1
|
Yu Y, Zhang M, Wang D, Xiang Z, Zhao Z, Cui W, Ye S, Fazhan H, Waiho K, Ikhwanuddin M, Ma H. Whole transcriptome RNA sequencing provides novel insights into the molecular dynamics of ovarian development in mud crab, Scylla paramamosain after mating. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101247. [PMID: 38788625 DOI: 10.1016/j.cbd.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/18/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Ovarian development in animals is a complicated biological process, requiring the simultaneous coordination among various genes and pathways. To understand the dynamic changes and molecular regulatory mechanisms of ovarian development in mud crab (Scylla paramamosain), both histological observation and whole transcriptome sequencing of ovarian tissues at different mating stages were implemented in this study. The histological results revealed that ovarian development was delayed in unmated females (60 days after courtship behavior but not mating), who exhibited an oocyte diameter of 56.38 ± 15.17 μm. Conversely, mated females exhibited accelerated the ovarian maturation process, with females reaching ovarian stage III (proliferative stage) 23 days after mating and attained an average oocyte diameter of 132.19 ± 15.07 μm. Thus, mating process is essential in promoting the rapid ovarian development in mud crab. Based on the whole transcriptome sequencing analysis, a total of 518 mRNAs, 1502 lncRNAs, 18 circRNAs and 151 miRNAs were identified to be differentially expressed between ovarian tissues at different mating stages. Notably, six differentially expressed genes (DEGs) associated with ovarian development were identified, including ovary development-related protein, red pigment concentrating hormone receptor, G2/mitotic-specific cyclin-B3-like, lutropin-chorio gonadotropic hormone receptor, renin receptor, and SoxB2. More importantly, both DEGs and targets of differentially expressed non-coding RNAs (DEncRNAs) were enriched in renin-angiotensin system, TGF-β signaling, cell adhesion molecules, MAPK signaling pathway, and ECM-receptor interaction, suggesting that these pathways may play significant roles in the ovarian development of mud crabs. Moreover, competition endogenous RNA (ceRNA) networks were constructed while mRNAs were differentially expressed between mating stages were involved in Gene Ontology (GO) biological processes such as developmental process, reproduction, and growth. These findings could provide solid foundations for the future development of female mud crab maturation enhancement strategy, and improve the understanding of the ovarian maturation process in crustaceans.
Collapse
Affiliation(s)
- Yang Yu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mengqian Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Dahe Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Zifei Xiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zilin Zhao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Wenxiao Cui
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shaopan Ye
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Hanafiah Fazhan
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Khor Waiho
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Mhd Ikhwanuddin
- International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Higher Institute Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; International Joint Research Center for the Development and Utilization of Important Mariculture Varieties Surrounding the South China Sea Region, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Jiang G, Xue Y, Huang X. Temperature-Induced Sex Differentiation in River Prawn ( Macrobrachium nipponense): Mechanisms and Effects. Int J Mol Sci 2024; 25:1207. [PMID: 38279207 PMCID: PMC10816446 DOI: 10.3390/ijms25021207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
Macrobrachium nipponense is gonochoristic and sexually dimorphic. The male prawn grows faster and usually has a larger size than the female. Therefore, a higher male proportion in stock usually results in higher yield. To investigate the impact of temperature on sexual differentiation in M. nipponense, two temperature treatments (26 °C and 31 °C) were conducted. The results showed that compared to the 31 °C treatment (3.20 ± 0.12), the 26 °C treatment displayed a lower female/male ratio (2.20 ± 0.11), which implied that a lower temperature could induce masculinization in M. nipponense. The temperature-sensitive sex differentiation phase was 25-35 days post hatching (DPH) at 26 °C while 15-20 DPH at 31 °C. Transcriptome and qPCR analysis revealed that a lower temperature up-regulated the expression of genes related to androgen secretion, and down-regulated the expressions of genes related to oogonia differentiation. Thirty-one temperature-regulated sex-differentiation genes were identified and the molecular mechanism of temperature-regulated sex differentiation was suggested. The finding of this study indicates that temperature regulation can be proposed as an innovative strategy for improving the culture yield of M. nipponense.
Collapse
Affiliation(s)
- Gang Jiang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Yucai Xue
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
| | - Xuxiong Huang
- Centre for Research on Environmental Ecology and Fish Nutrition (CREEFN) of the Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; (G.J.); (Y.X.)
- Building of China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology and Joint Research on Mariculture Technology, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Fu C, Fu X, Li F, Li Z, Wang A, Jiang S, Liu C, Wang H. Integrated microRNA-mRNA analysis reveals a possible molecular mechanism of enteritis susceptibility in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108699. [PMID: 36935044 DOI: 10.1016/j.fsi.2023.108699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Enteritis is one of the main diseases affecting Pacific whiteleg shrimp (Litopenaeus vannamei) in recent years, and it has resulted in huge losses to the aquaculture industry. Prior to this study, the molecular mechanism underlying enteritis in L. vannamei was unclear, and comprehensive multi-omics analysis had not been conducted. In this study, 1209 differentially expressed genes (DEGs) were identified from the hepatopancreas of L. vannamei with and without enteritis. Kyoto Encyclopedia of Genes and Genomes analysis showed that genes were significantly enriched in immune, metabolic, and endocrine regulatory pathways. Forty-eight significantly different microRNAs (miRNAs) were identified in the miRNA-Seq analysis. Further functional annotation analysis showed that the regulatory pathway of target gene enrichment of differentially expressed miRNAs was consistent with DEGs. Through miRNA-mRNA integration analysis, 47 meaningful miRNA-mRNA pairs were obtained, of which melanogenesis and pancreatic secretion were considered key pathways. Subsequent miRNA-mRNA interaction network analysis revealed that mja-miR-6493-3p, Mja-miR-6494, novel-198, novel-272, novel-261, novel-200, novel-183, novel-184, novel-237, and novel-192 may be key miRNAs involved in the regulation of these two signaling pathways. Finally, the RAS signaling pathway was found to inhibit the translation level of proteins in the hepatopancreas. These results suggest that target gene integration analysis of mRNA-miRNA can reveal the molecular mechanism underlying enteritis in L. vannamei and also provide valuable new insights for resisting enteritis.
Collapse
Affiliation(s)
- Chunpeng Fu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China.
| | - Xiaopeng Fu
- Marine and Fishery Supervision Detachment of Rizhao City, Rizhao, 276800, China
| | - Fajun Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Zongzhen Li
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - ShanShan Jiang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Chunqiao Liu
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, 262700, China
| | - Hui Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
4
|
Two Short Repeats in the 5′ Untranslated Region of Insulin-like Androgenic Gland Factor in Procambarus clarkii (PcIAG) That Regulate PcIAG Expression. Int J Mol Sci 2022; 23:ijms231810348. [PMID: 36142261 PMCID: PMC9499548 DOI: 10.3390/ijms231810348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
Insulin-like androgenic gland factor (IAG) plays an important role in sex manipulation in decapods. Understanding the molecular regulation mechanism of IAG in Procambarus clarkii (PcIAG) is important for realizing its sex control. In this study, the promoter and gene structure of PcIAG, mRNA, and miRNA expression profiles after interfering with two siRNAs synthesized according to the two short repeats in the 5′ untranslated regions (5′UTR) of PcIAG were analyzed, and miRNAs of exosomes were investigated to explore the role of repeated sequences with tandem two short repeats located in the 5′UTR of PcIAG isolated from the androgenic gland (AG) in the regulation of IAG expression. The results showed that the repeated sequences of 5′UTR only occurred completely in the cDNA from AG, and the function of the two repeats was different in regulating the expression of PcIAG, in which the Wnt signaling pathway may be involved. Furthermore, we found that six miRNAs including miR-133, miR-193, miR-34, miR-1, miR-100, and let-7 might be involved in the regulation of the expression of PcIAG, wherein miR-133 might directly be related with the repeated sequences of 5′UTR.
Collapse
|
5
|
Yang S, Zhang X, Zhang X, Bi Y, Gao W. A bZIP transcription factor, PqbZIP1, is involved in the plant defense response of American ginseng. PeerJ 2022; 10:e12939. [PMID: 35282281 PMCID: PMC8916028 DOI: 10.7717/peerj.12939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2021] [Accepted: 01/24/2022] [Indexed: 01/11/2023] Open
Abstract
American ginseng (Panax quinquefolius L.) is a perennial medicinal plant that has a long usage history in China. However, root rot, which is mainly caused by Fusarium solani can severely reduce the yield and quality of American ginseng, but no disease-resistant variety of American ginseng exists, and the resistance against this disease is not yet well understood. Thus, it is very urgent to analyze the interaction mechanism regulating the interactions between American ginseng and F. solani to mine disease resistance genes. Using transcriptome data and quantitative polymerase chain reaction (qPCR), we screened the transcription factor PqbZIP1 in response to induction by chitin. Yeast self-activation and subcellular localization experiments proved that PqbZIP1 showed transcriptional activity and was localized in the plant nucleus. In addition, qPCR showed that the highest relative expression level was in the roots, wherein chitin and F. solani inhibited and activated the expression of PqbZIP1, respectively, in American ginseng. Additionally, PqbZIP1 significantly inhibited the growth of the Pseudomonas syringae pv. tomato D36E strain in Nicotiana benthamiana, where expressing PqbZIP1 in N. benthamiana increased the jasmonic acid, salicylic acid, and abscisic acid content. Furthermore, PqbZIP1 expression was continually increased upon inoculation with F. solani. Hence, this study revealed that the PqbZIP1 transcription factor might mediate multiple hormonal signaling pathway to modulate root rot disease resistance in American ginseng, and provided important information to breed disease-resistant American ginseng.
Collapse
Affiliation(s)
- Shanshan Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoxiao Zhang
- College of Agriculture, Guangxi University, Nanning, China,Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ximei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanmeng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Weiwei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Identification of candidate genes from androgenic gland in Macrobrachium nipponense regulated by eyestalk ablation. Sci Rep 2021; 11:19855. [PMID: 34615913 PMCID: PMC8494903 DOI: 10.1038/s41598-021-99022-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2021] [Accepted: 09/17/2021] [Indexed: 11/28/2022] Open
Abstract
The eyestalk of crustaceans, such as Macrobrachium nipponense, contains many neurosecretory hormones affecting the process of reproduction, molting, metabolism of glucose, and other functions. In this study, important metabolic pathways and candidate genes involved in male sexual development were selected from M. nipponense. The methodology involved performing long-read and next generation transcriptome sequencing of genes from the androgenic gland after eyestalk ablation. qPCR analysis revealed that the mRNA expression of Mn-IAG was significantly increased after ablation of both the single-side (SS) and double-side (DS) eyestalk, compared with the control group (CG). The long-read transcriptome generated 49,840 non-redundant transcripts. A total of 1319, 2092 and 4351 differentially expressed genes (DEGs) were identified between CG versus SS, SS versus DS and CG versus DS, respectively. These data indicated that ablation of the double-sided eyestalk played stronger regulatory roles than the single-side ablation on male sexual development in M. nipponense. This was consistent with the qPCR analysis. Cell Cycle, Cellular Senescence, Oxidative Phosphorylation, Glycolysis/Gluconeogenesis and Steroid Hormone Biosynthesis were the primary enriched metabolic pathways in all three comparisons, and the important genes from these metabolic pathways were also selected. qPCR permitted secondary confirmation of ten DEGs identified through RNA-seq. RNAi-mediated silencing analyses of Hydroxysteroid dehydrogenase like 1 (HSDL1) revealed that HSDL1 has a positive regulatory effect on testes development. This study provides valuable insight into male sexual development in M. nipponense, including metabolic pathways and genes, paving the way for advanced studies on male sexual development in this species and in other crustaceans.
Collapse
|
7
|
Jin S, Fu Y, Hu Y, Fu H, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Transcriptome Profiling Analysis of the Testis After Eyestalk Ablation for Selection of the Candidate Genes Involved in the Male Sexual Development in Macrobrachium nipponense. Front Genet 2021; 12:675928. [PMID: 34135943 PMCID: PMC8202825 DOI: 10.3389/fgene.2021.675928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2021] [Accepted: 04/21/2021] [Indexed: 12/02/2022] Open
Abstract
The eyestalk of crustacean species secretes many hormones, affecting the process of reproduction, molting, metabolism of glucose, and other functions in crustaceans. In this study, important metabolic pathways and candidate genes involved in the male sexual development were identified through performing the transcriptome profiling analysis of the testis after the ablation of eyestalk from Macrobrachium nipponense. The histological observations revealed that the testis development became vigorous after eyestalk ablation, indicating that the hormones secreted by the eyestalk have negative effects on the testis development in M. nipponense. Transcriptome profiling analysis revealed that 1,039, 1,226, and 3,682 differentially expressed genes (DEGs) were identified between normal prawns (CG) vs single-side eyestalk ablation prawns (SS), SS vs double-side eyestalk ablation prawns (DS), and CG vs DS, respectively, indicating that the ablation of double-side eyestalk has more significant regulatory roles on male sexual development than that of single-side ablation, which was consistent with the histological observations. Lysosome, Apoptosis, Glycolysis/Gluconeogenesis, and Insulin signaling pathway were the main enriched metabolic pathways in all of these three comparisons, and the important genes from these metabolic pathways were also selected. The qPCR verifications of 10 DEGs from these metabolic pathways were the same as those of RNA-seq. The qPCR, in situ hybridization, and RNA interference analysis of Mn-NFkBα revealed that NFkBα has a positive regulatory effect on testis development. This study provided new insights on male sexual development in M. nipponense, promoting the studies on male sexual development in other crustaceans as well.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yin Fu
- Key Laboratory of Marine and Estuarine Fisheries, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China.,Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
8
|
Function analysis and molecular characterization of cyclin A in ovary development of oriental river prawn, Macrobrachium nipponense. Gene 2021; 788:145583. [PMID: 33753150 DOI: 10.1016/j.gene.2021.145583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2020] [Revised: 11/26/2020] [Accepted: 03/12/2021] [Indexed: 11/24/2022]
Abstract
Macrobrachium nipponense has the characteristics of fast ovarian development cycle, which leads to the coexistence of multiple generations, the reduction of commodity specifications and the low economic benefit. Therefore, the study on the mechanism of ovarian development is of great significance to the development of industry. Cyclin A (CycA)is a key gene regulating ovarian development in vertebrates, but little information was available for its function in crustaceans. In this study, the full-length cDNA of Mn-CycA was obtained from the ovary. The full-length cDNA (2033 bp) with an open reading frame of 1368 bp, encoded a 456-amino acid protein. qRT-PCR revealed tissue-specific expression pattern of Mn-CycA, with abundant expression in the ovary. Results in different developmental stages of ovary indicated that Mn-CycA expression is positively correlated with ovarian maturation. qRT-PCR In different developmental stages, the expression of Mn-CycA mRNA gradually increased during the embryonic stage and decreased significantly on the first day of the hatching stage. At the 25th day of the metamorphosis stage, the expression level of Mn-CycAmRNA in female shrimp was 3.5 times higher than that in male shrimp, which may be related to the proliferation of oogonia and the formation of oocytes. In situ hybridization (ISH) of ovary showed Mn-CycA was examined in all stages and was mainly located in oogonia and oocytes. Compared with the control group, the obvious change of gonad somatic index (GSI) proved that injection of Mn-CycA dsRNA could delay the ovarian development cycle, which provided strong evidence for the involvement of Mn-CycA in ovarian maturation and oogenesis, and expanded a new perspective for studying the fast ovarian development cycle in M. nipponense.
Collapse
|
9
|
MicroRNA transcriptome analysis of oriental river prawn Macrobrachium nipponense in responding to starvation stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100820. [PMID: 33676153 DOI: 10.1016/j.cbd.2021.100820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Food deprivation or fasting is an important environmental factor, and a regular occurrence in both natural aquatic habitats and artificial ponds. However, the potential immunoregulatory mechanisms underlying starvation stress in crustaceans remain unclear. MicroRNAs (miRNAs) are a new class of non-coding RNAs that can regulate various biological processes, such as stress and immune responses. In the present work, miRNAs related to starvation stress responses and immune properties were identified and characterised in oriental river prawn Macrobrachium nipponense using high-throughput sequencing and bioinformatics analyses. Twelve small RNA libraries from hepatopancreas tissue were sequenced across four fasting stages lasting 0, 7, 14 or 21 days. In total, 550 miRNAs were identified including 198 putative novel miRNAs and 352 conserved miRNAs belonging to 57 families. Moreover, compared with expression levels at 0 days, 27, 27 and 43 miRNAs were differentially expressed (DE-miRNAs) at 7, 14 and 21 days, respectively. Among these, four DE-miRNAs (ame-miR-190-5p, dme-miR-307a-3p, hme-miR-2788-3p and novel_68) were co-expressed at all three timepoints. Furthermore, 661 target genes regulated by these DE-miRNAs were identified, and associated functional annotations were derived by GO enrichment and KEGG pathway analyses, which showed that most DE-miRNAs were mainly participated in metabolic processes and immune responses. Furthermore, 26 host DE-miRNAs potentially participated in interactions with white spot syndrome virus (WSSV) were identified by predicting and analysing target genes from WSSV. The further WSSV challenge under starvation stress showed that dme-miR-307a-3p played a part in the antiviral responses against WSSV. Our results demonstrate that dme-miR-307a-3p may play vital regulatory roles in responding to starvation stress and WSSV infection. The findings contribute new insight into the molecular mechanisms associated with immune responses to environmental stress in crustaceans.
Collapse
|
10
|
Wang YY, Duan SH, Wang GL, Li JL. Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Sci Rep 2021; 11:665. [PMID: 33436779 PMCID: PMC7804246 DOI: 10.1038/s41598-020-80264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Hyriopsis cumingii is an important species for freshwater pearl cultivation in China. In terms of pearl production, males have larger pearls and better glossiness than females, but there are few reports focusing on the sex of H. cumingii. In this study, six mRNA and six microRNA (miRNA) libraries were prepared from ovaries and testes. Additionally, 28,502 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Compared with testis, 14,360 mRNAs and 20 miRNAs were up-regulated in ovary, 14,142 mRNAs and 12 miRNAs were down-regulated. In DEGs, the known genes related to sex determinism and/or differentiation were also identified, such as DMRT1, SOX9, SF1 for males, FOXL2 for females, and other potentially significant candidate genes. Three sex-related pathways have also been identified, which are Wnt, Notch, and TGF-beta. In 32 DEMs, the three miRNAs (miR-9-5p, miR-92, miR-184) were paid more attention, they predicted 28 target genes, which may also be candidates for sex-related miRNAs and genes. Differential miRNAs target genes analysis reveals the pathway associated with oocyte meiosis and spermatogenesis. Overall, the findings of the study provide significant insights to enhance our understanding of sex differentiation and/or sex determination mechanisms for H. cumingii.
Collapse
Affiliation(s)
- Ya-Yu Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Sheng-Hua Duan
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Gui-Ling Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Jia-Le Li
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| |
Collapse
|
11
|
Identification of neuropeptides from eyestalk transcriptome profiling analysis of female oriental river prawn (Macrobrachium nipponense) under hypoxia and reoxygenation conditions. Comp Biochem Physiol B Biochem Mol Biol 2020; 241:110392. [DOI: 10.1016/j.cbpb.2019.110392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
|
12
|
Jin S, Hu Y, Fu H, Sun S, Jiang S, Xiong Y, Qiao H, Zhang W, Gong Y, Wu Y. Analysis of testis metabolome and transcriptome from the oriental river prawn (Macrobrachium nipponense) in response to different temperatures and illumination times. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100662. [PMID: 32114312 DOI: 10.1016/j.cbd.2020.100662] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/24/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 01/15/2023]
Abstract
A better understanding of the mechanisms underlying the male sexual differentiation of Macrobrachium nipponense is urgently needed in order to maintain sustainable development of the M. nipponense industry. Environmental factors, especially temperature and illumination, have dramatic effects on gonadal development. The aim of the present study was to identify key genes and metabolites involved in the male sexual differentiation and development of M. nipponense through integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times. A total of 268 differentially abundant metabolites and 11,832 differentially expressed genes (DEGs) were identified. According to integrated metabolomics and transcriptome analyses, glycerophospholipid and sphingolipid metabolism was predicted to have dramatic effects on the male sexual differentiation and development of M. nipponense. According to the KEGG enrichment analysis of DEGs, oxidative phosphorylation, glycolysis/gluconeogenesis, the HIF-1 signaling pathway, the citrate cycle, steroid hormone synthesis, and the spliceosome complex were predicted to promote male differentiation and development by providing adenosine triphosphate, promoting the synthesis of steroid hormones, and providing correct gene products. Quantitative polymerase chain reaction analysis and in situ hybridization showed that the SDHB, PDE1, HSDL1, CYP81F2, SRSF, and SNRNP40 genes were differentially expressed, suggesting roles in the male sexual differentiation and development of M. nipponense. Strong candidate sex-related metabolic pathways and genes in M. nipponense were identified by integrated metabolomics and transcriptome analyses of the testis in response to different temperatures and illumination times, as confirmed by PCR analysis and in situ hybridization.
Collapse
Affiliation(s)
- Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuning Hu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
13
|
Meng X, Zhang M, Gao B, Lv J, Li J, Liu P. Integrative Proteomic and MicroRNA Analysis: Insights Into Mechanisms of Eyestalk Ablation-Induced Ovarian Maturation in the Swimming Crab Portunus trituberculatus. Front Endocrinol (Lausanne) 2020; 11:533. [PMID: 32922361 PMCID: PMC7456853 DOI: 10.3389/fendo.2020.00533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eyestalk ablation is the most common method to induce ovarian maturation in decapod crustacean aquaculture, but it jeopardizes broodstock survival and larvae production. It is important to understand the molecular basis underlying the maturation triggered by ablation and thereby develop an alternative measure for maturation manipulation. In this study, we investigate alterations of ovarian proteome and miRNA profile after ablation in a commercially important marine crab Portunus trituberculatus. Quantitative proteomic analysis using iTRAQ reveals that 163 proteins are differentially expressed following ablation, and modulation of methyl farnesoate metabolism and activation of calcium signaling may play important roles in the ovarian maturation induced by ablation. miRNA expression profiling identifies 31 miRNAs that show statistically significant changes. Integration of miRNA and proteome expression data with miRNA target prediction algorithms generates a potential regulatory network consisting of 26 miRNAs and 30 proteins linked by 71 possible functional associations. The miRNA-protein network analysis suggests that miRNAs are involved in promoting ovarian maturation by controlling expression of proteins related to methyl farnesoate synthesis, calcium signals, and energy metabolism. Experimental validation and temporal expression analysis indicate multiple miRNAs can act synergistically to regulate expression of Farnesoic acid O-methyltransferase and Calmodulin. Our findings provide new insights for elucidating the mechanisms underlying eyestalk ablation-induced ovarian maturation and could be useful for devising an alternative technique for manipulating reproduction in P. trituberculatus and other decapods.
Collapse
Affiliation(s)
- Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqian Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- *Correspondence: Ping Liu
| |
Collapse
|
14
|
Comparative Transcriptome Analysis of Gonads for the Identification of Sex-Related Genes in Giant Freshwater Prawns ( Macrobrachium Rosenbergii) Using RNA Sequencing. Genes (Basel) 2019; 10:genes10121035. [PMID: 31835875 PMCID: PMC6947849 DOI: 10.3390/genes10121035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022] Open
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) exhibits sex dimorphism between the male and female individuals. To date, the molecular mechanism governing gonadal development was unclear, and limited data were available on the gonad transcriptome of M. rosenbergii. Here, we conducted comprehensive gonadal transcriptomic analysis of female (ZW), super female (WW), and male (ZZ) M. rosenbergii for gene discovery. A total of 70.33 gigabases (Gb) of sequences were generated. There were 115,338 unigenes assembled with a mean size of 1196 base pair (bp) and N50 of 2195 bp. Alignment against the National Center for Biotechnology Information (NCBI) non-redundant nucleotide/protein sequence database (NR and NT), the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, SwissProt database, Protein family (Pfam), Gene ontology (GO), and the eukaryotic orthologous group (KOG) database, 36,282 unigenes were annotated at least in one database. Comparative transcriptome analysis observed that 10,641, 16,903, and 3393 genes were significantly differentially expressed in ZW vs. ZZ, WW vs. ZZ, and WW vs. ZW samples, respectively. Enrichment analysis of differentially expressed genes (DEGs) resulted in 268, 153, and 42 significantly enriched GO terms, respectively, and a total of 56 significantly enriched KEGG pathways. Additionally, 23 putative sex-related genes, including Gtsf1, IR, HSP21, MRPINK, Mrr, and other potentially promising candidate genes were identified. Moreover, 56,241 simple sequence repeats (SSRs) were identified. Our findings provide a valuable archive for further functional analyses of sex-related genes and future discoveries of underlying molecular mechanisms of gonadal development and sex determination.
Collapse
|
15
|
Liu X, Luo BY, Feng JB, Zhou LX, Ma KY, Qiu GF. Identification and profiling of microRNAs during gonadal development in the giant freshwater prawn Macrobrachium rosenbergii. Sci Rep 2019; 9:2406. [PMID: 30787336 PMCID: PMC6382778 DOI: 10.1038/s41598-019-38648-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/15/2018] [Accepted: 01/03/2019] [Indexed: 12/14/2022] Open
Abstract
As post-transcriptional regulators, microRNAs (miRNAs) play an important role in growth and reproductive processes. So far, there is limited information regarding crustacean miRNAs. To explore the potential role of miRNAs in the gonadal development of the prawn Macrobrachium rosenbergii, we constructed seven small RNA libraries from ovarian and testicular tissues at various stages using somatic tissue as the control. A total of 1,954 known and 129 novel miRNAs were retrieved. By comparing differentially expressed miRNAs (DEMs) between testes and ovaries, forty-one miRNAs were identified with sex-biased expression patterns, including 17 ovary-biased and 24 testis-biased patterns. Furthermore, the putative target genes of the sex-biased miRNAs, such as cyclin L1, mitogen-activated protein kinase 7 (MAPK 7), heat shock protein (HSP), and zinc finger protein, were significantly enriched in many reproduction-related pathways including the Gonadotropin-releasing hormone (GnRH) pathway, glycolysis, gluconeogenesis pathway, ovarian steroidogenesis, estrogen signaling pathway, MAPK pathway, Wnt pathway, and insulin signaling pathway, implicating potential regulatory roles of miRNAs in reproduction. These data aid in the further investigation of the mechanism of gonadal development and reproductive regulation mediated by miRNA in M. rosenbergii.
Collapse
Affiliation(s)
- Xue Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China
| | - Bi-Yun Luo
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China
| | - Jian-Bin Feng
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China
| | - Ling-Xia Zhou
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China
| | - Ke-Yi Ma
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China.
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China.
| | - Gao-Feng Qiu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China.
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture (Shanghai Ocean University), Shanghai, China.
- Shanghai Engineering Research Center of Aquaculture (Shanghai Ocean University), Shanghai, China.
| |
Collapse
|
16
|
Validation and Evaluation of Reference Genes for Quantitative Real-Time PCR in Macrobrachium Nipponense. Int J Mol Sci 2018; 19:ijms19082258. [PMID: 30071669 PMCID: PMC6121487 DOI: 10.3390/ijms19082258] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 02/02/2023] Open
Abstract
Quantitative real-time PCR (qPCR) is widely used in molecular biology, although the accuracy of the quantitative results is determined by the stability of the reference genes used. Recent studies have investigated suitable reference genes for some crustaceans under various conditions, but studies in Macrobrachium nipponense are currently lacking. In this study, we selected the following seven genes from among 35 commonly used housekeeping genes as candidate qPCR reference genes for temporal and spatial expression: EIF (eukaryotic translation initiation factor 5A), 18S (18S ribosomal RNA), EF-1α (elongation factor-1α), GAPDH (glyceraldehyde-3-phosphate dehydrogenase), TUB (α-tubulin), β-act (β-actin), and RPL18 (Ribosomal protein L18). The stability of each reference gene was evaluated by GeNorm, NormFinder, BestKeeper, and comparative ∆C t methods, and was comprehensively ranked using RefFinder. RPL18 was shown to be the most suitable reference gene for adult M. nipponense tissues, while EIF was the most stable in different ovarian and embryo stages and in white spot syndrome virus infection, and β-act was the most stable reference gene under hypoxia stress. The reliability of the rankings was confirmed by RNA interference experiments. To the best of our knowledge, this represents the first systematic analysis of reference genes for qPCR experiments in M. nipponense, and the results will provide invaluable information for future research in closely related crustaceans.
Collapse
|