1
|
Moon JH, Nam S, Jeung K, Noh MH, Jung GY. Biosensor-Assisted Engineering for Diverse Microbial Cellular Physiologies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18321-18334. [PMID: 39107094 DOI: 10.1021/acs.jafc.4c04619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Recent advancements in biosensor technology have revolutionized the field of microbial engineering, enabling efficient and precise optimization of strains for the production of valuable chemicals. This review comprehensively explores the innovative integration of biosensors to enhance microbial cell factories, with a particular emphasis on the crucial role of high-throughput biosensor-assisted screening. Biosensor-assisted approaches have enabled the identification of novel transporters, the elucidation of underlying transport mechanisms, and the fine-tuning of metabolic pathways for enhanced production. Furthermore, this review illustrates the utilization of biosensors for manipulating cellular behaviors, including interactions with environmental factors, and the reduction of nongenetic cell-to-cell variations. This review highlights the indispensable role of biosensors in advancing the field of microbial engineering through the modulation and exploitation of diverse cellular physiological processes.
Collapse
Affiliation(s)
- Jo Hyun Moon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Sunghyun Nam
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Kumyoung Jeung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| | - Myung Hyun Noh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan 44429, Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Korea
| |
Collapse
|
2
|
Hwang HG, Ye DY, Jung GY. Biosensor-guided discovery and engineering of metabolic enzymes. Biotechnol Adv 2023; 69:108251. [PMID: 37690614 DOI: 10.1016/j.biotechadv.2023.108251] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
A variety of chemicals have been produced through metabolic engineering approaches, and enhancing biosynthesis performance can be achieved by using enzymes with high catalytic efficiency. Accordingly, a number of efforts have been made to discover enzymes in nature for various applications. In addition, enzyme engineering approaches have been attempted to suit specific industrial purposes. However, a significant challenge in enzyme discovery and engineering is the efficient screening of enzymes with the desired phenotype from extensive enzyme libraries. To overcome this bottleneck, genetically encoded biosensors have been developed to specifically detect target molecules produced by enzyme activity at the intracellular level. Especially, the biosensors facilitate high-throughput screening (HTS) of targeted enzymes, expanding enzyme discovery and engineering strategies with advances in systems and synthetic biology. This review examines biosensor-guided HTS systems and highlights studies that have utilized these tools to discover enzymes in diverse areas and engineer enzymes to enhance their properties, such as catalytic efficiency, specificity, and stability.
Collapse
Affiliation(s)
- Hyun Gyu Hwang
- Institute of Environmental and Energy Technology, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Dae-Yeol Ye
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea; School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
3
|
Patwari P, Pruckner F, Fabris M. Biosensors in microalgae: A roadmap for new opportunities in synthetic biology and biotechnology. Biotechnol Adv 2023; 68:108221. [PMID: 37495181 DOI: 10.1016/j.biotechadv.2023.108221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/22/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
Biosensors are powerful tools to investigate, phenotype, improve and prototype microbial strains, both in fundamental research and in industrial contexts. Genetic and biotechnological developments now allow the implementation of synthetic biology approaches to novel different classes of microbial hosts, for example photosynthetic microalgae, which offer unique opportunities. To date, biosensors have not yet been implemented in phototrophic eukaryotic microorganisms, leaving great potential for novel biological and technological advancements untapped. Here, starting from selected biosensor technologies that have successfully been implemented in heterotrophic organisms, we project and define a roadmap on how these could be applied to microalgae research. We highlight novel opportunities for the development of new biosensors, identify critical challenges, and finally provide a perspective on the impact of their eventual implementation to tackle research questions and bioengineering strategies. From studying metabolism at the single-cell level to genome-wide screen approaches, and assisted laboratory evolution experiments, biosensors will greatly impact the pace of progress in understanding and engineering microalgal metabolism. We envision how this could further advance the possibilities for unraveling their ecological role, evolutionary history and accelerate their domestication, to further drive them as resource-efficient production hosts.
Collapse
Affiliation(s)
- Payal Patwari
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Florian Pruckner
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, Odense M DK-5230, Denmark.
| |
Collapse
|
4
|
Zhang J, Li Q, Wang Q, Zhao J, Zhu Y, Su T, Qi Q, Wang Q. Heme biosensor-guided in vivo pathway optimization and directed evolution for efficient biosynthesis of heme. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:33. [PMID: 36859288 PMCID: PMC9979517 DOI: 10.1186/s13068-023-02285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 02/18/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Heme has attracted much attention because of its wide applications in medicine and food. The products of genes hemBCDEFY convert 5-aminolevulinic acid to protoporphyrin IX (PPIX; the immediate precursor of heme); protoporphyrin ferrochelatase (FECH) inserts Fe2+ into PPIX to generate heme. Biosynthesis of heme is limited by the need for optimized expression levels of multiple genes, complex regulatory mechanisms, and low enzymatic activity; these problems need to be overcome in metabolic engineering to improve heme synthesis. RESULTS We report a heme biosensor-guided screening strategy using the heme-responsive protein HrtR to regulate tcR expression in Escherichia coli, providing a quantifiable link between the intracellular heme concentration and cell survival in selective conditions (i.e., the presence of tetracycline). This system was used for rapid enrichment screening of heme-producing strains from a library with random ribosome binding site (RBS) variants and from a FECH mutant library. Through up to four rounds of iterative evolution, strains with optimal RBS intensities for the combination of hemBCDEFY were screened; we obtained a PPIX titer of 160.8 mg/L, the highest yield yet reported in shaken-flask fermentation. A high-activity FECH variant was obtained from the saturation mutagenesis library. Fed-batch fermentation of strain SH20C, harboring the optimized hemBCDEFY and the FECH mutant, produced 127.6 mg/L of heme. CONCLUSION We sequentially improved the multigene biosynthesis pathway of PPIX and performed in vivo directed evolution of FECH, based on a heme biosensor, which demonstrated the effectiveness of the heme biosensor-based pathway optimization strategy and broadens our understanding of the mechanism of heme synthesis.
Collapse
Affiliation(s)
- Jian Zhang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qingbin Li
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qi Wang
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Jingyu Zhao
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Yuan Zhu
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Tianyuan Su
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China
| | - Qingsheng Qi
- grid.27255.370000 0004 1761 1174National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 People’s Republic of China ,grid.9227.e0000000119573309CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 People’s Republic of China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China. .,CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
5
|
Li J, Nina MRH, Zhang X, Bai Y. Engineering Transcription Factor XylS for Sensing Phthalic Acid and Terephthalic Acid: An Application for Enzyme Evolution. ACS Synth Biol 2022; 11:1106-1113. [PMID: 35192317 DOI: 10.1021/acssynbio.1c00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly(ethylene terephthalate) (PET) and phthalate esters (PAEs) are used extensively as plastics and plasticizers. Enzymatic degradation of PET and PAEs has drawn great attention in recent years; however, evolution of PET- and PAE-degrading enzymes is still a big challenge, partly because of the lack of an effective screening method to detect phthalic acid (PA) and terephthalic acid (TPA), which are the main hydrolysis products of PAEs and PET. Here, by directed evolution of a promiscuous transcription factor, XylS from Pseudomonas putida, we created two novel variants, XylS-K38R-L224Q and XylS-W88C-L224Q, that are able to bind PA and TPA and activate the downstream expression of a fluorescent reporter protein. Based on these elements, whole-cell biosensors were constructed, which enabled the fluorimetric detection of as little as 10 μM PA or TPA. A PAE hydrolase, GoEst15, was preliminarily engineered using this new biosensor, yielding a mutant GoEst15-V3 whose activity toward dibutyl phthalate (DBP) and p-nitrophenyl butyrate was enhanced 2.0- and 2.5-fold, respectively. It was shown that 96.5% DBP (5 mM) was degraded by GoEst15-V3 in 60 min, while the wild-type enzyme degraded only 55% DBP. This study provides an effective screening tool for directed evolution of PAE-/PET-degrading enzymes.
Collapse
Affiliation(s)
- Jiawei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mario Roque Huanca Nina
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaoyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Zhu HQ, Hu WY, Tang XL, Zheng RC, Zheng YG. High-throughput assay of tyrosine phenol-lyase activity using a cascade of enzymatic reactions. Anal Biochem 2022; 640:114547. [PMID: 35026146 DOI: 10.1016/j.ab.2022.114547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 01/17/2023]
Abstract
Tyrosine phenol-lyase (TPL) exhibits great potential in industrial biosynthesis of l-tyrosine and its derivates. To uncover and screen TPLs with excellent catalytic properties, there is unmet demand for development of facile and reliable screening system for TPL. Here we presented a novel assay format for the detection of TPL activity based on catechol 2,3-dioxygenase (C23O)-catalyzed reaction. Catechol released from TPL-catalyzed cleavage of 3,4-dihydroxy-l-phenylalanine (l-DOPA) was further oxidized by C23O to form 2-hydroxymuconate semialdehyde, which could be readily detected by spectrophotometric measurements at 375 nm. The assay achieved a unique balance between the ease of operation and superiority of analytical performances including linearity, sensitivity and accuracy. In addition, this assay enabled real-time monitoring of TPL activity with high efficiency and reliability. As C23O is highly specific towards catechol, a non-natural product of microorganism, the assay was therefore accessible to both crude cell extracts and the whole-cell system without elaborate purification steps of enzymes, which could greatly expedite discovery and engineering of TPLs. This study provided fundamental principle for high-throughput screening of other enzymes consuming or producing catechol derivatives.
Collapse
Affiliation(s)
- Hang-Qin Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Wen-Ye Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ren-Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
7
|
E C, Dai L, Yu J. Switching promotor recognition of phage RNA polymerase in silico along lab-directed evolution path. Biophys J 2022; 121:582-595. [PMID: 35031277 PMCID: PMC8874028 DOI: 10.1016/j.bpj.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we computationally investigated how a viral RNA polymerase (RNAP) from bacteriophage T7 evolves into RNAP variants under lab-directed evolution to switch recognition from T7 promoter to T3 promoter in transcription initiation. We first constructed a closed initiation complex for the wild-type T7 RNAP and then for six mutant RNAPs discovered from phage-assisted continuous evolution experiments. All-atom molecular dynamics simulations up to 1 μs each were conducted on these RNAPs in a complex with the T7 and T3 promoters. Our simulations show notably that protein-DNA electrostatic interactions or stabilities at the RNAP-DNA promoter interface well dictate the promoter recognition preference of the RNAP and variants. Key residues and structural elements that contribute significantly to switching the promoter recognition were identified. Followed by a first point mutation N748D on the specificity loop to slightly disengage the RNAP from the promoter to hinder the original recognition, we found an auxiliary helix (206-225) that takes over switching the promoter recognition upon further mutations (E222K and E207K) by forming additional charge interactions with the promoter DNA and reorientating differently on the T7 and T3 promoters. Further mutations on the AT-rich loop and the specificity loop can fully switch the RNAP-promoter recognition to the T3 promoter. Overall, our studies reveal energetics and structural dynamics details along an exemplary directed evolutionary path of the phage RNAP variants for a rewired promoter recognition function. The findings demonstrate underlying physical mechanisms and are expected to assist knowledge and data learning or rational redesign of the protein enzyme structure function.
Collapse
Affiliation(s)
- Chao E
- Beijing Computational Science Research Center, Beijing, China
| | - Liqiang Dai
- Beijing Computational Science Research Center, Beijing, China; Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, Guangdong, China
| | - Jin Yu
- Department of Physics and Astronomy, Department of Chemistry, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California.
| |
Collapse
|
8
|
Yeom SJ, Kwon KK, An JU, Park SH, Lee JY, Rha E, Lee H, Kim H, Lee DH, Lee SG. Single-Cell-Based Screening and Engineering of d-Amino Acid Amidohydrolases Using Artificial Amidophenol Substrates and Microbial Biosensors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1203-1211. [PMID: 34994555 DOI: 10.1021/acs.jafc.1c05834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enantiomerically pure d-amino acids are important intermediates as chiral building blocks for peptidomimetics and semisynthetic antibiotics. Here, a transcriptional factor-based screening strategy was used for the rapid screening of d-stereospecific amino acid amidase via an enzyme-specific amidophenol substrate. We used a d-threonine amidophenyl derivative to produce 2-aminophenol that serves as a putative enzyme indicator in the presence of d-threonine amidases. Comparative analyses of known bacterial species indicated that several Bacillus strains produce amidase and form putative indicators in culture media. The estimated amidase was cloned and subjected to rapid directed evolution through biosensor cells. Consequently, we characterized the F119A mutation that significantly improved the catalytic activity toward d-alanine, d-threonine, and d-glutamate. Its beneficial effects were confirmed by higher conversions and recurrent applications of the mutant enzyme, compared to the wild-type. This study showed that rapid directed evolution with biosensors coupled to designed substrates is useful to develop biocatalytic processes.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Biological Science and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jung-Ung An
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sung Hyun Park
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Jin-Young Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Eugene Rha
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Kardashliev T, Weingartner A, Romero E, Schwaneberg U, Fraaije M, Panke S, Held M. Whole-cell screening of oxidative enzymes using genetically encoded sensors. Chem Sci 2021; 12:14766-14772. [PMID: 34820092 PMCID: PMC8597865 DOI: 10.1039/d1sc02578c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Biocatalysis is increasingly used for synthetic purposes in the chemical and especially the pharmaceutical industry. Enzyme discovery and optimization which is frequently needed to improve biocatalytic performance rely on high-throughput methods for activity determination. These methods should ideally be generic and applicable to entire enzyme families. Hydrogen peroxide (H2O2) is a product of several biocatalytic oxidations and its formation can serve as a proxy for oxidative activity. We designed a genetically encoded sensor for activity measurement of oxidative biocatalysts via the amount of intracellularly-formed H2O2. A key component of the sensor is an H2O2-sensitive transcriptional regulator, OxyR, which is used to control the expression levels of fluorescent proteins. We employed the OxyR sensor to monitor the oxidation of glycerol to glyceraldehyde and of toluene to o-cresol catalysed by recombinant E. coli expressing an alcohol oxidase and a P450 monooxygenase, respectively. In case of the P450 BM3-catalysed reaction, we additionally monitored o-cresol formation via a second genetically encoded sensor based on the phenol-sensitive transcriptional activator, DmpR, and an orthogonal fluorescent reporter protein. Single round screens of mutant libraries by flow cytometry or by visual inspection of colonies on agar plates yielded significantly improved oxidase and oxygenase variants thus exemplifying the suitability of the sensor system to accurately assess whole-cell oxidations in a high-throughput manner.
Collapse
Affiliation(s)
- Tsvetan Kardashliev
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| | - Alexandra Weingartner
- Institute of Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Elvira Romero
- Faculty of Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Marco Fraaije
- Faculty of Science and Engineering, University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Sven Panke
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| | - Martin Held
- Department of Biosystems Science and Engineering ETH Zurich, Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
10
|
Jones K, Snodgrass HM, Belsare K, Dickinson BC, Lewis JC. Phage-Assisted Continuous Evolution and Selection of Enzymes for Chemical Synthesis. ACS CENTRAL SCIENCE 2021; 7:1581-1590. [PMID: 34584960 PMCID: PMC8461764 DOI: 10.1021/acscentsci.1c00811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/04/2023]
Abstract
Ligand-dependent biosensors are valuable tools for coupling the intracellular concentrations of small molecules to easily detectable readouts such as absorbance, fluorescence, or cell growth. While ligand-dependent biosensors are widely used for monitoring the production of small molecules in engineered cells and for controlling or optimizing biosynthetic pathways, their application to directed evolution for biocatalysts remains underexplored. As a consequence, emerging continuous evolution technologies are rarely applied to biocatalyst evolution. Here, we develop a panel of ligand-dependent biosensors that can detect a range of small molecules. We demonstrate that these biosensors can link enzymatic activity to the production of an essential phage protein to enable biocatalyst-dependent phage-assisted continuous evolution (PACE) and phage-assisted continuous selection (PACS). By combining these phage-based evolution and library selection technologies, we demonstrate that we can evolve enzyme variants with improved and expanded catalytic properties. Finally, we show that the genetic diversity resulting from a highly mutated PACS library is enriched for active enzyme variants with altered substrate scope. These results lay the foundation for using phage-based continuous evolution and selection technologies to engineer biocatalysts with novel substrate scope and reactivity.
Collapse
Affiliation(s)
- Krysten
A. Jones
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Harrison M. Snodgrass
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
| | - Ketaki Belsare
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bryan C. Dickinson
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- E-mail:
| | - Jared C. Lewis
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47401, United States
- E-mail:
| |
Collapse
|
11
|
Directed Evolution Methods for Enzyme Engineering. Molecules 2021; 26:molecules26185599. [PMID: 34577070 PMCID: PMC8470892 DOI: 10.3390/molecules26185599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022] Open
Abstract
Enzymes underpin the processes required for most biotransformations. However, natural enzymes are often not optimal for biotechnological uses and must be engineered for improved activity, specificity and stability. A rich and growing variety of wet-lab methods have been developed by researchers over decades to accomplish this goal. In this review such methods and their specific attributes are examined.
Collapse
|
12
|
Baiyoumy A, Vallapurackal J, Schwizer F, Heinisch T, Kardashliev T, Held M, Panke S, Ward TR. Directed Evolution of a Surface-Displayed Artificial Allylic Deallylase Relying on a GFP Reporter Protein. ACS Catal 2021; 11:10705-10712. [PMID: 34504734 PMCID: PMC8419837 DOI: 10.1021/acscatal.1c02405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Indexed: 12/14/2022]
Abstract
Artificial metalloenzymes (ArMs) combine characteristics of both homogeneous catalysts and enzymes. Merging abiotic and biotic features allows for the implementation of new-to-nature reactions in living organisms. Here, we present the directed evolution of an artificial metalloenzyme based on Escherichia coli surface-displayed streptavidin (SavSD hereafter). Through the binding of a ruthenium-pianostool cofactor to SavSD, an artificial allylic deallylase (ADAse hereafter) is assembled, which displays catalytic activity toward the deprotection of alloc-protected 3-hydroxyaniline. The uncaged aminophenol acts as a gene switch and triggers the overexpression of a fluorescent green fluorescent protein (GFP) reporter protein. This straightforward readout of ADAse activity allowed the simultaneous saturation mutagenesis of two amino acid residues in Sav near the ruthenium cofactor, expediting the screening of 2762 individual clones. A 1.7-fold increase of in vivo activity was observed for SavSD S112T-K121G compared to the wild-type SavSD (wt-SavSD). Finally, the best performing Sav isoforms were purified and tested in vitro (SavPP hereafter). For SavPP S112M-K121A, a total turnover number of 372 was achieved, corresponding to a 5.9-fold increase vs wt-SavPP. To analyze the marked difference in activity observed between the surface-displayed and purified ArMs, the oligomeric state of SavSD was determined. For this purpose, crosslinking experiments of E. coli cells overexpressing SavSD were carried out, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blot. The data suggest that SavSD is most likely displayed as a monomer on the surface of E. coli. We hypothesize that the difference between the in vivo and in vitro screening results may reflect the difference in the oligomeric state of SavSD vs soluble SavPP (monomeric vs tetrameric). Accordingly, care should be applied when evolving oligomeric proteins using E. coli surface display.
Collapse
Affiliation(s)
- Alain Baiyoumy
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Jaicy Vallapurackal
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Fabian Schwizer
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Tillmann Heinisch
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | | | - Martin Held
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Sven Panke
- ETH
Zürich, D-BSSE, Mattenstrasse 26, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
- Molecular
Systems Engineering, National Competence
Center in Research (NCCR), 4058 Basel, Switzerland
| |
Collapse
|
13
|
An integrative approach to improving the biocatalytic reactions of whole cells expressing recombinant enzymes. World J Microbiol Biotechnol 2021; 37:105. [PMID: 34037845 DOI: 10.1007/s11274-021-03075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Biotransformation is a selective, stereospecific, efficient, and environment friendly method, compared to chemical synthesis, and a feasible tool for industrial and pharmaceutical applications. The design of biocatalysts using enzyme engineering and metabolic engineering tools has been widely reviewed. However, less importance has been given to the biocatalytic reaction of whole cells expressing recombinant enzymes. Along with the remarkable development of biotechnology tools, a variety of techniques have been applied to improve the biocatalytic reaction of whole cell biotransformation. In this review, techniques related to the biocatalytic reaction are examined, reorganized, and summarized via an integrative approach. Moreover, equilibrium-shifted biotransformation is reviewed for the first time.
Collapse
|
14
|
Biosensor-Based Directed Evolution of Methanol Dehydrogenase from Lysinibacillus xylanilyticus. Int J Mol Sci 2021; 22:ijms22031471. [PMID: 33540582 PMCID: PMC7867188 DOI: 10.3390/ijms22031471] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 11/25/2022] Open
Abstract
Methanol dehydrogenase (Mdh), is a crucial enzyme for utilizing methane and methanol as carbon and energy sources in methylotrophy and synthetic methylotrophy. Engineering of Mdh, especially NAD-dependent Mdh, has thus been actively investigated to enhance methanol conversion. However, its poor catalytic activity and low methanol affinity limit its wider application. In this study, we applied a transcriptional factor-based biosensor for the direct evolution of Mdh from Lysinibacillus xylanilyticus (Lxmdh), which has a relatively high turnover rate and low KM value compared to other wild-type NAD-dependent Mdhs. A random mutant library of Lxmdh was constructed in Escherichia coli and was screened using formaldehyde-detectable biosensors by incubation with low methanol concentrations. Positive clones showing higher fluorescence were selected by fluorescence-activated cell sorting (FACS) system, and their catalytic activities toward methanol were evaluated. The successfully isolated mutants E396V, K318N, and K46E showed high activity, particularly at very low methanol concentrations. In kinetic analysis, mutant E396V, K318N, and K46E had superior methanol conversion efficiency, with 79-, 23-, and 3-fold improvements compared to the wild-type, respectively. These mutant enzymes could thus be useful for engineering synthetic methylotrophy and for enhancing methanol conversion to various useful products.
Collapse
|
15
|
|
16
|
Kim H, Seong W, Rha E, Lee H, Kim SK, Kwon KK, Park KH, Lee DH, Lee SG. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens Bioelectron 2020; 170:112670. [DOI: 10.1016/j.bios.2020.112670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
17
|
Woo SG, Kim SK, Oh BR, Lee SG, Lee DH. Genetically Encoded Biosensor-Based Screening for Directed Bacteriophage T4 Lysozyme Evolution. Int J Mol Sci 2020; 21:ijms21228668. [PMID: 33212940 PMCID: PMC7698408 DOI: 10.3390/ijms21228668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 11/16/2022] Open
Abstract
Lysozyme is widely used as a model protein in studies of structure–function relationships. Recently, lysozyme has gained attention for use in accelerating the degradation of secondary sludge, which mainly consists of bacteria. However, a high-throughput screening system for lysozyme engineering has not been reported. Here, we present a lysozyme screening system using a genetically encoded biosensor. We first cloned bacteriophage T4 lysozyme (T4L) into a plasmid under control of the araBAD promoter. The plasmid was expressed in Escherichia coli with no toxic effects on growth. Next, we observed that increased soluble T4L expression decreased the fluorescence produced by the genetic enzyme screening system. To investigate T4L evolution based on this finding, we generated a T4L random mutation library, which was screened using the genetic enzyme screening system. Finally, we identified two T4L variants showing 1.4-fold enhanced lytic activity compared to native T4L. To our knowledge, this is the first report describing the use of a genetically encoded biosensor to investigate bacteriophage T4L evolution. Our approach can be used to investigate the evolution of other lysozymes, which will expand the applications of lysozyme.
Collapse
Affiliation(s)
- Seung-Gyun Woo
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-G.W.); (S.K.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seong Keun Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-G.W.); (S.K.K.)
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup 56212, Korea;
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-G.W.); (S.K.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (S.-G.L.); (D.-H.L.); Tel.: +82-42-860-4373 (S.-G.L.); +82-42-879-8225 (D.-H.L.)
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (S.-G.W.); (S.K.K.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence: (S.-G.L.); (D.-H.L.); Tel.: +82-42-860-4373 (S.-G.L.); +82-42-879-8225 (D.-H.L.)
| |
Collapse
|
18
|
High-throughput screening for efficient microbial biotechnology. Curr Opin Biotechnol 2020; 64:141-150. [DOI: 10.1016/j.copbio.2020.02.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023]
|
19
|
Winning the numbers game in enzyme evolution - fast screening methods for improved biotechnology proteins. Curr Opin Struct Biol 2020; 63:123-133. [PMID: 32615371 DOI: 10.1016/j.sbi.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/28/2020] [Accepted: 05/08/2020] [Indexed: 01/02/2023]
Abstract
The booming demand for environmentally benign industrial processes relies on the ability to quickly find or engineer a biocatalyst suitable to ideal process conditions. Both metagenomic approaches and directed evolution involve the screening of huge libraries of protein variants, which can only be managed reasonably by flexible platforms for (ultra)high-throughput profiling against the desired criteria. Here, we review the most recent additions toward a growing toolbox of versatile assays using fluorescence, absorbance and mass spectrometry readouts. While conventional solution based high-throughput screening in microtiter plate formats is still important, the implementation of novel screening protocols for microfluidic cell or droplet sorting systems supports technological advances for ultra-high-frequency screening that now can dramatically reduce the timescale of engineering projects. We discuss practical issues of scope, scalability, sensitivity and stereoselectivity for the improvement of biotechnologically relevant enzymes from different classes.
Collapse
|
20
|
Acclimation of bacterial cell state for high-throughput enzyme engineering using a DmpR-dependent transcriptional activation system. Sci Rep 2020; 10:6091. [PMID: 32269250 PMCID: PMC7142073 DOI: 10.1038/s41598-020-62892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/15/2022] Open
Abstract
Genetic circuit-based biosensors have emerged as an effective analytical tool in synthetic biology; these biosensors can be applied to high-throughput screening of new biocatalysts and metabolic pathways. Sigma 54 (σ54)-dependent transcription factor (TF) can be a valuable component of these biosensors owing to its intrinsic silent property compared to most of the housekeeping sigma 70 (σ70) TFs. Here, we show that these unique characteristics of σ54-dependent TFs can be used to control the host cell state to be more appropriate for high-throughput screening. The acclimation of cell state was achieved by using guanosine (penta)tetraphosphate ((p)ppGpp)-related genes (relA, spoT) and nutrient conditions, to link the σ54 TF-based reporter expression with the target enzyme activity. By controlling stringent programmed responses and optimizing assay conditions, catalytically improved tyrosine phenol lyase (TPL) enzymes were successfully obtained using a σ54-dependent DmpR as the TF component, demonstrating the practical feasibility of this biosensor. This combinatorial strategy of biosensors using σ factor-dependent TFs will allow for more effective high-throughput enzyme engineering with broad applicability.
Collapse
|
21
|
Goto H, Kanai Y, Yotsui A, Shimokihara S, Shitara S, Oyobiki R, Fujiwara K, Watanabe T, Einaga Y, Matsumoto Y, Miki N, Doi N. Microfluidic screening system based on boron-doped diamond electrodes and dielectrophoretic sorting for directed evolution of NAD(P)-dependent oxidoreductases. LAB ON A CHIP 2020; 20:852-861. [PMID: 31984406 DOI: 10.1039/c9lc01263j] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report the development of a micro total analysis system (μTAS) based on electrochemical measurements and dielectrophoretic sorting for screening of NAD(P)-dependent oxidoreductases. In this system, the activity of enzymes immobilized on microbeads, together with their encoding DNA, can be measured with a boron-doped diamond (BDD) electrode in each compartment (∼30 nL) of the microfluidic system. The 30 nL droplets containing microbead-displayed genes of enzymes with higher activity can then be recovered by dielectrophoretic sorting. Previously, we developed the NAD(P)H-measuring device containing the BDD electrode for high-throughput measurement of the activity of NAD(P)-dependent oxidoreductases. In this study, we fabricated an encapsulating device and a droplet-sorting device for nanoliter-size droplets, for the first time, and then combined these three devices to construct a μTAS for directed evolution of NAD(P)-dependent oxidoreductases. We confirmed that this system works by proof-of-principle experiments and successfully applied this system for screening of randomized libraries of NAD-dependent dehydrogenases.
Collapse
Affiliation(s)
- Haruna Goto
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Yuki Kanai
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Arisa Yotsui
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shota Shimokihara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Shunya Shitara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Ryo Oyobiki
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| | - Takeshi Watanabe
- Department of Electrical Engineering and Electronics, Aoyama Gakuin University, Sagamihara 252-5258, Japan
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yoshinori Matsumoto
- Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan
| | - Norihisa Miki
- Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
22
|
Alvarez-Gonzalez G, Dixon N. Genetically encoded biosensors for lignocellulose valorization. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:246. [PMID: 31636705 PMCID: PMC6792243 DOI: 10.1186/s13068-019-1585-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2019] [Indexed: 05/07/2023]
Abstract
Modern society is hugely dependent on finite oil reserves for the supply of fuels and chemicals. Moving our dependence away from these unsustainable oil-based feedstocks to renewable ones is, therefore, a critical factor towards the development of a low carbon bioeconomy. Lignin derived from biomass feedstocks offers great potential as a renewable source of aromatic compounds if methods for its effective valorization can be developed. Synthetic biology and metabolic engineering offer the potential to synergistically enable the development of cell factories with novel biosynthetic routes to valuable chemicals from these sustainable sources. Pathway design and optimization is, however, a major bottleneck due to the lack of high-throughput methods capable of screening large libraries of genetic variants and the metabolic burden associated with bioproduction. Genetically encoded biosensors can provide a solution by transducing the target metabolite concentration into detectable signals to provide high-throughput phenotypic read-outs and allow dynamic pathway regulation. The development and application of biosensors in the discovery and engineering of efficient biocatalytic processes for the degradation, conversion, and valorization of lignin are paving the way towards a sustainable and economically viable biorefinery.
Collapse
Affiliation(s)
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
C1 Compound Biosensors: Design, Functional Study, and Applications. Int J Mol Sci 2019; 20:ijms20092253. [PMID: 31067766 PMCID: PMC6540204 DOI: 10.3390/ijms20092253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 01/25/2023] Open
Abstract
The microbial assimilation of one-carbon (C1) gases is a topic of interest, given that products developed using this pathway have the potential to act as promising substrates for the synthesis of valuable chemicals via enzymatic oxidation or C–C bonding. Despite extensive studies on C1 gas assimilation pathways, their key enzymes have yet to be subjected to high-throughput evolution studies on account of the lack of an efficient analytical tool for C1 metabolites. To address this challenging issue, we attempted to establish a fine-tuned single-cell–level biosensor system constituting a combination of transcription factors (TFs) and several C1-converting enzymes that convert target compounds to the ligand of a TF. This enzymatic conversion broadens the detection range of ligands by the genetic biosensor systems. In this study, we presented new genetic enzyme screening systems (GESSs) to detect formate, formaldehyde, and methanol from specific enzyme activities and pathways, named FA-GESS, Frm-GESS, and MeOH-GESS, respectively. All the biosensors displayed linear responses to their respective C1 molecules, namely, formate (1.0–250 mM), formaldehyde (1.0–50 μM), and methanol (5–400 mM), and they did so with high specificity. Consequently, the helper enzymes, including formaldehyde dehydrogenase and methanol dehydrogenase, were successfully combined to constitute new versatile combinations of the C1-biosensors.
Collapse
|
24
|
Development of GFP-based high-throughput screening system for directed evolution of glucose oxidase. J Biosci Bioeng 2019; 127:30-37. [DOI: 10.1016/j.jbiosc.2018.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 01/15/2023]
|
25
|
Yeom SJ, Kim M, Kwon KK, Fu Y, Rha E, Park SH, Lee H, Kim H, Lee DH, Kim DM, Lee SG. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat Commun 2018; 9:5053. [PMID: 30498220 PMCID: PMC6265244 DOI: 10.1038/s41467-018-07488-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/01/2018] [Indexed: 11/09/2022] Open
Abstract
Biocatalytic cyclization is highly desirable for efficient synthesis of biologically derived chemical substances, such as the commodity chemicals ε-caprolactam and δ-valerolactam. To identify biocatalysts in lactam biosynthesis, we develop a caprolactam-detecting genetic enzyme screening system (CL-GESS). The Alcaligenes faecalis regulatory protein NitR is adopted for the highly specific detection of lactam compounds against lactam biosynthetic intermediates. We further systematically optimize the genetic components of the CL-GESS to enhance sensitivity, achieving 10-fold improvement. Using this highly sensitive GESS, we screen marine metagenomes and find an enzyme that cyclizes ω-amino fatty acids to lactam. Moreover, we determine the X-ray crystal structure and catalytic residues based on mutational analysis of the cyclase. The cyclase is also used as a helper enzyme to sense intracellular ω-amino fatty acids. We expect this simple and accurate biosensor to have wide-ranging applications in rapid screening of new lactam-synthesizing enzymes and metabolic engineering for lactam bio-production.
Collapse
Affiliation(s)
- Soo-Jin Yeom
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Moonjeong Kim
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kil Koang Kwon
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Yaoyao Fu
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Eugene Rha
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Sung-Hyun Park
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea.,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, KRIBB, Daejeon, 34141, Republic of Korea. .,Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
26
|
Frazão CR, Maton V, François JM, Walther T. Development of a Metabolite Sensor for High-Throughput Detection of Aldehydes in Escherichia Coli. Front Bioeng Biotechnol 2018; 6:118. [PMID: 30191150 PMCID: PMC6115493 DOI: 10.3389/fbioe.2018.00118] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/03/2018] [Indexed: 01/31/2023] Open
Abstract
We have developed a fluorescence-based metabolite sensor enabling in vivo detection of various aldehydes of biotechnological interest in Escherichia coli. YqhC is a transcriptional regulator that is known to be involved in the upregulation of the yqhD-dgkA operon in the presence of aldehydes. We took advantage of this property by constructing a bi-modular biosensor, in which a sensing module constitutively expresses yqhC while a reporter module drives the expression of the syfp2 reporter gene that is put under control of the yqhD promoter. The sensitivity of the sensor has been optimized by engineering the 5′-UTRs of both the sensing and the reporter modules resulting in a 70-fold gain of fluorescence in response to the model compound glycolaldehyde at 5 mM. The optimized sensor further responded to other aldehydes when supplemented to the cultivation medium at concentrations of 1–10 mM. We furthermore showed that this metabolite sensor was functional in vivo as it responded to the presence of glycoladehyde that is specifically produced upon induction of a synthetic xylulose-1-phosphate pathway expressed in E. coli. This bi-modular sensor can therefore be employed as an exquisite tool for FACS-based ultra-high-throughput screening of aldehyde (over) producing enzymes.
Collapse
Affiliation(s)
- Cláudio R Frazão
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Victor Maton
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| | - Jean M François
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.,Toulouse White Biotechnology (TWB), Toulouse, France
| | - Thomas Walther
- LISBP, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|