1
|
Chen X, Gao Y, Qi Y, Li J, Hu TY, Chen Z, Zhu JJ. Label-Free Raman Probing of the Intrinsic Electric Field for High-Efficiency Screening of Electricity-Producing Bacteria at the Single-Cell Level. Angew Chem Int Ed Engl 2025; 64:e202416011. [PMID: 39439277 DOI: 10.1002/anie.202416011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
The fabrication of high-performance microbial fuel cells requires the evaluation of the activity of electrochemically active bacteria. However, this is challenging because of the time-consuming nature of biofilm formation and the invasive nature of labeling. To address this issue, we developed a fast, label-free, single-cell Raman spectroscopic method. This method involves investigating the "pure" linear Stark effect of endogenous CO in the silent region of biological samples, which allows for probing the intrinsic electric field in the outer-membrane cytochromes of live bacterial cells. We found that reduced outer-membrane cytochromes can generate an additional intrinsic electric field equivalent to an applied potential of +0.29 V. We also found that the higher the electrical activity of the cell, the larger the generated electric field. This was also reflected in the output current of the constructed microbial fuel cells. Raman spectroscopy was employed to facilitate the assessment of electrochemical activity at the single-cell level in highly-diluted bacterial samples. After analysis, inactive bacteria were ablated by laser heating, and 20 active cells were cultured for further testing. The rapid and high-throughput probing of the intrinsic electric field offers a promising platform for high-efficiency screening of electrochemically active bacterial cells for bioenergetic and photosynthetic research.
Collapse
Affiliation(s)
- Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Yan Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yongbing Qi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jinxiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Tony Y Hu
- Center for Cellular and Molecular Diagnostics and Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA-70112, US
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | | |
Collapse
|
2
|
Tang J, Li Z, Xiao X, Liu B, Huang W, Xie Q, Lan C, Luo S, Tang L. Recent advancements in antibiotics removal by bio-electrochemical systems (BESs): From mechanisms to application of emerging combined systems. WATER RESEARCH 2025; 268:122683. [PMID: 39476544 DOI: 10.1016/j.watres.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/05/2024] [Accepted: 10/21/2024] [Indexed: 12/13/2024]
Abstract
Recent advancements in bio-electrochemical systems (BESs) for antibiotic removal are receiving great attentions due to the electro-active bacteria on the electrode that could elevate the removal efficiency. Enhanced detoxification performance of BESs compared to the traditional biological processes indicates the great potential serving as a sustainable alternative or a pre-/post-processing unit to improve the performance of biological processes. However, the successfully application of BESs to antibiotic-polluted water remediation requires a deeper discussion on their operational performance and emerging coupled systems. In order to address BESs as a practical option for antibiotic removal, we deeply analyze the detoxification mechanism of antibiotic treatment by BESs, involving BES fundamentals, extracellular electron transfer and degradation pathways via functional enzymes of microorganisms, followed by systematic evaluations of the operational conditions. Furthermore, the recently-emerged BESs combined with other techniques for practical applications has been summarized and emphasized. This review further directions the current limitations such as the potential risk of antibiotic resistance genes, etc., and prospects for the attenuation of antibiotics via BESs related techniques, promoting the development of practical application.
Collapse
Affiliation(s)
- Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| | - Zijun Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Xinxin Xiao
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark
| | - Baicheng Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
| | - Wei Huang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qingqing Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Shuai Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, Hunan, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, Hunan, China.
| |
Collapse
|
3
|
Yan X, Peng P, Li X, Zhou X, Chen L, Zhao F. Unlocking anaerobic digestion potential via extracellular electron transfer by exogenous materials: Current status and perspectives. BIORESOURCE TECHNOLOGY 2025; 416:131734. [PMID: 39489312 DOI: 10.1016/j.biortech.2024.131734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The efficiency of energy transfer among microorganisms presents a substantial hurdle for the widespread implementation of anaerobic digestion techniques. Nonetheless, recent studies have demonstrated that enhancing the extracellular electron transfer (EET) can markedly enhance this efficiency. This review highlights recent advancements in EET for anaerobic digestion and examines the contribution of external additives to fostering enhanced efficiency within this context. Diverse mechanisms through which additives are employed to improve EET in anaerobic environments are delineated. Furthermore, specific strategies for effectively regulating EET are proposed, aiming to augment methane production from anaerobic digestion. This review thus offers a perspective on future research directions aimed at optimizing waste resources, enhancing methane production efficiency, and improving process predictability in anaerobic digestion.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Xudong Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
4
|
Xiao X, Zhuang Z, Yin S, Zhu J, Gan T, Yu R, Wu J, Tian X, Jiang Y, Wang D, Zhao F. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat Commun 2024; 15:10758. [PMID: 39737987 DOI: 10.1038/s41467-024-55041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeN5-xOx (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis. A comparative analysis involving catalysts derived from eleven representative microbes reveals that the presence of 0.05 wt% Fe single-atom sites leads to a significant 26% increase in hydrogen peroxide selectivity. Remarkably, the optimal catalyst featuring FeN3O2 sites demonstrates a selectivity of up to 93.7% and generates hydrogen peroxide in a flow cell at an impressive rate of 29.6 mol g-1 h-1 at 200 mA cm-2. This work achieves structural fine-tuning of metal single-atom sites at the trace level and provides topological insights into single-atom catalyst design to achieve cost-efficient hydrogen peroxide production.
Collapse
Affiliation(s)
- Xiaofeng Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Shuhu Yin
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Xiaochun Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yanxia Jiang
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
5
|
Zhao M, Lin M, Guo G, Xia Y. Polarity-Targeted Carbon Dots for Mitochondria and Lysosomes Imaging. Anal Chem 2024; 96:20169-20178. [PMID: 39540385 DOI: 10.1021/acs.analchem.4c03799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Normally, electrostatic-dependent mitochondria localization can cause a decrease/loss of mitochondrial membrane potential (MMP), leading to the corresponding abnormal behaviors. So, achieving subcellular organelle localization and imaging with as little interference on their physiological activity is of significance for understanding cell activity. Herein, we discover and demonstrate that "polarity" can independently act as a novel kind of target for labeling at the organelle level. On this basis, mitochondria and lysosomes are precisely fluorescently imaged by two kinds of polarity-targeted carbon dots (C-dots), respectively. The two C-dots, named C-dots-1 and C-dots-2, have almost identical size and morphology as well as surface chemistry. The subtle difference is their polarity property: both of them are amphiphilic, with 1.54 and 0.95 for the log P values. Different from commonly used cationic-based organelle probes, both of the two C-dots possess slightly negatively charged surfaces (ζ-potential values ∼ -2.5 to -7.5 mV) at physiological conditions. Interestingly, the C-dots-1 and C-dots-2 have the capacity for highly selectively labeling and imaging mitochondria and lysosomes, whether cancer cells or normal cells. Because the targeting processes do not rely on electrostatic attraction effects, the MMP is not changed during localization processes. So, the corresponding cell abnormal behaviors caused by MMP diminishing, for example, the autophagy phenomenon, can be effectively avoided.
Collapse
Affiliation(s)
- Mengzhe Zhao
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Mengyao Lin
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Ge Guo
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yunsheng Xia
- Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
6
|
Luo Y, Jia X, Wu X, Diao L, Zhao Y, Liu X, Peng Y, Zhong W, Xing M, Lyu G. Bacteria-activated macrophage membrane coated ROS-responsive nanoparticle for targeted delivery of antibiotics to infected wounds. J Nanobiotechnology 2024; 22:781. [PMID: 39702152 DOI: 10.1186/s12951-024-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/30/2024] [Indexed: 12/21/2024] Open
Abstract
Bacterial infections and antibiotic resistance represent significant global public health challenges, necessitating the development of innovative antibacterial agents with targeted delivery capabilities. Our study utilized macrophages' natural ability to recognize bacteria and the increased reactive oxygen species (ROS) at infection sites to develop a novel nanoparticle for targeted delivery and controlled release. We prepared bacteria-activated macrophage membranes triggered by Staphylococcus aureus (Sa-MMs), which showed significantly higher expression of Toll-like receptors (TLRs), compared to normal macrophage membranes (MMs). These Sa-MMs were then used to coat vancomycin-loaded amphiphilic nanoparticles with ROS responsiveness (Van-NPs), resulting in the novel targeted delivery system Sa-MM@Van-NPs. Studies both In vitro and in vivo demonstrated that biocompatible Sa-MM@Van-NPs efficiently targeted infected sites and released vancomycin to eliminate bacteria, facilitating faster wound healing. By combining targeted delivery to infected sites and ROS-responsive antibiotic release, this approach might represent a robust strategy for precise infection eradication and enhanced wound healing.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaoli Jia
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xiaozhuo Wu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ling Diao
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xing Liu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yi Peng
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi, 214000, China.
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi, 214000, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
- National Research Center for Emergency Medicine, Beijing, 100000, China.
| |
Collapse
|
7
|
Zhang Y, Zhu J, Zhao J, Wang X, Wei T, Gao T. A single-microbe living bioelectronic sensor for intracellular amperometric analysis. Biosens Bioelectron 2024; 265:116648. [PMID: 39178718 DOI: 10.1016/j.bios.2024.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
Subcellularly amperometric analysis in situ is crucial for understanding intracellular redox biochemistry and subcellular heterogeneity. Unfortunately, the ultra-small size and complex microenvironment inside the cell pose a great challenge to achieve this goal. To address the challenge, a minimized living microbial sensor has been fabricated in this work for amperometric analysis. Here, by fabricating the dimidiate microelectrode as the working electrode, while fitting a living electroactive bacterium (EAB) as the transducer, outward extracellular electron transfer (EET) of the sensory EAB is correlated with the concentration of lactic acid, which is electrochemically recorded and thus displays an electrical signal output for detection. In specific, the S. oneidensis modified dimidiate microelectrode (S.O.@GNE-NPE) acts as an integrated electroanalytical device to generate the electrical signal in situ. The established microcircuit provides unprecedented precision and sensitivity, contributing to subcellular amperometric measurement. The microbial sensor shows a linear response in the concentration range of 0-60 mM, with a limit of detection (LOD) at 0.3 mM. The microsensor also demonstrates good selectivity against interferences. Additionally, intracellular analysis of lactic acid provides direct evidence of enhanced lactic metabolism in cancer cells as a result of "Warburg Effect". This work shows an example of nano-, bio- and electric technologies that have been integrated on the EAB-modified dimidiate microelectrode, and achieves intracellular biosensing application through such integration. It may give a new strategy on the combination of micro/nanotechnologies with sensory EAB for the necessary development of bioelectronic devices.
Collapse
Affiliation(s)
- Yixin Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jinming Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaojun Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tianxiang Wei
- School of Environment, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Li Q, Lu H, Tian T, Zhang H, Cheng F, Li X, Sun H, Wang X, Zhou J. Bifunctional sludge-derived redox carbon dots with photoelectron storage and delivery properties for ammonia production by photosensitized Shewanella oneidensis MR-1. BIORESOURCE TECHNOLOGY 2024; 413:131539. [PMID: 39332696 DOI: 10.1016/j.biortech.2024.131539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Combining the light-harvesting capabilities of photosensitizers with microbial catalysis shows great potential in solar-driven biomanufacturing. However, little information is available about the effects of photosensitizers on the photoelectron transport during the dissimilatory nitrate reduction to ammonium (DNRA) process. Herein, redox carbon dots (CDs-500) were prepared from sludge via the pyrolysis-Fenton reaction and then used to construct a photosynthetic system with Shewanella oneidensis MR-1. The MR-1/CDs-500 photosynthetic system showed a 5.9-fold increase in ammonia production (4.9 mmol(NH3)·g-1(protein)·h-1) with a high selectivity of 94.0 %. The photoelectrons were found to be stored in CDs-500 and transferred into the cells. During the inward electron transport, the intracellular CDs-500 could be used as the direct photoelectron transfer stations between outer membrane cytochrome c and DNRA-related enzymes without the involvement of CymA and MtrA. This work provides a new method for converting waste into functional catalysts and increases solar-driven NH3 production to a greater extent.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haikun Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Fanghao Cheng
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaoman Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haocheng Sun
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian 116045, China.
| | - Xuehai Wang
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian 116045, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
9
|
Wurst R, Klein E, Gescher J. Magnetic, conductive nanoparticles as building blocks for steerable micropillar-structured anodic biofilms. Biofilm 2024; 8:100226. [PMID: 39830520 PMCID: PMC11740803 DOI: 10.1016/j.bioflm.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 01/22/2025] Open
Abstract
In bioelectrochemical systems (BES), biofilm formation and architecture are of crucial importance, especially for flow-through applications. The interface between electroactive microorganisms and the electrode surface plays an important and often limiting role, as the available surface area influences current generation, especially for poor biofilm forming organisms. To overcome the limitation of the available electrode surface, nanoparticles (NPs) with a magnetic iron core and a conductive, hydrophobic carbon shell were used as building blocks to form conductive, magnetic micropillars on the anode surface. The formation of this dynamic three-dimensional electrode architecture was monitored and quantified in situ using optical coherence tomography (OCT) in conjunction with microfluidic BES systems. By cyclic voltammetry the assembled three-dimensional anode extensions were found to be electrically conductive and increased the available electroactive surface area. The NPs were used as controllable carriers for the electroactive model organisms Shewanella oneidensis and Geobacter sulfurreducens, resulting in a 5-fold increase in steady-state current density for S. oneidensis, which could be increased 22-fold when combined with Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) aggregates. In the case of G. sulfurreducens, the steady-state current density was not increased, but was achieved four times faster. The study presents a controllable, scalable and easy-to-use method to increase the electrode surface area in existing BES by applying a magnetic field and adding conductive magnetic NPs. These findings can most likely also be transferred to other electroactive microorganisms.
Collapse
Affiliation(s)
- René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Edina Klein
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Hu J, Zeng C, Liu G, Luo H. Nitrogen-doped carbon dots boost microbial electrosynthesis via efficient extracellular electron uptake of acetogens. BIORESOURCE TECHNOLOGY 2024; 412:131390. [PMID: 39222860 DOI: 10.1016/j.biortech.2024.131390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
This study investigated the molecular mechanism behind the highly efficient performance of nitrogen-doped carbon dots (NCDs)-assisted microbial electrosynthesis systems (MESs). The impact of NCDs (C:N precursor = 1:0.5-1:3) on acetogens was examined in the biocathode. The highest electrocatalytic performance was observed with NCDs1:1. The maximum acetate production rate of 1.9 ± 0.1 mM d-1 was achieved in NCDs1:1-modified MESs, which was 26.7-216.7 % higher than other MESs (0.6-1.5 mM d-1). With NCDs1:1 modified, the biocathode exhibited a 129.3-186.8 % increase in the abundance of Sporomusa, and 38.5-104.6 % increase in cytochrome expression (cydAB, cybH). Transcriptome confirmed that cytochromes played a crucial role in the extracellular electron uptake (EEU) of NCDs1:1-modified Sporomusa. NCDs1:1 enhanced EEU efficiency, thereby increasing the two H+-pumping steps and accelerating microbial CO2 fixation. These results provide valuable insights into increasing CO2 fixation by maximizing EEU efficiency in acetogens.
Collapse
Affiliation(s)
- Jiaping Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Wang YX, Liu XL, Li WQ, Wang YR, Li KW, Pan ZC, Mu Y. Boosting bioelectricity generation in bioelectrochemical systems with nitrogen-doped three-dimensional graphene aerogel anode. WATER RESEARCH 2024; 265:122244. [PMID: 39146657 DOI: 10.1016/j.watres.2024.122244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/26/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Bioelectricity generation by electrochemically active bacteria has become particularly appealing due to its vast potential in energy production, pollution treatment, and biosynthesis. However, developing high-performance anodes for bioelectricity generation remains a significant challenge. In this study, a highly efficient three-dimensional nitrogen-doped macroporous graphene aerogel anode with a nitrogen content of approximately 4.38 ± 0.50 at% was fabricated using hydrothermal method. The anode was successfully implemented in bioelectrochemical systems inoculated with Shewanella oneidensis MR-1, resulting in a significantly higher anodic current density (1.0 A/m2) compared to the control one. This enhancement was attributed to the greater biocapacity and improved extracellular electron transfer efficiency of the anode. Additionally, the N-doped aerogel anode demonstrated excellent performance in mixed-culture inoculated bioelectrochemical systems, achieving a high power density of 4.2 ± 0.2 W/m², one of the highest reported for three-dimensional carbon-based bioelectrochemical systems to date. Such improvements are likely due to the good biocompatibility of the N-doped aerogel anode, increased extracellular electron transfer efficiency at the bacteria/anode interface, and selectively enrichment of electroactive Geobacter soli within the NGA anode. Furthermore, based on gene-level Picrust2 prediction results, N-doping significantly upregulated the conductive pili-related genes of Geobacter in the three-dimensional anode, increasing the physical connection channels of bacteria, and thus strengthening the extracellular electron transfer process in Geobacter.
Collapse
Affiliation(s)
- Yi-Xuan Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China; Postdoctoral Research Station of Haitian Water Group Co., Ltd, Chengdu, Sichuan 610041, China
| | - Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Wen-Qiang Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Yi-Ran Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Zhi-Cheng Pan
- Postdoctoral Research Station of Haitian Water Group Co., Ltd, Chengdu, Sichuan 610041, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
12
|
Tao Z, Li B, Lin S, Li S, Li L, Huang X. Study on confined interface electron enhanced ethanol to hydrogen conversion by Rhodopseudomonas palustris. Chem Commun (Camb) 2024; 60:12205-12208. [PMID: 39356186 DOI: 10.1039/d4cc03553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Conjugated polymer coatings enhance bacteria with eco-friendly energy use. A new hybrid system boosts hydrogen production by Rhodopseudomonas palustris@polypyrrole (R. palustris@PPy) through interface electron transfer and hydrogel encapsulation. To maximize the output, we studied hydrogen metabolism using various techniques and found that conductive polymer modification facilitated electron transfer, affecting intracellular pathways. This technology offers enhanced green hydrogen production for sustainable energy.
Collapse
Affiliation(s)
- Zhengyu Tao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Baoyuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Song Lin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Shangsong Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
13
|
Qin S, He G, Yang J. Nanomaterial combined engineered bacteria for intelligent tumor immunotherapy. J Mater Chem B 2024; 12:9795-9820. [PMID: 39225508 DOI: 10.1039/d4tb00741g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer remains the leading cause of human death worldwide. Compared to traditional therapies, tumor immunotherapy has received a lot of attention and research focus due to its potential to activate both innate and adaptive immunity, low toxicity to normal tissue, and long-term immune activity. However, its clinical effectiveness and large-scale application are limited due to the immunosuppression microenvironment, lack of spatiotemporal control, expensive cost, and long manufacturing time. Recently, nanomaterial combined engineered bacteria have emerged as a promising solution to the challenges of tumor immunotherapy, which offers spatiotemporal control, reversal of immunosuppression, and scalable production. Therefore, we summarize the latest research on nanomaterial-assisted engineered bacteria for precise tumor immunotherapies, including the cross-talk of nanomaterials and bacteria as well as their application in different immunotherapies. In addition, we further discuss the advantages and challenges of nanomaterial-engineered bacteria and their future prospects, inspiring more novel and intelligent tumor immunotherapy.
Collapse
Affiliation(s)
- Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, China
| | - Jingjing Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Xu N, Zhang X, Guo PC, Xie DH, Sheng GP. Biological self-protection inspired engineering of nanomaterials to construct a robust bio-nano system for environmental applications. SCIENCE ADVANCES 2024; 10:eadp2179. [PMID: 39292775 PMCID: PMC11409965 DOI: 10.1126/sciadv.adp2179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Nanomaterials can empower microbial-based chemical production or pollutant removal, e.g., nano zero-valent iron (nZVI) as an electron source to enhance microbial reducing pollutants. Constructing bio-nano interfaces is critical for bio-nano system operation, but low interfacial compatibility due to nanotoxicity challenges the system performance. Inspired by microorganisms' resistance to nanotoxicity by secreting extracellular polymeric substances (EPS), which can act as electron shuttling media, we design a highly compatible bio-nano interface by modifying nZVI with EPS, markedly improving the performance of a bio-nano system consisting of nZVI and bacteria. EPS modification reduced membrane damage and oxidative stress induced by nZVI. Moreover, EPS alleviated nZVI agglomeration and probably reduced bacterial rejection of nZVI by wrapping camouflage, contributing to the bio-nano interface formation, thereby facilitating nZVI to provide electrons for bacterial reducing pollutant via membrane-anchoring cytochrome c. This work provides a strategy for designing a highly biocompatible interface to construct robust and efficient bio-nano systems for environmental implication.
Collapse
Affiliation(s)
- Nuo Xu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Can Guo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Hua Xie
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Guo-Ping Sheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Dong R, Lou X, Chen Z. Fabrication of bio-abiotic hybrid living hydrogel for bifunctional electrochemical conversion. Biosens Bioelectron 2024; 260:116462. [PMID: 38833834 DOI: 10.1016/j.bios.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024]
Abstract
Design and intelligent use renewable natural bioenergy is an important challenge. Electric microorganism-based materials are being serve as an important part of bioenergy devices for energy release and collection, calling for suitable skeleton materials to anchor live microbes. Herein we verified the feasibility of constructing bio-abiotic hybrid living materials based on the combination of gelatin, Li-ions and exoelectrogenic bacteria Shewanella oneidensis manganese-reducing-1 (MR-1). The gelatin-based mesh contains abundant pores, allowing microbes to dock and small molecules to diffuse. The hybrid materials hold plentiful electronegative groups, which effectively anchor Li-ions and facilitate their transition. Moreover, the electrochemical characteristics of the materials can be modulated through changing the ratios of gelatin, bacteria and Li-ions. Based on the gelatin-Li-ion-microorganism hybrid materials, a bifunctional device was fabricated, which could play dual roles alternatively, generation of electricity as a microbial fuel cell and energy storage as a pseudocapacitor. The capacitance and the maximum voltage output of the device reaches 68 F g-1 and 0.67 V, respectively. This system is a new platform and fresh start to fabricate bio-abiotic living materials for microbial electron storage and transfer. We expect the setup will extend to other living systems and devices for synthetic biological energy conversion.
Collapse
Affiliation(s)
- Rongyao Dong
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China; PPG Global Coatings Inovation Center, No.69, 7th Street, Binhai District, Tianjin, 300457, PR China
| | - Xiya Lou
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China
| | - Zhijun Chen
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, PR China.
| |
Collapse
|
16
|
Liu XL, Wang X, Wang Y, Huang D, Li KW, Luo MJ, Liu DF, Mu Y. 3D Bioprinting of Engineered Living Materials with Extracellular Electron Transfer Capability for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39226031 DOI: 10.1021/acs.est.4c06120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Attention is widely drawn to the extracellular electron transfer (EET) process of electroactive bacteria (EAB) for water purification, but its efficacy is often hindered in complex environmental matrices. In this study, the engineered living materials with EET capability (e-ELMs) were for the first time created with customized geometric configurations for pollutant removal using three-dimensional (3D) bioprinting platform. By combining EAB and tailored viscoelastic matrix, a biocompatible and tunable electroactive bioink for 3D bioprinting was initially developed with tuned rheological properties, enabling meticulous manipulation of microbial spatial arrangement and density. e-ELMs with different spatial microstructures were then designed and constructed by adjusting the filament diameter and orientation during the 3D printing process. Simulations of diffusion and fluid dynamics collectively showcase internal mass transfer rates and EET efficiency of e-ELMs with different spatial microstructures, contributing to the outstanding decontamination performances. Our research propels 3D bioprinting technology into the environmental realm, enabling the creation of intricately designed e-ELMs and providing promising routes to address the emerging water pollution concerns.
Collapse
Affiliation(s)
- Xiao-Li Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xingyu Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yixuan Wang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Dahong Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ke-Wan Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Meng-Jie Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Tu W, Thompson IP, Huang WE. Engineering bionanoreactor in bacteria for efficient hydrogen production. Proc Natl Acad Sci U S A 2024; 121:e2404958121. [PMID: 38985767 PMCID: PMC11260135 DOI: 10.1073/pnas.2404958121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/14/2024] [Indexed: 07/12/2024] Open
Abstract
Hydrogen production through water splitting is a vital strategy for renewable and sustainable clean energy. In this study, we developed an approach integrating nanomaterial engineering and synthetic biology to establish a bionanoreactor system for efficient hydrogen production. The periplasmic space (20 to 30 nm) of an electroactive bacterium, Shewanella oneidensis MR-1, was engineered to serve as a bionanoreactor to enhance the interaction between electrons and protons, catalyzed by hydrogenases for hydrogen generation. To optimize electron transfer, we used the microbially reduced graphene oxide (rGO) to coat the electrode, which improved the electron transfer from the electrode to the cells. Native MtrCAB protein complex on S. oneidensis and self-assembled iron sulfide (FeS) nanoparticles acted in tandem to facilitate electron transfer from an electrode to the periplasm. To enhance proton transport, S. oneidensis MR-1 was engineered to express Gloeobacter rhodopsin (GR) and the light-harvesting antenna canthaxanthin. This led to efficient proton pumping when exposed to light, resulting in a 35.6% increase in the rate of hydrogen production. The overexpression of native [FeFe]-hydrogenase further improved the hydrogen production rate by 56.8%. The bionanoreactor engineered in S. oneidensis MR-1 achieved a hydrogen yield of 80.4 μmol/mg protein/day with a Faraday efficiency of 80% at a potential of -0.75 V. This periplasmic bionanoreactor combines the strengths of both nanomaterial and biological components, providing an efficient approach for microbial electrosynthesis.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| |
Collapse
|
18
|
He H, Liu J, Shu Z, Chen Y, Pan Z, Peng C, Wang X, Zhou F, Zhou M, Du Z, Sun K, Xing B, Wang Z. Microbially Driven Iron Cycling Facilitates Organic Carbon Accrual in Decadal Biochar-Amended Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12430-12440. [PMID: 38968084 DOI: 10.1021/acs.est.3c09003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Soil organic carbon (SOC) is pivotal for both agricultural activities and climate change mitigation, and biochar stands as a promising tool for bolstering SOC and curtailing soil carbon dioxide (CO2) emissions. However, the involvement of biochar in SOC dynamics and the underlying interactions among biochar, soil microbes, iron minerals, and fresh organic matter (FOM, such as plant debris) remain largely unknown, especially in agricultural soils after long-term biochar amendment. We therefore introduced FOM to soils with and without a decade-long history of biochar amendment, performed soil microcosm incubations, and evaluated carbon and iron dynamics as well as microbial properties. Biochar amendment resulted in 2-fold SOC accrual over a decade and attenuated FOM-induced CO2 emissions by approximately 11% during a 56-day incubation through diverse pathways. Notably, biochar facilitated microbially driven iron reduction and subsequent Fenton-like reactions, potentially having enhanced microbial extracellular electron transfer and the carbon use efficiency in the long run. Throughout iron cycling processes, physical protection by minerals could contribute to both microbial carbon accumulation and plant debris preservation, alongside direct adsorption and occlusion of SOC by biochar particles. Furthermore, soil slurry experiments, with sterilization and ferrous iron stimulation controls, confirmed the role of microbes in hydroxyl radical generation and biotic carbon sequestration in biochar-amended soils. Overall, our study sheds light on the intricate biotic and abiotic mechanisms governing carbon dynamics in long-term biochar-amended upland soils.
Collapse
Affiliation(s)
- Haohua He
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jie Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhipeng Shu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yalan Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zezhen Pan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200433, China
| | - Chao Peng
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Xingxing Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Fengwu Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ming Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Zhangliu Du
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ke Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Shanghai 200062, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200433, China
| |
Collapse
|
19
|
Bishara Robertson IL, Zhang H, Reisner E, Butt JN, Jeuken LJC. Engineering of bespoke photosensitiser-microbe interfaces for enhanced semi-artificial photosynthesis. Chem Sci 2024; 15:9893-9914. [PMID: 38966358 PMCID: PMC11220614 DOI: 10.1039/d4sc00864b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Biohybrid systems for solar fuel production integrate artificial light-harvesting materials with biological catalysts such as microbes. In this perspective, we discuss the rational design of the abiotic-biotic interface in biohybrid systems by reviewing microbes and synthetic light-harvesting materials, as well as presenting various approaches to coupling these two components together. To maximise performance and scalability of such semi-artificial systems, we emphasise that the interfacial design requires consideration of two important aspects: attachment and electron transfer. It is our perspective that rational design of this photosensitiser-microbe interface is required for scalable solar fuel production. The design and assembly of a biohybrid with a well-defined electron transfer pathway allows mechanistic characterisation and optimisation for maximum efficiency. Introduction of additional catalysts to the system can close the redox cycle, omitting the need for sacrificial electron donors. Studies that electronically couple light-harvesters to well-defined biological entities, such as emerging photosensitiser-enzyme hybrids, provide valuable knowledge for the strategic design of whole-cell biohybrids. Exploring the interactions between light-harvesters and redox proteins can guide coupling strategies when translated into larger, more complex microbial systems.
Collapse
Affiliation(s)
| | - Huijie Zhang
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Julea N Butt
- School of Chemistry and School of Biological Sciences, University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University PO Box 9502 Leiden 2300 RA the Netherlands
| |
Collapse
|
20
|
Li J, Shen J, Hou T, Tang H, Zeng C, Xiao K, Hou Y, Wang B. A Self-Assembled MOF-Escherichia Coli Hybrid System for Light-Driven Fuels and Valuable Chemicals Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308597. [PMID: 38664984 PMCID: PMC11220693 DOI: 10.1002/advs.202308597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/25/2024] [Indexed: 07/04/2024]
Abstract
The development of semi-artificial photosynthetic systems, which integrate metal-organic frameworks (MOFs) with industrial microbial cell factories for light-driven synthesis of fuels and valuable chemicals, represents a highly promising avenue for both research advancements and practical applications. In this study, an MOF (PCN-222) utilizing racemic-(4-carboxyphenyl) porphyrin and zirconium chloride (ZrCl4) as primary constituents is synthesized. Employing a self-assembly process, a hybrid system is constructed, integrating engineered Escherichia coli (E. coli) to investigate light-driven hydrogen and lysine production. These results demonstrate that the light-irradiated biohybrid system efficiently produce H2 with a quantum efficiency of 0.75% under full spectrum illumination, the elevated intracellular reducing power NADPH is also observed. By optimizing the conditions, the biohybrid system achieves a maximum lysine production of 18.25 mg L-1, surpassing that of pure bacteria by 332%. Further investigations into interfacial electron transfer mechanisms reveals that PCN-222 efficiently captures light and facilitates the transfer of photo-generated electrons into E. coli cells. It is proposed that the interfacial energy transfer process is mediated by riboflavin, with facilitation by secreted small organic acids acting as hole scavengers for PCN-222. This study establishes a crucial foundation for future research into the light-driven biomanufacturing using E. coli-based hybrid systems.
Collapse
Affiliation(s)
- Jialu Li
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Junfeng Shen
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Tianfeng Hou
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Hongting Tang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Cuiping Zeng
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Kemeng Xiao
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Department of Chemistry and Center for Cell and Developmental BiologyThe Chinese University of Hong KongShatinHong Kong999077China
| | - Yanping Hou
- School of ResourcesEnvironment and MaterialsGuangxi UniversityNanning530004China
| | - Bo Wang
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| |
Collapse
|
21
|
Li P, Li Q, Lu H, Fu Z, Zhou J, Sun C, Wang X. Effect of sludge humic acid-derived nano-biochars on anaerobic degradation of sulfamethoxazole by Shewanella oneidensis MR-1. ENVIRONMENTAL RESEARCH 2024; 251:118655. [PMID: 38479717 DOI: 10.1016/j.envres.2024.118655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Some nano-biochars (nano-BCs) as electron mediators could enter into cells to directly promote intracellular electron transfer and cell activities. However, little information was available on the effect of nano-BCs on SMX degradation. In this study, nano-BCs were prepared using sludge-derived humic acid (SHA) and their effects on SMX degradation by Shewanella oneidensis MR-1 were investigated. Results showed that nano-BCs (Carbon dots, CDs, <10 nm) synthesized using SHA performed a better accelerating effect than that of the nano-BCs with a larger size (10-100 nm), which could be attributed to the better electron transfer abilities of CDs. The degradation rate of 10 mg/L SMX in the presence of 100 mg/L CDs was significantly increased by 84.6% compared to that without CDs. Further analysis showed that CDs could not only be combined with extracellular Fe(III) to accelerate its reduction, but also participate in the reduction of 4-aminobenzenesulphonic acid as an intermediate metabolite of SMX via coupling with extracellular Fe(III) reduction. Meanwhile, CDs could enter cells to directly participate in intracellular electron transfer, resulting in 32.2% and 25.2% increases of electron transfer system activity and ATP level, respectively. Moreover, the activities of SMX-degrading enzymes located in periplasm and cytoplasm were increased by around 2.2-fold in the presence of CDs. These results provide an insight into the accelerating effect of nano-BCs with the size of <10 nm on SMX degradation and an approach for SHA utilization.
Collapse
Affiliation(s)
- Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Chenghao Sun
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, 116045, China.
| | - Xuehai Wang
- SINOPEC (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, 116045, China
| |
Collapse
|
22
|
Li C, Liang D, Tian Y, Liu S, He W, Li Z, Yadav RS, Ma Y, Ji C, Yi K, Yang W, Feng Y. Sorting Out the Latest Advances in Separators and Pilot-Scale Microbial Electrochemical Systems for Wastewater Treatment: Concomitant Development, Practical Application, and Future Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9471-9486. [PMID: 38776077 DOI: 10.1021/acs.est.4c03169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.
Collapse
Affiliation(s)
- Chao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Yan Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Zeng Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Ravi Shankar Yadav
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| | - Yamei Ma
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Chengcheng Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Wulin Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73 Huanghe Road, Nangang District, Harbin 150090, P. R. China
| |
Collapse
|
23
|
Wang P, You Q, Liu Y, Miao H, Dong WF, Li L. Combating infections from drug-resistant bacteria: Unleashing synergistic broad-spectrum antibacterial power with high-entropy MXene/CDs. Colloids Surf B Biointerfaces 2024; 238:113874. [PMID: 38581833 DOI: 10.1016/j.colsurfb.2024.113874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024]
Abstract
The growing resistance of bacteria to antibiotics has posed challenges in treating associated bacterial infections, while the development of multi-model antibacterial strategies could efficient sterilization to prevent drug resistance. High-entropy MXene has emerged as a promising candidate for antibacterial synergy with inherent photothermal and photodynamic properties. Herein, a high-entropy nanomaterial of MXene/CDs was synthesized to amplify oxidative stress under near-infrared laser irradiation. Well-exfoliated MXene nanosheets have proven to show an excellent photothermal effect for sterilization. The incorporation of CDs could provide photo-generated electrons for MXene nanosheets to generate ROS, meanwhile reducing the recombination of electron-hole pairs to further accelerate the generation of photo-generated electrons. The MXene/CDs material demonstrates outstanding synergistic photothermal and photodynamic effects, possesses excellent biocompatibility and successfully eliminates drug-resistant bacteria as well as inhibits biofilm formation. While attaining a remarkable killing efficiency of up to 99.99% against drug-resistant Escherichia coli and Staphylococcus aureus, it also demonstrates outstanding antibacterial effects against four additional bacterial strains. This work not only establishes a synthesis precedent for preparing high-entropy MXene materials with CDs but also provides a potential approach for addressing the issue of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Panyong Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Qiannan You
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Yulu Liu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Huimin Miao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China
| | - Wen-Fei Dong
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| | - Li Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Biomedical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou 215163, China.
| |
Collapse
|
24
|
Guan X, Xie Y, Liu C. Performance evaluation and multidisciplinary analysis of catalytic fixation reactions by material-microbe hybrids. Nat Catal 2024; 7:475-482. [PMID: 39524322 PMCID: PMC11546438 DOI: 10.1038/s41929-024-01151-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/20/2024] [Indexed: 11/16/2024]
Abstract
Hybrid systems that integrate synthetic materials with biological machinery offer opportunities for sustainable and efficient catalysis. However, the multidisciplinary and unique nature of the materials-biology interface requires researchers to draw insights from different fields. In this Perspective, using examples from the area of N2 and CO2 fixation, we provide a unified discussion of critical aspects of the material-microbe interface, simultaneously considering the requirements of physical and biological sciences that have a tangible impact on the performance of biohybrids. We first discuss the figures of merit and caveats for the evaluation of catalytic performance. Then, we reflect on the interactions and potential synergies at the materials-biology interface, as well as the challenges and opportunities for a deepened fundamental understanding of abiotic-biotic catalysis.
Collapse
Affiliation(s)
- Xun Guan
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Yongchao Xie
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- These authors contributed equally: Xun Guan, Yongchao Xie
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
25
|
Li X, Jia T, Zhu H, Cai L, Lu Y, Wang J, Tao H, Li P. Bioelectricity facilitates carbon dioxide fixation by Alcaligenes faecalis ZS-1 in a biocathodic microbial fuel cell (MFC). BIORESOURCE TECHNOLOGY 2024; 399:130555. [PMID: 38460556 DOI: 10.1016/j.biortech.2024.130555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
The CO2 fixation mechanism by Alcaligenes faecalis ZS-1 in a biocathode microbial fuel cell (MFC) was investigated. The closed-circuit MFC (CM) exhibited a significantly higher CO2 fixation rate (10.7%) compared to the open-circuit MFC (OC) (2.0%), indicating that bioelectricity enhances CO2 capture efficiency. During the inward extracellular electron transfer (EET) process, riboflavin concentration increased in the supernatant while cytochrome levels decreased. Genome sequencing revealed diverse metabolic pathways for CO2 fixation in strain ZS-1, with potential dominance of rTCA and C4 pathways under electrotrophic conditions as evidenced by significant upregulation of the ppc gene. Differential metabolite analysis using LC-MS demonstrated that CM promoted upregulation of various lipid metabolites. These findings collectively highlight that ZS-1 simultaneously generated electricity and fixed CO2 and that the ppc associated with bioelectricity played a critical role in CO2 capture. In conclusion, bioelectricity resulted in a significant enhancement in the efficiency of CO2 fixation and lipid production.
Collapse
Affiliation(s)
- Xinyi Li
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Tianbo Jia
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Haiguang Zhu
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Luhan Cai
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yubiao Lu
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Jianxin Wang
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Hengcong Tao
- School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Peng Li
- School of Ocean Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
26
|
Lv X, Liu D, Chen R, Liu H, Weng L, He L, Liu S. Bismuth-Doped Carbon Dots Decorated Escherichia coli for Enhanced Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687628 DOI: 10.1021/acsami.4c02788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Photosynthetic inorganic biohybrid systems (PBSs) combining an inorganic photosensitizer with intact living cells provide an innovative view for solar hydrogen production. However, typical whole-cell biohybrid systems often suffer from sluggish electron transfer kinetics during transmembrane diffusion, which severely limits the efficiency of solar hydrogen production. Here, a unique biohybrid system with a quantum yield of 8.42% was constructed by feeding bismuth-doped carbon dots (Bi@CDS) to Escherichia coli (E. coli). In this biohybrid system, Bi@CDS can enter the cells and transfer the electrons upon light irradiation, greatly reducing the energy loss and shortening the distance of electron transfer. More importantly, the photocatalytic hydrogen production of the E. coli-Bi@CDs biohybrid system reached up to 0.95 mmol within 3 h under light irradiation (420-780 nm, 2000 W m-2), which is 1.36 and 2.38 times higher than that in the E. coli-CDs biohybrid system and the E. coli system, respectively. In addition, the mechanism of enhanced hydrogen production was further explored. It was found that the accelerated decomposition of glucose, the accelerated production of pyruvate, the inhibition of lactic acid, and the increase of formic acid were the reasons for the increase of hydrogen production. This work provides a novel strategy for improving the hydrogen production in photosynthetic inorganic biohybrid systems.
Collapse
Affiliation(s)
- Xingxing Lv
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Danqing Liu
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Rui Chen
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Haoxin Liu
- Augustana Faculty, University of Alberta, Camrose T4V 2R3, Canada
| | - Ling Weng
- Key Laboratory of Green Chemical Engineering and Technology of College of Heilongjiang Province, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Liangcan He
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research InstituteHarbin Institute of Technology, Zhengzhou 450046, China
| | - Shaoqin Liu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research InstituteHarbin Institute of Technology, Zhengzhou 450046, China
| |
Collapse
|
27
|
Lamba R, Yukta Y, Mondal J, Kumar R, Pani B, Singh B. Carbon Dots: Synthesis, Characterizations, and Recent Advancements in Biomedical, Optoelectronics, Sensing, and Catalysis Applications. ACS APPLIED BIO MATERIALS 2024; 7:2086-2127. [PMID: 38512809 DOI: 10.1021/acsabm.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Carbon nanodots (CNDs), a fascinating carbon-based nanomaterial (typical size 2-10 nm) owing to their superior optical properties, high biocompatibility, and cell penetrability, have tremendous applications in different interdisciplinary fields. Here, in this Review, we first explore the superiority of CNDs over other nanomaterials in the biomedical, optoelectronics, analytical sensing, and photocatalysis domains. Beginning with synthesis, characterization, and purification techniques, we even address fundamental questions surrounding CNDs such as emission origin and excitation-dependent behavior. Then we explore recent advancements in their applications, focusing on biological/biomedical uses like specific organelle bioimaging, drug/gene delivery, biosensing, and photothermal therapy. In optoelectronics, we cover CND-based solar cells, perovskite solar cells, and their role in LEDs and WLEDs. Analytical sensing applications include the detection of metals, hazardous chemicals, and proteins. In catalysis, we examine roles in photocatalysis, CO2 reduction, water splitting, stereospecific synthesis, and pollutant degradation. With this Review, we intend to further spark interest in CNDs and CND-based composites by highlighting their many benefits across a wide range of applications.
Collapse
Affiliation(s)
- Rohan Lamba
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Yukta Yukta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Jiban Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Ram Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
28
|
Wang X, Shi Z, Wang Z, Wu X. Electromagnetic Field Drives the Bioelectrocatalysis of γ-Fe 2O 3-Coated Shewanella putrefaciens CN32 to Boost Extracellular Electron Transfer. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1501. [PMID: 38612017 PMCID: PMC11012369 DOI: 10.3390/ma17071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
The microbial hybrid system modified by magnetic nanomaterials can enhance the interfacial electron transfer and energy conversion under the stimulation of a magnetic field. However, the bioelectrocatalytic performance of a hybrid system still needs to be improved, and the mechanism of magnetic field-induced bioelectrocatalytic enhancements is still unclear. In this work, γ-Fe2O3 magnetic nanoparticles were coated on a Shewanella putrefaciens CN32 cell surface and followed by placing in an electromagnetic field. The results showed that the electromagnetic field can greatly boost the extracellular electron transfer, and the oxidation peak current of CN32@γ-Fe2O3 increased to 2.24 times under an electromagnetic field. The enhancement mechanism is mainly due to the fact that the surface modified microorganism provides an elevated contact area for the high microbial catalytic activity of the outer cell membrane's cytochrome, while the magnetic nanoparticles provide a networked interface between the cytoplasm and the outer membrane for boosting the fast multidimensional electron transport path in the magnetic field. This work sheds fresh scientific light on the rational design of magnetic-field-coupled electroactive microorganisms and the fundamentals of an optimal interfacial structure for a fast electron transfer process toward an efficient bioenergy conversion.
Collapse
Affiliation(s)
| | - Zhuanzhuan Shi
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China; (X.W.); (Z.W.)
| | | | - Xiaoshuai Wu
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, China; (X.W.); (Z.W.)
| |
Collapse
|
29
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
30
|
Li Q, Lu H, Tian T, Fu Z, Dai Y, Li P, Zhou J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2393-2403. [PMID: 38268063 DOI: 10.1021/acs.est.3c08625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Bulk carbon-based materials can enhance anaerobic biodenitrification when they are present in extracellular matrices. However, little information is available on the effect of nitrogen and iron co-doped carbon dots (N, Fe-CDs) with sizes below 10 nm on this process. This work demonstrated that Fe-NX formed in N, Fe-CDs and their low surface potentials facilitated electron transfer. N, Fe-CDs exhibited good biocompatibility and were effectively absorbed by Pseudomonas stutzeri ATCC 17588. Intracellular N, Fe-CDs played a dominant role in enhancing anaerobic denitrification. During this process, the nitrate removal rate was significantly increased by 40.60% at 11 h with little nitrite and N2O accumulation, which was attributed to the enhanced activities of the electron transport system and various denitrifying reductases. Based on proteomics and metabolomic analysis, N, Fe-CDs effectively regulated carbon/nitrogen/sulfur metabolism to induce more electron generation, less nitrite/N2O accumulation, and higher levels of nitrogen removal. This work reveals the mechanism by which N, Fe-CDs enhance anaerobic denitrification and broaden their potential application in nitrogen removal.
Collapse
Affiliation(s)
- Qiansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ze Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yi Dai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Peiwen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Zhang J, Li F, Liu D, Liu Q, Song H. Engineering extracellular electron transfer pathways of electroactive microorganisms by synthetic biology for energy and chemicals production. Chem Soc Rev 2024; 53:1375-1446. [PMID: 38117181 DOI: 10.1039/d3cs00537b] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The excessive consumption of fossil fuels causes massive emission of CO2, leading to climate deterioration and environmental pollution. The development of substitutes and sustainable energy sources to replace fossil fuels has become a worldwide priority. Bio-electrochemical systems (BESs), employing redox reactions of electroactive microorganisms (EAMs) on electrodes to achieve a meritorious combination of biocatalysis and electrocatalysis, provide a green and sustainable alternative approach for bioremediation, CO2 fixation, and energy and chemicals production. EAMs, including exoelectrogens and electrotrophs, perform extracellular electron transfer (EET) (i.e., outward and inward EET), respectively, to exchange energy with the environment, whose rate determines the efficiency and performance of BESs. Therefore, we review the synthetic biology strategies developed in the last decade for engineering EAMs to enhance the EET rate in cell-electrode interfaces for facilitating the production of electricity energy and value-added chemicals, which include (1) progress in genetic manipulation and editing tools to achieve the efficient regulation of gene expression, knockout, and knockdown of EAMs; (2) synthetic biological engineering strategies to enhance the outward EET of exoelectrogens to anodes for electricity power production and anodic electro-fermentation (AEF) for chemicals production, including (i) broadening and strengthening substrate utilization, (ii) increasing the intracellular releasable reducing equivalents, (iii) optimizing c-type cytochrome (c-Cyts) expression and maturation, (iv) enhancing conductive nanowire biosynthesis and modification, (v) promoting electron shuttle biosynthesis, secretion, and immobilization, (vi) engineering global regulators to promote EET rate, (vii) facilitating biofilm formation, and (viii) constructing cell-material hybrids; (3) the mechanisms of inward EET, CO2 fixation pathway, and engineering strategies for improving the inward EET of electrotrophic cells for CO2 reduction and chemical production, including (i) programming metabolic pathways of electrotrophs, (ii) rewiring bioelectrical circuits for enhancing inward EET, and (iii) constructing microbial (photo)electrosynthesis by cell-material hybridization; (4) perspectives on future challenges and opportunities for engineering EET to develop highly efficient BESs for sustainable energy and chemical production. We expect that this review will provide a theoretical basis for the future development of BESs in energy harvesting, CO2 fixation, and chemical synthesis.
Collapse
Affiliation(s)
- Junqi Zhang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Dingyuan Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Qijing Liu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, and School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
32
|
Li W, Wang Y, Wang B, Lu K, Cai W, Lin J, Huang X, Zhang H, Zhang X, Liu Y, Liang Y, Lei B, Qu S. Enhanced Light-Harvesting and Energy Transfer in Carbon Dots Embedded Thylakoids for Photonic Hybrid Capacitor Applications. Angew Chem Int Ed Engl 2024; 63:e202308951. [PMID: 38052724 DOI: 10.1002/anie.202308951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Nanohybrid photosystems have advantages in converting solar energy into electricity, while natural photosystems based solar-powered energy-storage device is still under developed. Here, we fabricate a new kind of photo-rechargeable zinc-ion hybrid capacitor (ZHC) benefiting from light-harvesting carbon dots (CDs) and natural thylakoids for realizing solar energy harvesting and storage simultaneously. Under solar light irradiation, the embedded CDs in thylakoids (CDs/Thy) can convert the less absorbed green light into highly absorbed red light for thylakoids, besides, Förster resonance energy transfer (FRET) between CDs and Thy also occurs, which facilitates the photoelectrons generation during thylakoids photosynthesis, thereby resulting in 6-fold photocurrent output in CDs/Thy hybrid photosystem, compared to pristine thylakoids. Using CDs/Thy as the photocathode in ZHCs, the photonic hybrid capacitor shows photoelectric conversion and storage features. CDs can improve the photo-charging voltage response of ZHCs to ≈1.2 V with a remarkable capacitance enhancement of 144 % under solar light. This study provides a promising strategy for designing plant-based photonic and electric device for solar energy harvesting and storage.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Yixin Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Kaixin Lu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wenxiao Cai
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Junjie Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoman Huang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Haoran Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Xuejie Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yeru Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Bingfu Lei
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| |
Collapse
|
33
|
Yan X, Chen L, Peng P, Yang F, Dai L, Zhang H, Zhao F. Dual role of birnessite on the modulation of acid production and reinforcement of interspecific electron transfer in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167842. [PMID: 37848138 DOI: 10.1016/j.scitotenv.2023.167842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/24/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Achieving efficient anaerobic digestion of highly loaded substrates is one of the most challenging problems in the field of waste resourcing. Here, the addition of birnessite (2.0 g/L) to kitchen wastewater increased the acetate and final methane yields by 40.53 and 99.18 %, respectively, while reducing the yields of propionate and butyrate by 38.17 and 48.86 %, respectively. There were two main pathways for birnessite to enhance anaerobic digestion, one of which is to act as an electron acceptor, by inducing an alteration in the ratio of reduced-state coenzyme I in the microorganism, allowing the acid production process to proceed towards deeper oxidation. Another pathway enhances the interspecific electron transfer between bacteria and archaea and improves methane yield by optimizing the metabolic relationship. The Kyoto Encyclopedia of Genes and Genomes (KEGG) functional predictions suggest that the extracellular electron transport pathway of the microorganism is enhanced with the addition of birnessite and that its intracellular metabolic pathway is biased towards the nicotinamide adenine dinucleotide (NADH) generation pathway. This work demonstrated that anaerobic digestion facilitation by metallic minerals was not monolithic; that is, different properties of the minerals were employed to intensify the different stages of anaerobic digestion and obtain an amplification cascade.
Collapse
Affiliation(s)
- Xinyu Yan
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Lixiang Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Pin Peng
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Fan Yang
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Liping Dai
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, 19 Yuquan Road, 100049 Beijing, China
| | - Han Zhang
- Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China
| | - Feng Zhao
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Science, 1799 Jimei Road, Xiamen 361021, Fujian, China.
| |
Collapse
|
34
|
Lu ZC, Zhang R, Liu HZ, Zhou JX, Su HF. Nanoarmor: cytoprotection for single living cells. Trends Biotechnol 2024; 42:91-103. [PMID: 37507294 DOI: 10.1016/j.tibtech.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Single cell modification or hybridization technology has become a popular direction in bioengineering in recent years, with applications in clean energy, environmental stewardship, and sustainable human development. Here, we draw attention to nanoarmor, a representative achievement of cytoprotection and functionalization technology. The fundamental principles of nanoarmor need to be studied with input from multiple disciplines, including biology, chemistry, and material science. In this review, we explain the role of nanoarmor and review progress in its applications. We also discuss three main challenges associated with its development: self-driving ability, heterojunction characteristics, and mineralization formation. Finally, we propose a preliminary classification system for nanoarmor.
Collapse
Affiliation(s)
- Zi-Chun Lu
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Hai-Zhu Liu
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Jin-Xing Zhou
- Jianshui Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| | - Hai-Feng Su
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
35
|
Shi H, Jiang X, Wen X, Hou C, Chen D, Mu Y, Shen J. Enhanced azo dye reduction at semiconductor-microbe interface: The key role of semiconductor band structure. WATER RESEARCH 2024; 248:120846. [PMID: 37952328 DOI: 10.1016/j.watres.2023.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Low-energy environmental remediation could be achieved by biocatalysis with assistance of light-excited semiconductor, in which the energy band structure of semiconductor has a significant influence on the metabolic process and electron transfer of microbes. In this study, direct Z-scheme and type II heterojunction semiconductor with different energy band structure were successfully synthesized for constructing semiconductor-microbe interface with Shewanella oneidensis MR-1 to achieve acid orange7 (AO7) biodegradation. UV-vis diffuse reflection spectroscopy, photoluminescence spectra and photoelectrochemical analysis revealed that the direct Z-scheme heterojunction semiconductor had stronger reduction power and faster separation of photoelectron-hole, which was beneficial for the AO7 biodegradation at semiconductor-microbe interface. Riboflavin was also involved in electron transfer between the semiconductor and microbes during AO7 reduction. Transcriptome results illustrated that functional gene expression of Shewanella oneidensis MR-1 was upregulated significantly with photo-stimulation of direct Z-scheme semiconductor, and Mtr pathway and conductive pili played the important roles in the photoelectron utilization by Shewanella oneidensis MR-1. This work is expected to provide alternative ideas for designing semiconductor-microbial interface with efficient electron transfer and broadening their applications in bioremediation.
Collapse
Affiliation(s)
- Hefei Shi
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaojiao Wen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng Hou
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yang Mu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
36
|
Chen JJ. Interfacial Electron Transfer in Chemical and Biological Transformation of Pollutants in Environmental Catalysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21540-21549. [PMID: 38086095 DOI: 10.1021/acs.est.3c05608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Interfacial electron transfer (IET) is essential for chemical and biological transformation of pollutants, operative across diverse lengths and time scales. This Perspective presents an array of multiscale molecular simulation methodologies, supplemented by in situ monitoring and imaging techniques, serving as robust tools to decode IET enhancement mechanisms such as interface molecular modification, catalyst coordination mode, and atomic composition regulation. In addition, three IET-based pollutant transformation systems, an electrocatalytic oxidation system, a bioelectrochemical spatial coupling system, and an enzyme-inspired electrocatalytic system, were developed, demonstrating a high effect in transforming and degrading pollutants. To improve the effectiveness and scalability of IET-based strategies, the refinement of these systems is necessitated through rigorous research and theoretical exploration, particularly in the context of practical wastewater treatment scenarios. Future endeavors aim to elucidate the synergy between biological and chemical modules, edit the environmental functional microorganisms, and harness machine learning for designing advanced environmental catalysts to boost efficiency. This Perspective highlights the powerful potential of IET-focused environmental remediation strategies, emphasizing the critical role of interdisciplinary research in addressing the urgent global challenge of water pollution.
Collapse
Affiliation(s)
- Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
37
|
Li C, Hu S, Ji C, Yi K, Yang W. Insight into the Pseudocapacitive Behavior of Electroactive Biofilms in Response to Dynamic-Controlled Electron Transfer and Metabolism Kinetics for Current Generation in Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19891-19901. [PMID: 38000046 DOI: 10.1021/acs.est.3c04771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Electroactive biofilms (EBs) engage in complex electron transfer and storage processes involving intracellular and extracellular mediators with temporary electron storage capabilities. Consequently, electroactive biofilms exhibit pseudocapacitive behaviors during substrate degradation processes. However, comprehensive systematic research in this area has been lacking. This study demonstrated that the pseudocapacitive property was an intrinsic characteristic of EBs. This property represents dynamic-controlled electron transfer and is critical in current generation, unlike noncapacitive responses. Nontransient charge and discharge experiments revealed a correlation between capacitive charge accumulation and current generation in EBs. Additionally, analysis of substrate degradation suggested that the maximum power density (Pmax) changed with the kinetic constants of COD degradation, with pseudocapacitances of EBs directly proportional to Pmax. The interaction networks of key latent variables were evaluated through partial least-squares path modeling analysis. The results indicated that cytochrome c was closely associated with the formation of pseudocapacitance in EBs. In conclusion, pseudocapacitance can be considered a valuable indicator for assessing the complex electron transfer behavior of EBs. Pseudocapacitive biofilms have the potential to efficiently regulate biological reactions and serve as a promising carbon-neutral and renewable strategy for energy generation and storage. An in-depth understanding of the intrinsic property of pseudocapacitive behavior in EBs can undoubtedly advance the development of this concept in the future.
Collapse
Affiliation(s)
- Chao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Shaogang Hu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Chengcheng Ji
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| | - Wulin Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, PR China
| |
Collapse
|
38
|
Di Filippo D, Sunstrum FN, Khan JU, Welsh AW. Non-Invasive Glucose Sensing Technologies and Products: A Comprehensive Review for Researchers and Clinicians. SENSORS (BASEL, SWITZERLAND) 2023; 23:9130. [PMID: 38005523 PMCID: PMC10674292 DOI: 10.3390/s23229130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Diabetes Mellitus incidence and its negative outcomes have dramatically increased worldwide and are expected to further increase in the future due to a combination of environmental and social factors. Several methods of measuring glucose concentration in various body compartments have been described in the literature over the years. Continuous advances in technology open the road to novel measuring methods and innovative measurement sites. The aim of this comprehensive review is to report all the methods and products for non-invasive glucose measurement described in the literature over the past five years that have been tested on both human subjects/samples and tissue models. A literature review was performed in the MDPI database, with 243 articles reviewed and 124 included in a narrative summary. Different comparisons of techniques focused on the mechanism of action, measurement site, and machine learning application, outlining the main advantages and disadvantages described/expected so far. This review represents a comprehensive guide for clinicians and industrial designers to sum the most recent results in non-invasive glucose sensing techniques' research and production to aid the progress in this promising field.
Collapse
Affiliation(s)
- Daria Di Filippo
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Frédérique N. Sunstrum
- Product Design, School of Design, Faculty of Design, Architecture and Built Environment, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jawairia U. Khan
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Alec W. Welsh
- Discipline of Women’s Health, School of Clinical Medicine, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- Department of Maternal-Fetal Medicine, Royal Hospital for Women, Randwick, NSW 2031, Australia
| |
Collapse
|
39
|
Yu J, You J, Lens PNL, Lu L, He Y, Ji Z, Chen J, Cheng Z, Chen D. Biofilm metagenomic characteristics behind high coulombic efficiency for propanethiol deodorization in two-phase partitioning microbial fuel cell. WATER RESEARCH 2023; 246:120677. [PMID: 37827037 DOI: 10.1016/j.watres.2023.120677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Hydrophobic volatile organic sulfur compounds (VOSCs) are frequently found during sewage treatment, and their effective management is crucial for reducing malodorous complaints. Microbial fuel cells (MFC) are effective for both VOSCs abatement and energy recovery. However, the performance of MFC on VOSCs remains limited by the mass transfer efficiency of MFC in aqueous media. Inspired by two-phase partitioning biotechnology, silicone oil was introduced for the first time into MFC as a non-aqueous phase (NAP) medium to construct two-phase partitioning microbial fuel cell (TPPMFC) and augment the mass transfer of target VOSCs of propanethiol (PT) in the liquid phase. The PT removal efficiency within 32 h increased by 11-20% compared with that of single-phase MFC, and the coulombic efficiency of TPPMFC (11.01%) was 4.32-2.68 times that of single-phase MFC owing to the fact that highly active desulfurization and thiol-degrading bacteria (e.g., Pseudomonas, Achromobacter) were attached to the silicone oil surface, whereas sulfur-oxidizing bacteria (e.g., Thiobacillus, Commonas, Ottowia) were dominant on the anodic biofilm. The outer membrane cytochrome-c content and NADH dehydrogenase activity improved by 4.15 and 3.36 times in the TPPMFC, respectively. The results of metagenomics by KEGG and COG confirmed that the metabolism of PT in TPPMFC was comprehensive, and that the addition of a NAP upregulates the expression of genes related to sulfur metabolism, energy generation, and amino acid synthesis. This finding indicates that the NAP assisted bioelectrochemical systems would be promising to solve mass-transfer restrictions in low solubility contaminates removal.
Collapse
Affiliation(s)
- Jian Yu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juping You
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Piet N L Lens
- National University of Ireland, Galway H91TK33, Ireland
| | - Lichao Lu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yaxue He
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China
| | - Zhenyi Ji
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; School of Environment and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Zhuowei Cheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongzhi Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
40
|
Wu GK, Zhao MX, Chen SR, Sun YN, Qin SF, Wang AJ, Ye QF, Alwathnani H, You LX, Rensing C. Antioxidant CeO 2 doped with carbon dots enhance ammonia production by an electroactive Azospirillum humicireducens SgZ-5 T. CHEMOSPHERE 2023; 341:140094. [PMID: 37678589 DOI: 10.1016/j.chemosphere.2023.140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Microbial nitrogen fixation is a fundamental process in the nitrogen cycle, providing a continuous supply of biologically available nitrogen essential for life. In this study, we combined cerium oxide-doped carbon dots (CeO2/CDs) with electroactive nitrogen-fixing bacterium Azospirillum humicireducens SgZ-5T to enhance nitrogen fixation through ammonium production. Our research demonstrates that treatment of SgZ-5T cells with CeO2/CDs (0.2 mg mL-1) resulted in a 265.70% increase in ammonium production compared to SgZ-5T cells alone. CeO2/CDs facilitate electron transfer in the biocatalytic process, thereby enhancing nitrogenase activity. Additionally, CeO2/CDs reduce the concentration of reactive oxygen species in SgZ-5T cells, leading to increased ammonium production. The upregulation of nifD, nifH and nifK gene expression upon incorporation of CeO2/CDs (0.2 mg mL-1) into SgZ-5T cells supports this observation. Our findings not only provide an economical and environmentally friendly approach to enhance biological nitrogen fixation but also hold potential for alleviating nitrogen fertilizer scarcity.
Collapse
Affiliation(s)
- Gao-Kai Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Meng-Xin Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Si-Ru Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Yi-Nan Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Su-Fang Qin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Qun-Feng Ye
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China
| | - Hend Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, 11495, Saudi Arabia
| | - Le-Xing You
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, PR China.
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| |
Collapse
|
41
|
Yang FA, Hou YN, Cao C, Ren N, Wang AJ, Guo J, Liu Z, Huang C. Mechanistic insights into the response of electroactive biofilms to Cd 2+ shock: bacterial viability and electron transfer behavior at the cellular and community levels. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132183. [PMID: 37531766 DOI: 10.1016/j.jhazmat.2023.132183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Electroactive biofilms (EABs) play a crucial role in environmental bioremediation due to their excellent extracellular electron transfer (EET) capabilities. However, Cd2+ can have toxic effects on the electrochemical performance of EABs, and the comprehensive inhibition mechanism of EABs in response to Cd2+ shock remains elusive. This study indicated that Cd2+ shock significantly reduced biomass and increased oxidative stress in EABs at the cellular level. The bacterial viability of EABs in phase III under 0.5 mM Cd2+ shock (EABCd2+-III0.5) decreased by 16.31% compared to EABCK-III. Moreover, intracellular NADH, c-Cyts, and the abundance of electroactive species were essential indicators to evaluate EET behavior of EABs. In EABCd2+-III0.5, these indicators decreased by 26.32%, 33.40%, and 20.65%, respectively. Structural equation modeling analysis established quantitative correlations between core components and electrochemical activity at cellular and community levels. The correlation analysis revealed that the growth and electron transfer functions of EABs were predictive indicators for their electrochemical performance, with standardized path coefficients of 0.407 and 0.358, respectively. These findings enhance our understanding of EABs' response to Cd2+ shock and provide insights for improving their performance in heavy metal wastewater.
Collapse
Affiliation(s)
- Feng-Ai Yang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ce Cao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Nanqi Ren
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ai-Jie Wang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jianbo Guo
- School of Civil Engineering and Architecture, Taizhou University, Taizhou 318000, Zhejiang, China
| | - Zhihua Liu
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Cong Huang
- National Technology Innovation Center of Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
42
|
Guo M, Yang G, Meng X, Zhang T, Li C, Bai S, Zhao X. Illuminating plant-microbe interaction: How photoperiod affects rhizosphere and pollutant removal in constructed wetland? ENVIRONMENT INTERNATIONAL 2023; 179:108144. [PMID: 37586276 DOI: 10.1016/j.envint.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Rhizosphere is a crucial area in comprehending the interaction between plants and microorganisms in constructed wetlands (CWs). However, influence of photoperiod, a key factor that regulates photosynthesis and rhizosphere microbial activity, remains largely unknown. This study investigated the effect of photoperiod (9, 12, 15 h/day) on pollutant removal and underlying mechanisms. Results showed that 15-hour photoperiod treatment exhibited the highest removal efficiencies for COD (87.26%), TN (63.32%), and NO3--N (97.79%). This treatment enhanced photosynthetic pigmentation and root activity, which increased transport of oxygen and soluble organic carbon to rhizosphere, thus promoting microbial nitrification and denitrification. Microbial community analysis revealed a more stable co-occurrence network due to increased complexity and aggregation in the 15-hour photoperiod treatment. Phaselicystis was identified as a key connector, which was responsible for transferring necessary carbon sources, ATP, and electron donors that supported and optimized nitrogen metabolism in the CWs. Structural equation model analysis emphasized the importance of plant-microbe interactions in pollutant removal through increased substance, information, and energy exchange. These findings offer valuable insights for CWs design and operation in various latitudes and rural areas for small-scale decentralized systems.
Collapse
Affiliation(s)
- Mengran Guo
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Genji Yang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiangwei Meng
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Tuoshi Zhang
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chunyan Li
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shunwen Bai
- School of Environment, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinyue Zhao
- College of Resource and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
43
|
Quek G, Vázquez RJ, McCuskey SR, Lopez-Garcia F, Bazan GC. An n-Type Conjugated Oligoelectrolyte Mimics Transmembrane Electron Transport Proteins for Enhanced Microbial Electrosynthesis. Angew Chem Int Ed Engl 2023; 62:e202305189. [PMID: 37222113 DOI: 10.1002/anie.202305189] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/25/2023]
Abstract
Interfacing bacteria as biocatalysts with an electrode provides the basis for emerging bioelectrochemical systems that enable sustainable energy interconversion between electrical and chemical energy. Electron transfer rates at the abiotic-biotic interface are, however, often limited by poor electrical contacts and the intrinsically insulating cell membranes. Herein, we report the first example of an n-type redox-active conjugated oligoelectrolyte, namely COE-NDI, which spontaneously intercalates into cell membranes and mimics the function of endogenous transmembrane electron transport proteins. The incorporation of COE-NDI into Shewanella oneidensis MR-1 cells amplifies current uptake from the electrode by 4-fold, resulting in the enhanced bio-electroreduction of fumarate to succinate. Moreover, COE-NDI can serve as a "protein prosthetic" to rescue current uptake in non-electrogenic knockout mutants.
Collapse
Affiliation(s)
- Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Fernando Lopez-Garcia
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 119077, Singapore, Singapore
| |
Collapse
|
44
|
Lu H, Niu L, Yu L, Jin K, Zhang J, Liu J, Zhu X, Wu Y, Zhang Y. Cancer phototherapy with nano-bacteria biohybrids. J Control Release 2023; 360:133-148. [PMID: 37315693 DOI: 10.1016/j.jconrel.2023.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 06/03/2023] [Indexed: 06/16/2023]
Abstract
The utilization of light for therapeutic interventions, also known as phototherapy, has been extensively employed in the treatment of a wide range of illnesses, including cancer. Despite the benefits of its non-invasive nature, phototherapy still faces challenges pertaining to the delivery of phototherapeutic agents, phototoxicity, and light delivery. The incorporation of nanomaterials and bacteria in phototherapy has emerged as a promising approach that leverages the unique properties of each component. The resulting nano-bacteria biohybrids exhibit enhanced therapeutic efficacy when compared to either component individually. In this review, we summarize and discuss the various strategies for assembling nano-bacteria biohybrids and their applications in phototherapy. We provide a comprehensive overview of the properties and functionalities of nanomaterials and cells in the biohybrids. Notably, we highlight the roles of bacteria beyond their function as drug vehicles, particularly their capacity to produce bioactive molecules. Despite being in its early stage, the integration of photoelectric nanomaterials and genetically engineered bacteria holds promise as an effective biosystem for antitumor phototherapy. The utilization of nano-bacteria biohybrids in phototherapy is a promising avenue for future investigation, with the potential to enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hongfei Lu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Luqi Niu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Lin Yu
- School of Medicine, Shanghai University, Shanghai 200433, China
| | - Kai Jin
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jing Zhang
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Jinliang Liu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Xiaohui Zhu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China
| | - Yihan Wu
- Department of Chemical and Environmental Engineering, Shanghai University, Shanghai 200433, China.
| | - Yong Zhang
- Department of Biomedical Engineering, National University of Singapore, 119077, Singapore; National University of Singapore Research Institute, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
45
|
Xing B, Graham NJD, Zhao B, Li X, Tang Y, Kappler A, Dong H, Winkler M, Yu W. Goethite Formed in the Periplasmic Space of Pseudomonas sp. JM-7 during Fe Cycling Enhances Its Denitrification in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11096-11107. [PMID: 37467428 DOI: 10.1021/acs.est.3c02303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Denitrification-driven Fe(II) oxidation is an important microbial metabolism that connects iron and nitrogen cycling in the environment. The formation of Fe(III) minerals in the periplasmic space has a significant effect on microbial metabolism and electron transfer, but direct evidence of iron ions entering the periplasm and resulting in periplasmic mineral precipitation and electron conduction properties has yet to be conclusively determined. Here, we investigated the pathways and amounts of iron, with different valence states and morphologies, entering the periplasmic space of the denitrifier Pseudomonas sp. JM-7 (P. JM-7), and the possible effects on the electron transfer and the denitrifying ability. When consistently provided with Fe(II) ions (from siderite (FeCO3)), the dissolved Fe(II) ions entered the periplasmic space and were oxidized to Fe(III), leading to the formation of a 25 nm thick crystalline goethite crust, which functioned as a semiconductor, accelerating the transfer of electrons from the intracellular to the extracellular matrix. This consequently doubled the denitrification rate and increased the electron transport capacity by 4-30 times (0.015-0.04 μA). However, as the Fe(II) concentration further increased to above 4 mM, the Fe(II) ions tended to preferentially nucleate, oxidize, and crystallize on the outer surface of P. JM-7, leading to the formation of a densely crystallized goethite layer, which significantly slowed down the metabolism of P. JM-7. In contrast to the Fe(II) conditions, regardless of the initial concentration of Fe(III), it was challenging for Fe(III) ions to form goethite in the periplasmic space. This work has shed light on the likely effects of iron on environmental microorganisms, improved our understanding of globally significant iron and nitrogen geochemical cycles in water, and expanded our ability to study and control these important processes.
Collapse
Affiliation(s)
- Bobo Xing
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nigel J D Graham
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Binghao Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xian Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Andreas Kappler
- Geomicrobiology, Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056, United States
| | - Mari Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195-5014, United States
| | - Wenzheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| |
Collapse
|
46
|
Yu H, Lu Y, Lan F, Wang Y, Hu C, Mao L, Wu D, Li F, Song H. Engineering Outer Membrane Vesicles to Increase Extracellular Electron Transfer of Shewanella oneidensis. ACS Synth Biol 2023; 12:1645-1656. [PMID: 37140342 DOI: 10.1021/acssynbio.2c00636] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Outer membrane vesicles (OMVs) of Gram-negative bacteria play an essential role in cellular physiology. The underlying regulatory mechanism of OMV formation and its impact on extracellular electron transfer (EET) in the model exoelectrogenShewanella oneidensis MR-1 remain unclear and have not been reported. To explore the regulatory mechanism of OMV formation, we used the CRISPR-dCas9 gene repression technology to reduce the crosslink between the peptidoglycan (PG) layer and the outer membrane, thus promoting the OMV formation. We screened the target genes that were potentially beneficial to the outer membrane bulge, which were classified into two modules: PG integrity module (Module 1) and outer membrane component module (Module 2). We found that downregulation of the penicillin-binding protein-encoding gene pbpC for peptidoglycan integrity (Module 1) and the N-acetyl-d-mannosamine dehydrogenase-encoding gene wbpP involved in lipopolysaccharide synthesis (Module 2) exhibited the highest production of OMVs and enabled the highest output power density of 331.3 ± 1.2 and 363.8 ± 9.9 mW m-2, 6.33- and 6.96-fold higher than that of the wild-typeS. oneidensis MR-1 (52.3 ± 0.6 mW m-2), respectively. To elucidate the specific impacts of OMV formation on EET, OMVs were isolated and quantified for UV-visible spectroscopy and heme staining characterization. Our study showed that abundant outer membrane c-type cytochromes (c-Cyts) including MtrC and OmcA and periplasmic c-Cyts were exposed on the surface or inside of OMVs, which were the vital constituents responsible for EET. Meanwhile, we found that the overproduction of OMVs could facilitate biofilm formation and increase biofilm conductivity. To the best of our knowledge, this study is the first to explore the mechanism of OMV formation and its correlation with EET of S. oneidensis, which paves the way for further study of OMV-mediated EET.
Collapse
Affiliation(s)
- Huan Yu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yujun Lu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Fei Lan
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chaoning Hu
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lingfeng Mao
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, China
| | - Feng Li
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology (Ministry of Education), Key Laboratory of Systems Bioengineering, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
47
|
Xia Q, Liu R, Chen X, Chen Z, Zhu JJ. In Vivo Voltammetric Imaging of Metal Nanoparticle-Catalyzed Single-Cell Electron Transfer by Fermi Level-Responsive Graphene. RESEARCH (WASHINGTON, D.C.) 2023; 6:0145. [PMID: 37223464 PMCID: PMC10200910 DOI: 10.34133/research.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/20/2023] [Indexed: 05/25/2023]
Abstract
Metal nanomaterials can facilitate microbial extracellular electron transfer (EET) in the electrochemically active biofilm. However, the role of nanomaterials/bacteria interaction in this process is still unclear. Here, we reported the single-cell voltammetric imaging of Shewanella oneidensis MR-1 at the single-cell level to elucidate the metal-enhanced EET mechanism in vivo by the Fermi level-responsive graphene electrode. Quantified oxidation currents of ~20 fA were observed from single native cells and gold nanoparticle (AuNP)-coated cells in linear sweep voltammetry analysis. On the contrary, the oxidation potential was reduced by up to 100 mV after AuNP modification. It revealed the mechanism of AuNP-catalyzed direct EET decreasing the oxidation barrier between the outer membrane cytochromes and the electrode. Our method offered a promising strategy to understand the nanomaterials/bacteria interaction and guide the rational construction of EET-related microbial fuel cells.
Collapse
Affiliation(s)
- Qing Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Rui Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Xueqin Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518000, P. R. China
| |
Collapse
|
48
|
Edwards EH, Jelušić J, Kosko RM, McClelland KP, Ngarnim SS, Chiang W, Lampa-Pastirk S, Krauss TD, Bren KL. Shewanella oneidensis MR-1 respires CdSe quantum dots for photocatalytic hydrogen evolution. Proc Natl Acad Sci U S A 2023; 120:e2206975120. [PMID: 37068259 PMCID: PMC10151509 DOI: 10.1073/pnas.2206975120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
Living bio-nano systems for artificial photosynthesis are of growing interest. Typically, these systems use photoinduced charge transfer to provide electrons for microbial metabolic processes, yielding a biosynthetic solar fuel. Here, we demonstrate an entirely different approach to constructing a living bio-nano system, in which electrogenic bacteria respire semiconductor nanoparticles to support nanoparticle photocatalysis. Semiconductor nanocrystals are highly active and robust photocatalysts for hydrogen (H2) evolution, but their use is hindered by the oxidative side of the reaction. In this system, Shewanella oneidensis MR-1 provides electrons to a CdSe nanocrystalline photocatalyst, enabling visible light-driven H2 production. Unlike microbial electrolysis cells, this system requires no external potential. Illuminating this system at 530 nm yields continuous H2 generation for 168 h, which can be lengthened further by replenishing bacterial nutrients.
Collapse
Affiliation(s)
- Emily H. Edwards
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Jana Jelušić
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Ryan M. Kosko
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | | | - Soraya S. Ngarnim
- Department of Chemistry, University of Rochester, Rochester, NY14627
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY14627
| | | | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, NY14627
- Department of Optics, University of Rochester, Rochester, NY14627
| | - Kara L. Bren
- Department of Chemistry, University of Rochester, Rochester, NY14627
| |
Collapse
|
49
|
Li J, Han H, Chang Y, Wang B. The material-microorganism interface in microbial hybrid electrocatalysis systems. NANOSCALE 2023; 15:6009-6024. [PMID: 36912348 DOI: 10.1039/d3nr00742a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This review presents a comprehensive summary of the material-microorganism interface in microbial hybrid electrocatalysis systems. Microbial hybrid electrocatalysis has been developed to combine the advantages of inorganic electrocatalysis and microbial catalysis. However, electron transfer at the interfaces between microorganisms and materials is a very critical issue that affects the efficiency of the system. Therefore, this review focuses on the electron transfer at the material-microorganism interface and the strategies for building efficient microorganism and material interfaces. We begin with a brief introduction of the electron transfer mechanism in both the bioanode and biocathode of bioelectrochemical systems to understand the material-microorganism interface. Next, we summarise the strategies for constructing efficient material-microorganism interfaces including material design and modification and bacterial engineering. We also discuss emerging studies on the bio-inorganic hybrid electrocatalysis system. Understanding the interface between electrode/active materials and the microorganisms, especially the electron transfer processes, could help to drive the evolution of material-microorganism hybrid electrocatalysis systems towards maturity.
Collapse
Affiliation(s)
- Jiyao Li
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Hexing Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| | - Yanhong Chang
- Department of Environmental Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
| |
Collapse
|
50
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|