1
|
Hernandez FJ. Nucleases: From Primitive Immune Defenders to Modern Biotechnology Tools. Immunology 2025; 174:279-286. [PMID: 39686519 PMCID: PMC11799398 DOI: 10.1111/imm.13884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2024] [Revised: 10/22/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The story of nucleases begins on the ancient battlefields of early Earth, where simple bacteria fought to survive against viral invaders. Nucleases are enzymes that degrade nucleic acids, with restriction endonucleases emerging as some of the earliest defenders, cutting foreign DNA to protect their bacteria hosts. However, bacteria sought more than just defence. They evolved the CRISPR-Cas system, an adaptive immune mechanism capable of remembering past invaders. The now-famous Cas9 nuclease, a key player in this system, has been harnessed for genome editing, revolutionising biotechnology. Over time, nucleases evolved from basic viral defence tools into complex regulators of immune function in higher organisms. In humans, DNases and RNases maintain immune balance by clearing cellular debris, preventing autoimmunity, and defending against pathogens. These enzymes have transformed from simple bacterial defenders to critical players in both human immunity and biotechnology. This review explores the evolutionary history of nucleases and their vital roles as protectors in the story of life's defence mechanisms.
Collapse
Affiliation(s)
- Frank J. Hernandez
- Department of Physics, Chemistry and BiologyLinköping UniversityLinköpingSweden
- Department of Bioengineering and Biosciences, TECNUNNavarra UniversityDonostiaSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
2
|
Piscitelli J, Witte S, Sakinejad Y, Manhart C. Mlh1-Pms1 ATPase activity is regulated distinctly by self-generated nicks and strand discrimination signals in mismatch repair. Nucleic Acids Res 2025; 53:gkae1253. [PMID: 39704127 PMCID: PMC11797057 DOI: 10.1093/nar/gkae1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024] Open
Abstract
In eukaryotic post-replicative mismatch repair, MutS homolog complexes detect mismatches and in the major eukaryotic pathway, recruit Mlh1-Pms1/MLH1-PMS2 (yeast/human) complexes, which nick the newly replicated DNA strand upon activation by the replication processivity clamp, PCNA. This incision enables mismatch removal and DNA repair. Beyond its endonuclease role, Mlh1-Pms1/MLH1-PMS2 also has ATPase activity, which genetic studies suggest is essential for mismatch repair, although its precise regulatory role on DNA remains unclear. Here, we use an ATP-binding and hydrolysis-deficient yeast Mlh1-Pms1 variant to show that ATP hydrolysis promotes disengagement from Mlh1-Pms1-generated nicks, with hydrolysis in the Mlh1 subunit driving this activity. Our data suggest that the ATPase-deficient variant becomes trapped on its own endonuclease product, suggesting a mechanistic explanation for observations in genetic experiments. Additionally, we observed that Mlh1-Pms1 selectively protects DNA from exonuclease degradation at pre-existing nicks, which may act as strand discrimination signals in mismatch repair. Together, our findings suggest that Mlh1-Pms1 exhibits distinct behaviors on its own endonuclease products versus substrates with pre-existing nicks, supporting two distinct modes of action during DNA mismatch repair.
Collapse
Affiliation(s)
- Jonathan M Piscitelli
- Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA
| | - Scott J Witte
- Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA
| | - Yasmine S Sakinejad
- Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA
| | - Carol M Manhart
- Department of Chemistry, Temple University, 1901 N. 13th St. Philadelphia, PA 19122, USA
| |
Collapse
|
3
|
Collingwood BW, Bhalkar AN, Manhart CM. The mismatch repair factor Mlh1-Pms1 uses ATP to compact and remodel DNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633381. [PMID: 39868200 PMCID: PMC11760735 DOI: 10.1101/2025.01.16.633381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 01/28/2025]
Abstract
In eukaryotes, mismatch repair begins with MutS homolog (MSH) complexes, which scan newly replicated DNA for mismatches. Upon mismatch detection, MSH complexes recruit the PCNA-stimulated endonuclease Mlh1-Pms1/PMS2 (yeast/human), which nicks the DNA to allow downstream proteins to remove the mismatch. Past work has shown that although Mlh1-Pms1 is an ATPase and this activity is important in vivo, ATP is not required to nick DNA. Our data, using yeast as a model, suggests that Mlh1-Pms1 forms oligomeric complexes that drive DNA conformational rearrangements using the protein's ATPase activity. Experiments with non-B-form DNA structures, common in microsatellite regions, show that these structures inhibit Mlh1-Pms1's activities, likely through impeding Mlh1-Pms1-dependent DNA conformational changes. This could explain an additional mode for instability in these regions of the genome. These findings highlight the importance of DNA compaction and topological rearrangements in Mlh1-Pms1's function and provide insight into how mismatch repair relies on DNA structure to coordinate events.
Collapse
Affiliation(s)
- Bryce W. Collingwood
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Amruta N. Bhalkar
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| |
Collapse
|
4
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. DNA Repair (Amst) 2025; 145:103791. [PMID: 39615226 DOI: 10.1016/j.dnarep.2024.103791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/25/2025]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
5
|
Collingwood BW, Witte SJ, Manhart CM. Action-At-A-Distance in DNA Mismatch Repair: Mechanistic Insights and Models for How DNA and Repair Proteins Facilitate Long-Range Communication. Biomolecules 2024; 14:1442. [PMID: 39595618 PMCID: PMC11592386 DOI: 10.3390/biom14111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Many DNA metabolic pathways, including DNA repair, require the transmission of signals across long stretches of DNA or between DNA molecules. Solutions to this signaling challenge involve various mechanisms: protein factors can travel between these sites, loop DNA between sites, or form oligomers that bridge the spatial gaps. This review provides an overview of how these paradigms have been used to explain DNA mismatch repair, which involves several steps that require action-at-a-distance. Here, we describe these models in detail and how current data fit into these descriptions. We also outline regulation steps that remain unanswered in how the action is communicated across long distances along a DNA contour in DNA mismatch repair.
Collapse
Affiliation(s)
| | | | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA; (B.W.C.); (S.J.W.)
| |
Collapse
|
6
|
Sun H, Luo M, Zhou M, Zheng L, Li H, Esworthy RS, Shen B. Structure-specific nucleases in genome dynamics and strategies for targeting cancers. J Mol Cell Biol 2024; 16:mjae019. [PMID: 38714348 PMCID: PMC11574390 DOI: 10.1093/jmcb/mjae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/06/2024] [Indexed: 05/09/2024] Open
Abstract
Nucleases are a super family of enzymes that hydrolyze phosphodiester bonds present in genomes. They widely vary in substrates, causing differentiation in cleavage patterns and having a diversified role in maintaining genetic material. Through cellular evolution of prokaryotic to eukaryotic, nucleases become structure-specific in recognizing its own or foreign genomic DNA/RNA configurations as its substrates, including flaps, bubbles, and Holliday junctions. These special structural configurations are commonly found as intermediates in processes like DNA replication, repair, and recombination. The structure-specific nature and diversified functions make them essential to maintaining genome integrity and evolution in normal and cancer cells. In this article, we review their roles in various pathways, including Okazaki fragment maturation during DNA replication, end resection in homology-directed recombination repair of DNA double-strand breaks, DNA excision repair and apoptosis DNA fragmentation in response to exogenous DNA damage, and HIV life cycle. As the nucleases serve as key points for the DNA dynamics, cellular apoptosis, and cancer cell survival pathways, we discuss the efforts in the field in developing the therapeutic regimens, taking advantage of recently available knowledge of their diversified structures and functions.
Collapse
Affiliation(s)
- Haitao Sun
- Medicinal Plant Resources and Protection Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Megan Luo
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Mian Zhou
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Hongzhi Li
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - R Steven Esworthy
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
7
|
Galli M, Frigerio C, Colombo CV, Casari E, Longhese MP, Clerici M. Exo1 cooperates with Tel1/ATM in promoting recombination events at DNA replication forks. iScience 2024; 27:110410. [PMID: 39081288 PMCID: PMC11284563 DOI: 10.1016/j.isci.2024.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2024] [Revised: 05/27/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Tel1/ataxia telangiectasia mutated (ATM) kinase plays multiple functions in response to DNA damage, promoting checkpoint-mediated cell-cycle arrest and repair of broken DNA. In addition, Saccharomyces cerevisiae Tel1 stabilizes replication forks that arrest upon the treatment with the topoisomerase poison camptothecin (CPT). We discover that inactivation of the Exo1 nuclease exacerbates the sensitivity of Tel1-deficient cells to CPT and other agents that hamper DNA replication. Furthermore, cells lacking both Exo1 and Tel1 activities exhibit sustained checkpoint activation in the presence of CPT, indicating that Tel1 and Exo1 limit the activation of a Mec1-dependent checkpoint. The absence of Tel1 or its kinase activity enhances recombination between inverted DNA repeats induced by replication fork blockage in an Exo1-dependent manner. Thus, we propose that Exo1 processes intermediates arising at stalled forks in tel1 mutants to promote DNA replication recovery and cell survival.
Collapse
Affiliation(s)
- Michela Galli
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Chiara Frigerio
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Chiara Vittoria Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Erika Casari
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Maria Pia Longhese
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Michela Clerici
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi di Milano-Bicocca, Milano, Italy
| |
Collapse
|
8
|
Trost H, Lopezcolorado FW, Merkell A, Stark JM. Functions of PMS2 and MLH1 important for regulation of divergent repeat-mediated deletions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606388. [PMID: 39149360 PMCID: PMC11326157 DOI: 10.1101/2024.08.05.606388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Academic Contribution Register] [Indexed: 08/17/2024]
Abstract
Repeat-mediated deletions (RMDs) are a type of deletion rearrangement that utilizes two repetitive elements to bridge a DNA double-strand break (DSB) that leads to loss of the intervening sequence and one of the repeats. Sequence divergence between repeats causes RMD suppression and indeed this divergence must be resolved in the RMD products. The mismatch repair factor, MLH1, was shown to be critical for both RMD suppression and a polarity of sequence divergence resolution in RMDs. Here, we sought to study the interrelationship between these two aspects of RMD regulation (i.e., RMD suppression and polar divergence resolution), by examining several mutants of MLH1 and its binding partner PMS2. To begin with, we show that PMS2 is also critical for both RMD suppression and polar resolution of sequence divergence in RMD products. Then, with six mutants of the MLH1-PMS2 heterodimer, we found several different patterns: three mutants showed defects in both functions, one mutant showed loss of RMD suppression but not polar divergence resolution, whereas another mutant showed the opposite, and finally one mutant showed loss of RMD suppression but had a complex effect on polar divergence resolution. These findings indicate that RMD suppression vs. polar resolution of sequence divergence are distinct functions of MLH1-PMS2.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| |
Collapse
|
9
|
Piscitelli JM, Witte SJ, Sakinejad YS, Manhart CM. The Mlh1-Pms1 endonuclease uses ATP to preserve DNA discontinuities as strand discrimination signals to facilitate mismatch repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598860. [PMID: 38915520 PMCID: PMC11195183 DOI: 10.1101/2024.06.13.598860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/26/2024]
Abstract
In eukaryotic post-replicative mismatch repair, MutS homologs (MSH) detect mismatches and recruit MLH complexes to nick the newly replicated DNA strand upon activation by the replication processivity clamp, PCNA. This incision enables mismatch removal and DNA repair. Biasing MLH endonuclease activity to the newly replicated DNA strand is crucial for repair. In reconstituted in vitro assays, PCNA is loaded at pre-existing discontinuities and orients the major MLH endonuclease Mlh1-Pms1/MLH1-PMS2 (yeast/human) to nick the discontinuous strand. In vivo, newly replicated DNA transiently contains discontinuities which are critical for efficient mismatch repair. How these discontinuities are preserved as strand discrimination signals during the window of time where mismatch repair occurs is unknown. Here, we demonstrate that yeast Mlh1-Pms1 uses ATP binding to recognize DNA discontinuities. This complex does not efficiently interact with PCNA, which partially suppresses ATPase activity, and prevents dissociation from the discontinuity. These data suggest that in addition to initiating mismatch repair by nicking newly replicated DNA, Mlh1-Pms1 protects strand discrimination signals, aiding in maintaining its own strand discrimination signposts. Our findings also highlight the significance of Mlh1-Pms1's ATPase activity for inducing DNA dissociation, as mutant proteins deficient in this function become immobilized on DNA post-incision, explaining in vivo phenotypes.
Collapse
Affiliation(s)
| | - Scott J. Witte
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Yasmine S. Sakinejad
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| | - Carol M. Manhart
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania, 19122, USA
| |
Collapse
|
10
|
Sun H, Ma L, Tsai YF, Abeywardana T, Shen B, Zheng L. Okazaki fragment maturation: DNA flap dynamics for cell proliferation and survival. Trends Cell Biol 2023; 33:221-234. [PMID: 35879148 PMCID: PMC9867784 DOI: 10.1016/j.tcb.2022.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/24/2023]
Abstract
Unsuccessful processing of Okazaki fragments leads to the accumulation of DNA breaks which are associated with many human diseases including cancer and neurodegenerative disorders. Recently, Okazaki fragment maturation (OFM) has received renewed attention regarding how unprocessed Okazaki fragments are sensed and repaired, and how inappropriate OFM impacts on genome stability and cell viability, especially in cancer cells. We provide an overview of the highly efficient and faithful canonical OFM pathways and their regulation of genomic integrity and cell survival. We also discuss how cells induce alternative error-prone OFM processes to promote cell survival in response to environmental stresses. Such stress-induced OFM processes may be important mechanisms driving mutagenesis, cellular evolution, and resistance to radio/chemotherapy and targeted therapeutics in human cancers.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Lingzi Ma
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Ya-Fang Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Tharindu Abeywardana
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Binghui Shen
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| | - Li Zheng
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
11
|
Trost H, Merkell A, Lopezcolorado FW, Stark J. Resolution of sequence divergence for repeat-mediated deletions shows a polarity that is mediated by MLH1. Nucleic Acids Res 2023; 51:650-667. [PMID: 36620890 PMCID: PMC9881173 DOI: 10.1093/nar/gkac1240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2022] [Revised: 11/07/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
Repeat-mediated deletions (RMDs) are a type of chromosomal rearrangement between two homologous sequences that causes loss of the sequence between the repeats, along with one of the repeats. Sequence divergence between repeats suppresses RMDs; the mechanisms of such suppression and of resolution of the sequence divergence remains poorly understood. We identified RMD regulators using a set of reporter assays in mouse cells that test two key parameters: repeat sequence divergence and the distances between one repeat and the initiating chromosomal break. We found that the mismatch repair factor MLH1 suppresses RMDs with sequence divergence in the same pathway as MSH2 and MSH6, and which is dependent on residues in MLH1 and its binding partner PMS2 that are important for nuclease activity. Additionally, we found that the resolution of sequence divergence in the RMD product has a specific polarity, where divergent bases that are proximal to the chromosomal break end are preferentially removed. Moreover, we found that the domain of MLH1 that forms part of the MLH1-PMS2 endonuclease is important for polarity of resolution of sequence divergence. We also identified distinctions between MLH1 versus TOP3α in regulation of RMDs. We suggest that MLH1 suppresses RMDs with sequence divergence, while also promoting directional resolution of sequence divergence in the RMD product.
Collapse
Affiliation(s)
- Hannah Trost
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Arianna Merkell
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- To whom correspondence should be addressed. Tel: +1 626 218-6346; Fax: +1 626 218 8892;
| |
Collapse
|
12
|
Daniels HG, Knicely BG, Miller AK, Thompson A, Plattner R, Goellner EM. Inhibition of ABL1 by tyrosine kinase inhibitors leads to a downregulation of MLH1 by Hsp70-mediated lysosomal protein degradation. Front Genet 2022; 13:940073. [PMID: 36338985 PMCID: PMC9631443 DOI: 10.3389/fgene.2022.940073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 01/07/2023] Open
Abstract
The DNA mismatch repair (MMR) pathway and its regulation are critical for genomic stability. Mismatch repair (MMR) follows replication and repairs misincorporated bases and small insertions or deletions that are not recognized and removed by the proofreading polymerase. Cells deficient in MMR exhibit an increased overall mutation rate and increased expansion and contraction of short repeat sequences in the genome termed microsatellite instability (MSI). MSI is often a clinical measure of genome stability in tumors and is used to determine the course of treatment. MMR is also critical for inducing apoptosis after alkylation damage from environmental agents or DNA-damaging chemotherapy. MLH1 is essential for MMR, and loss or mutation of MLH1 leads to defective MMR, increased mutation frequency, and MSI. In this study, we report that tyrosine kinase inhibitors, imatinib and nilotinib, lead to decreased MLH1 protein expression but not decreased MLH1 mRNA levels. Of the seven cellular targets of Imatinib and nilotinib, we show that silencing of ABL1 also reduces MLH1 protein expression. Treatment with tyrosine kinase inhibitors or silencing of ABL1 results in decreased apoptosis after treatment with alkylating agents, suggesting the level of MLH1 reduction is sufficient to disrupt MMR function. We also report MLH1 is tyrosine phosphorylated by ABL1. We demonstrate that MLH1 downregulation by ABL1 knockdown or inhibition requires chaperone protein Hsp70 and that MLH1 degradation can be abolished with the lysosomal inhibitor bafilomycin. Taken together, we propose that ABL1 prevents MLH1 from being targeted for degradation by the chaperone Hsp70 and that in the absence of ABL1 activity at least a portion of MLH1 is degraded through the lysosome. This study represents an advance in understanding MMR pathway regulation and has important clinical implications as MMR status is used in the clinic to inform patient treatment, including the use of immunotherapy.
Collapse
Affiliation(s)
- Hannah G. Daniels
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Breanna G. Knicely
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Anna Kristin Miller
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States
| | - Ana Thompson
- Berea College, Berea, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States
| | - Rina Plattner
- University of Kentucky Markey Cancer Center, Lexington, KY, United States,University of Kentucky, College of Medicine Department of Pharmacology and Nutritional Sciences, Lexington, KY, United States
| | - Eva M. Goellner
- University of Kentucky, College of Medicine Department of Toxicology and Cancer Biology, Lexington, KY, United States,University of Kentucky Markey Cancer Center, Lexington, KY, United States,*Correspondence: Eva M. Goellner,
| |
Collapse
|
13
|
The unstructured linker of Mlh1 contains a motif required for endonuclease function which is mutated in cancers. Proc Natl Acad Sci U S A 2022; 119:e2212870119. [PMID: 36215471 PMCID: PMC9586283 DOI: 10.1073/pnas.2212870119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
DNA mismatch repair (MMR) prevents mutations caused by DNA-replication errors and suppresses multiple types of cancers. During MMR, the Mlh1-Pms1 complex is recruited to mispair-containing DNA and nicks the newly replicated DNA strand, targeting it for degradation and resynthesis. Here, we identified an amino acid sequence within the unstructured linker of Mlh1 required for endonuclease activity. This sequence functioned when moved within the Mlh1 linker or when moved to the Pms1 linker. These results reveal a functional role for the intrinsically disordered region, which is conserved from yeast to humans and is mutated in cancer, suggesting that it organizes the catalytically active complex even though the required sequence can be distant from the active site. Eukaryotic DNA mismatch repair (MMR) depends on recruitment of the Mlh1-Pms1 endonuclease (human MLH1-PMS2) to mispaired DNA. Both Mlh1 and Pms1 contain a long unstructured linker that connects the N- and carboxyl-terminal domains. Here, we demonstrated the Mlh1 linker contains a conserved motif (Saccharomyces cerevisiae residues 391–415) required for MMR. The Mlh1-R401A,D403A-Pms1 linker motif mutant protein was defective for MMR and endonuclease activity in vitro, even though the conserved motif could be >750 Å from the carboxyl-terminal endonuclease active site or the N-terminal adenosine triphosphate (ATP)-binding site. Peptides encoding this motif inhibited wild-type Mlh1-Pms1 endonuclease activity. The motif functioned in vivo at different sites within the Mlh1 linker and within the Pms1 linker. Motif mutations in human cancers caused a loss-of-function phenotype when modeled in S. cerevisiae. These results suggest that the Mlh1 motif promotes the PCNA-activated endonuclease activity of Mlh1-Pms1 via interactions with DNA, PCNA, RFC, or other domains of the Mlh1-Pms1 complex.
Collapse
|
14
|
Masnovo C, Lobo AF, Mirkin SM. Replication dependent and independent mechanisms of GAA repeat instability. DNA Repair (Amst) 2022; 118:103385. [PMID: 35952488 PMCID: PMC9675320 DOI: 10.1016/j.dnarep.2022.103385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
Abstract
Trinucleotide repeat instability is a driver of human disease. Large expansions of (GAA)n repeats in the first intron of the FXN gene are the cause Friedreich's ataxia (FRDA), a progressive degenerative disorder which cannot yet be prevented or treated. (GAA)n repeat instability arises during both replication-dependent processes, such as cell division and intergenerational transmission, as well as in terminally differentiated somatic tissues. Here, we provide a brief historical overview on the discovery of (GAA)n repeat expansions and their association to FRDA, followed by recent advances in the identification of triplex H-DNA formation and replication fork stalling. The main body of this review focuses on the last decade of progress in understanding the mechanism of (GAA)n repeat instability during DNA replication and/or DNA repair. We propose that the discovery of additional mechanisms of (GAA)n repeat instability can be achieved via both comparative approaches to other repeat expansion diseases and genome-wide association studies. Finally, we discuss the advances towards FRDA prevention or amelioration that specifically target (GAA)n repeat expansions.
Collapse
Affiliation(s)
- Chiara Masnovo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Ayesha F Lobo
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
15
|
Miller AK, Mao G, Knicely BG, Daniels HG, Rahal C, Putnam CD, Kolodner RD, Goellner EM. Rad5 and Its Human Homologs, HLTF and SHPRH, Are Novel Interactors of Mismatch Repair. Front Cell Dev Biol 2022; 10:843121. [PMID: 35784486 PMCID: PMC9243396 DOI: 10.3389/fcell.2022.843121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
DNA mismatch repair (MMR) repairs replication errors, and MMR defects play a role in both inherited cancer predisposition syndromes and in sporadic cancers. MMR also recognizes mispairs caused by environmental and chemotherapeutic agents; however, in these cases mispair recognition leads to apoptosis and not repair. Although mutation avoidance by MMR is fairly well understood, MMR-associated proteins are still being identified. We performed a bioinformatic analysis that implicated Saccharomyces cerevisiae Rad5 as a candidate for interacting with the MMR proteins Msh2 and Mlh1. Rad5 is a DNA helicase and E3 ubiquitin ligase involved in post-replicative repair and damage tolerance. We confirmed both interactions and found that the Mlh1 interaction is mediated by a conserved Mlh1-interacting motif (MIP box). Despite this, we did not find a clear role for Rad5 in the canonical MMR mutation avoidance pathway. The interaction of Rad5 with Msh2 and Mlh1 is conserved in humans, although each of the Rad5 human homologs, HLTF and SHPRH, shared only one of the interactions: HLTF interacts with MSH2, and SHPRH interacts with MLH1. Moreover, depletion of SHPRH, but not HLTF, results in a mild increase in resistance to alkylating agents although not as strong as loss of MMR, suggesting gene duplication led to specialization of the MMR-protein associated roles of the human Rad5 homologs. These results provide insights into how MMR accessory factors involved in the MMR-dependent apoptotic response interact with the core MMR machinery and have important health implications into how human cells respond to environmental toxins, tumor development, and treatment choices of tumors with defects in Rad5 homologs.
Collapse
Affiliation(s)
- Anna K. Miller
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Guogen Mao
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Breanna G. Knicely
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Hannah G. Daniels
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Christine Rahal
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
| | - Christopher D. Putnam
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Department of Medicine, University of California San Diego, San Diego, CA, United States
| | - Richard D. Kolodner
- Ludiwg Institute for Cancer Research San Diego, San Diego, CA, United States
- Moores-UCSD Cancer Center, San Diego, CA, United States
- Institute of Genomic Medicine, San Diego, CA, United States
- Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, United States
| | - Eva M. Goellner
- College of Medicine Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
16
|
The nuclease activity of DNA2 promotes exonuclease 1-independent mismatch repair. J Biol Chem 2022; 298:101831. [PMID: 35300981 PMCID: PMC9036127 DOI: 10.1016/j.jbc.2022.101831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/03/2022] Open
Abstract
The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.
Collapse
|