Fiona Ginty
- GE Research, Niskayuna, New York, United States of America
| | | |
Collapse
|
9
|
Alzamami A. Implications of single-cell immune landscape of tumor microenvironment for the colorectal cancer diagnostics and therapy. Med Oncol 2023; 40:352. [PMID: 37950801 DOI: 10.1007/s12032-023-02226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 11/13/2023]
Abstract
Colorectal cancer (CRC) originates from the polyps lining the colon and is among the most common types of cancer. With the increasing popularity of single-cell sequencing technologies, researchers have been able to better understand the immune landscape of colorectal cancer, by analyzing their expression and interactions in detail with the tumor microenvironment (TME) at single-cell level. Since the tumor-immune cell interactions play a critical part in the advancement as well as treatment response in colorectal cancer, the release of inhibitory factors such as T cells are important for recognizing and destroying cancer cells. Such information is vital to identify immunotherapeutic targets for cure and monitoring response to treatments. Therefore, a comprehensive single-cell studies-based overview of key immunogenic agents regulating the TME of CRC is provided in this review. Tumor-associated macrophages can promote tumor growth and resistance to treatment by releasing factors that inhibit the function of other immune cells. Additionally, colorectal cancer cells can express programmed cell death protein 1 and its ligand, which can also inhibit T-cell function. Researchers have found that certain types of immune cells, prominently T cells, natural killer, and dendritic cells, can have a positive impact on the prognosis of colorectal cancer patients. Treatments like immune checkpoint inhibitors and CAR-T therapies that help to release the inhibitory signals from the cancer cells allow the immune cells to function more effectively.
Collapse
Affiliation(s)
- Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, 11961, Al-Quwayiyah, Saudi Arabia.
| |
Collapse
|
10
|
Tarín-Nieto A, Solano-Iturri JD, Arrieta-Aguirre I, Valdivia A, Etxezarraga MC, Loizate A, López JI, Larrinaga G. Fibroblast Activation Protein-α (FAP) Identifies Stromal Invasion in Colorectal Neoplasia. Am J Surg Pathol 2023; 47:1027-1033. [PMID: 37366169 DOI: 10.1097/pas.0000000000002075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/28/2023]
Abstract
The increasing detection of colorectal adenomas and early adenocarcinomas (ADCs) in the context of nationwide screening programs has led to a significant increase in the incidence of inconclusive diagnoses in which histopathologic analysis of endoscopic biopsies does not allow pathologists to provide a reliable diagnosis of stromal invasion. The objective of this study was to analyze the discriminative capacity of the immunohistochemical expression of fibroblast activation protein-α (FAP) in distinguishing colorectal adenomas with low-grade dysplasia (LGD) and high-grade dysplasia (HGD) from invasive intestinal-type ADCs. The study analyzed the first endoscopic biopsies from a series of patients classified as inconclusive or conclusive for stromal invasion based on the pathologic report. In total, 30 ADCs, 52 HGDs, and 15 LGDs were included in the study. FAP expression was detected in 23/30 ADCs and was negative in all adenomas with either LGD or HGD features (100% specificity and 76.7% sensitivity, area under the curve=0.883, CI=0.79-0.98). Considering these findings, we conclude that FAP is a potentially useful tool for helping pathologists identify invasive lesions in colorectal endoscopic biopsies, avoiding unnecessary biopsy repetitions.
Collapse
Affiliation(s)
| | - Jon D Solano-Iturri
- Department of Anatomic Pathology, Cruces University Hospital, Cruces (Barakaldo)
- Biocruces-Bizkaia Health Research Institute, Barakaldo
| | | | | | | | - Alberto Loizate
- Department of Surgery, Basurto University Hospital, University of the Basque Country (UPV/EHU), Bilbao
| | - José I López
- Biocruces-Bizkaia Health Research Institute, Barakaldo
| | - Gorka Larrinaga
- Biocruces-Bizkaia Health Research Institute, Barakaldo
- Departments of Nursing
- Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Bizkaia Province, Spain
| |
Collapse
|
11
|
Andhari MD, Antoranz A, De Smet F, Bosisio FM. Recent advancements in tumour microenvironment landscaping for target selection and response prediction in immune checkpoint therapies achieved through spatial protein multiplexing analysis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 382:207-237. [PMID: 38225104 DOI: 10.1016/bs.ircmb.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2024]
Abstract
Immune checkpoint therapies have significantly advanced cancer treatment. Nevertheless, the high costs and potential adverse effects associated with these therapies highlight the need for better predictive biomarkers to identify patients who are most likely to benefit from treatment. Unfortunately, the existing biomarkers are insufficient to identify such patients. New high-dimensional spatial technologies have emerged as a valuable tool for discovering novel biomarkers by analysing multiple protein markers at a single-cell resolution in tissue samples. These technologies provide a more comprehensive map of tissue composition, cell functionality, and interactions between different cell types in the tumour microenvironment. In this review, we provide an overview of how spatial protein-based multiplexing technologies have fuelled biomarker discovery and advanced the field of immunotherapy. In particular, we will focus on how these technologies contributed to (i) characterise the tumour microenvironment, (ii) understand the role of tumour heterogeneity, (iii) study the interplay of the immune microenvironment and tumour progression, (iv) discover biomarkers for immune checkpoint therapies (v) suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Madhavi Dipak Andhari
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Asier Antoranz
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; The Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Francesca Maria Bosisio
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
12
|
Song Q, Ruffalo M, Bar-Joseph Z. Using single cell atlas data to reconstruct regulatory networks. Nucleic Acids Res 2023; 51:e38. [PMID: 36762475 PMCID: PMC10123116 DOI: 10.1093/nar/gkad053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
Inference of global gene regulatory networks from omics data is a long-term goal of systems biology. Most methods developed for inferring transcription factor (TF)-gene interactions either relied on a small dataset or used snapshot data which is not suitable for inferring a process that is inherently temporal. Here, we developed a new computational method that combines neural networks and multi-task learning to predict RNA velocity rather than gene expression values. This allows our method to overcome many of the problems faced by prior methods leading to more accurate and more comprehensive set of identified regulatory interactions. Application of our method to atlas scale single cell data from 6 HuBMAP tissues led to several validated and novel predictions and greatly improved on prior methods proposed for this task.
Collapse
Affiliation(s)
- Qi Song
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Matthew Ruffalo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
13
|
Einhaus J, Rochwarger A, Mattern S, Gaudillière B, Schürch CM. High-multiplex tissue imaging in routine pathology-are we there yet? Virchows Arch 2023; 482:801-812. [PMID: 36757500 PMCID: PMC10156760 DOI: 10.1007/s00428-023-03509-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/02/2023] [Revised: 01/22/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
High-multiplex tissue imaging (HMTI) approaches comprise several novel immunohistological methods that enable in-depth, spatial single-cell analysis. Over recent years, studies in tumor biology, infectious diseases, and autoimmune conditions have demonstrated the information gain accessible when mapping complex tissues with HMTI. Tumor biology has been a focus of innovative multiparametric approaches, as the tumor microenvironment (TME) contains great informative value for accurate diagnosis and targeted therapeutic approaches: unraveling the cellular composition and structural organization of the TME using sophisticated computational tools for spatial analysis has produced histopathologic biomarkers for outcomes in breast cancer, predictors of positive immunotherapy response in melanoma, and histological subgroups of colorectal carcinoma. Integration of HMTI technologies into existing clinical workflows such as molecular tumor boards will contribute to improve patient outcomes through personalized treatments tailored to the specific heterogeneous pathological fingerprint of cancer, autoimmunity, or infection. Here, we review the advantages and limitations of existing HMTI technologies and outline how spatial single-cell data can improve our understanding of pathological disease mechanisms and determinants of treatment success. We provide an overview of the analytic processing and interpretation and discuss how HMTI can improve future routine clinical diagnostic and therapeutic processes.
Collapse
Affiliation(s)
- Jakob Einhaus
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Alexander Rochwarger
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Sven Mattern
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brice Gaudillière
- Department of Anaesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany.
| |
Collapse
|
14
|
López‐Janeiro Á, Villalba‐Esparza M, Brizzi ME, Jiménez‐Sánchez D, Ruz‐Caracuel I, Kadioglu E, Masetto I, Goubert V, Garcia‐Ros D, Melero I, Peláez‐García A, Hardisson D, de Andrea CE. The association between the tumor immune microenvironments and clinical outcome in low-grade, early-stage endometrial cancer patients. J Pathol 2022; 258:426-436. [PMID: 36169332 PMCID: PMC9828119 DOI: 10.1002/path.6012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 01/19/2023]
Abstract
Endometrial tumors show substantial heterogeneity in their immune microenvironment. This heterogeneity could be used to improve the accuracy of current outcome prediction tools. We assessed the immune microenvironment of 235 patients diagnosed with low-grade, early-stage endometrial cancer. Multiplex quantitative immunofluorescence was carried out to measure CD8, CD68, FOXP3, PD-1, and PD-L1 markers, as well as cytokeratin (CK), on tissue microarrays. Clustering results revealed five robust immune response patterns, each associated with specific immune populations, cell phenotypes, and cell spatial clustering. Most samples (69%) belonged to the immune-desert subtype, characterized by low immune cell densities. Tumor-infiltrating lymphocyte (TIL)-rich samples (4%) displayed high CD8+ T-cell infiltration, as well as a high percentage of CD8/PD-1+ cells. Immune-exclusion samples (19%) displayed the lowest CD8+ infiltration combined with high PD-L1 expression levels in CK+ tumor cells. In addition, they demonstrated high tumor cell spatial clustering as well as increased spatial proximity of CD8+ /PD-1+ and CK/PD-L1+ cells. FOXP3 and macrophage-rich phenotypes (3% and 4% of total samples) displayed relatively high levels of FOXP3+ regulatory T-cells and CD68+ macrophages, respectively. These phenotypes correlated with clinical outcomes, with immune-exclusion tumors showing an association with tumor relapse. When compared with prediction models built using routine pathological variables, models optimized with immune variables showed increased outcome prediction capacity (AUC = 0.89 versus 0.78) and stratification potential. The improved prediction capacity was independent of mismatch repair protein status and adjuvant radiotherapy treatment. Further, immunofluorescence results could be partially recapitulated using single-marker immunohistochemistry (IHC) performed on whole tissue sections. TIL-rich tumors demonstrated increased CD8+ T-cells by IHC, while immune-exclusion tumors displayed a lack of CD8+ T-cells and frequent expression of PD-L1 in tumor cells. Our results demonstrate the capability of the immune microenvironment to improve standard prediction tools in low-grade, early-stage endometrial carcinomas. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Álvaro López‐Janeiro
- Department of PathologyHospital Universitario La Paz, IdiPAZMadridSpain,Present address:
Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | - María Villalba‐Esparza
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| | | | - Daniel Jiménez‐Sánchez
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | | | | | | | | | - David Garcia‐Ros
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain
| | - Ignacio Melero
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain,Department of Immunology and ImmunotherapyClínica Universidad de NavarraPamplonaSpain,Program of Immunology and ImmunotherapyCIMA Universidad de NavarraPamplonaSpain
| | - Alberto Peláez‐García
- Molecular Pathology and Therapeutic Targets GroupLa Paz University Hospital (IdiPAZ)MadridSpain
| | - David Hardisson
- Department of PathologyHospital Universitario La Paz, IdiPAZMadridSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain,Molecular Pathology and Therapeutic Targets GroupLa Paz University Hospital (IdiPAZ)MadridSpain,Faculty of MedicineUniversidad Autónoma de MadridMadridSpain
| | - Carlos E de Andrea
- Department of Pathology, Clínica Universidad de NavarraUniversity of NavarraPamplonaSpain,Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC)Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
15
|
Millian DE, Saldarriaga OA, Wanninger T, Burks JK, Rafati YN, Gosnell J, Stevenson HL. Cutting-Edge Platforms for Analysis of Immune Cells in the Hepatic Microenvironment-Focus on Tumor-Associated Macrophages in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:1861. [PMID: 35454766 PMCID: PMC9026790 DOI: 10.3390/cancers14081861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
The role of tumor-associated macrophages (TAMs) in the pathogenesis of hepatocellular carcinoma (HCC) is poorly understood. Most studies rely on platforms that remove intrahepatic macrophages from the microenvironment prior to evaluation. Cell isolation causes activation and phenotypic changes that may not represent their actual biology and function in situ. State-of-the-art methods provides new strategies to study TAMs without losing the context of tissue architecture and spatial relationship with neighboring cells. These technologies, such as multispectral imaging (e.g., Vectra Polaris), mass cytometry by time-of-flight (e.g., Fluidigm CyTOF), cycling of fluorochromes (e.g., Akoya Biosciences CODEX/PhenoCycler-Fusion, Bruker Canopy, Lunaphore Comet, and CyCIF) and digital spatial profiling or transcriptomics (e.g., GeoMx or Visium, Vizgen Merscope) are being utilized to accurately assess the complex cellular network within the tissue microenvironment. In cancer research, these platforms enable characterization of immune cell phenotypes and expression of potential therapeutic targets, such as PDL-1 and CTLA-4. Newer spatial profiling platforms allow for detection of numerous protein targets, in combination with whole transcriptome analysis, in a single liver biopsy tissue section. Macrophages can also be specifically targeted and analyzed, enabling quantification of both protein and gene expression within specific cell phenotypes, including TAMs. This review describes the workflow of each platform, summarizes recent research using these approaches, and explains the advantages and limitations of each.
Collapse
Affiliation(s)
- Daniel E. Millian
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.E.M.); (O.A.S.); (J.G.)
| | - Omar A. Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.E.M.); (O.A.S.); (J.G.)
| | - Timothy Wanninger
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Jared K. Burks
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Yousef N. Rafati
- School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Joseph Gosnell
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.E.M.); (O.A.S.); (J.G.)
| | - Heather L. Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.E.M.); (O.A.S.); (J.G.)
| |
Collapse
|
16
|
Predictors associated with planned and unplanned admission to intensive care units after colorectal cancer surgery: a retrospective study. Support Care Cancer 2022; 30:5099-5105. [DOI: 10.1007/s00520-022-06939-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/18/2021] [Accepted: 02/24/2022] [Indexed: 12/19/2022]
|