1
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
2
|
Fergusson CH, Saulog J, Paulo BS, Wilson DM, Liu DY, Morehouse NJ, Waterworth S, Barkei J, Gray CA, Kwan JC, Eustaquio AS, Linington RG. Discovery of a lagriamide polyketide by integrated genome mining, isotopic labeling, and untargeted metabolomics. Chem Sci 2024; 15:8089-8096. [PMID: 38817573 PMCID: PMC11134395 DOI: 10.1039/d4sc00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/18/2024] [Indexed: 06/01/2024] Open
Abstract
Microorganisms from the order Burkholderiales have been the source of a number of important classes of natural products in recent years. For example, study of the beetle-associated symbiont Burkholderia gladioli led to the discovery of the antifungal polyketide lagriamide; an important molecule from the perspectives of both biotechnology and chemical ecology. As part of a wider project to sequence Burkholderiales genomes from our in-house Burkholderiales library we identified a strain containing a biosynthetic gene cluster (BGC) similar to the original lagriamide BGC. Structure prediction failed to identify any candidate masses for the products of this BGC from untargeted metabolomics mass spectrometry data. However, genome mining from publicly available databases identified fragments of this BGC from a culture collection strain of Paraburkholderia. Whole genome sequencing of this strain revealed the presence of a homologue of this BGC with very high sequence identity. Stable isotope feeding of the two strains in parallel using our newly developed IsoAnalyst platform identified the product of this lagriamide-like BGC directly from the crude fermentation extracts, affording a culturable supply of this interesting compound class. Using a combination of bioinformatic, computational and spectroscopic methods we defined the absolute configurations for all 11 chiral centers in this new metabolite, which we named lagriamide B. Biological testing of lagriamide B against a panel of 21 bacterial and fungal pathogens revealed antifungal activity against the opportunistic human pathogen Aspergillus niger, while image-based Cell Painting analysis indicated that lagriamide B also causes actin filament disruption in U2-OS osteosarcoma cells.
Collapse
Affiliation(s)
- Claire H Fergusson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Julia Saulog
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Bruno S Paulo
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Darryl M Wilson
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| | - Nicholas J Morehouse
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Samantha Waterworth
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - John Barkei
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John NB Canada
| | - Jason C Kwan
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin Madison WI 53705 USA
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University 8888 University Drive Burnaby BC V5A 1S6 Canada
| |
Collapse
|
3
|
Budinger D, Baker V, Heneka MT. Tunneling Nanotubes in the Brain. Results Probl Cell Differ 2024; 73:203-227. [PMID: 39242381 DOI: 10.1007/978-3-031-62036-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as intriguing structures facilitating intercellular communications across diverse cell types, which are integral to several biological processes, as well as participating in various disease progression. This review provides an in-depth analysis of TNTs, elucidating their structural characteristics and functional roles, with a particular focus on their significance within the brain environment and their implications in neurological and neurodegenerative disorders. We explore the interplay between TNTs and neurological diseases, offering potential mechanistic insights into disease progression, while also highlighting their potential as viable therapeutic targets. Additionally, we address the significant challenges associated with studying TNTs, from technical limitations to their investigation in complex biological systems. By addressing some of these challenges, this review aims to pave the way for further exploration into TNTs, establishing them as a central focus in advancing our understanding of neurodegenerative disorders.
Collapse
Affiliation(s)
- Dimitri Budinger
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Vivian Baker
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
4
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
5
|
Machida N, Takahashi D, Ueno Y, Nakama Y, Gubeli RJ, Bertoldo D, Harata M. Modulating dynamics and function of nuclear actin with synthetic bicyclic peptides. J Biochem 2021; 169:295-302. [PMID: 33169153 DOI: 10.1093/jb/mvaa130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022] Open
Abstract
Actin exists in monomeric globular (G-) and polymerized filamentous (F-) forms and the dynamics of its polymerization/depolymerization are tightly regulated in both the cytoplasm and the nucleus. Various essential functions of nuclear actin have been identified including regulation of gene expression and involvement in the repair of DNA double-strand breaks (DSB). Small G-actin-binding molecules affect F-actin formation and can be utilized for analysis and manipulation of actin in living cells. However, these G-actin-binding molecules are obtained by extraction from natural sources or through complex chemical synthesis procedures, and therefore, the generation of their derivatives for analytical tools is underdeveloped. In addition, their effects on nuclear actin cannot be separately evaluated from those on cytoplasmic actin. Previously, we have generated synthetic bicyclic peptides, consisting of two macrocyclic rings, which bind to G-actin but not to F-actin. Here, we describe the introduction of these bicyclic peptides into living cells. Furthermore, by conjugation to a nuclear localization signal (NLS), the bicyclic peptides accumulated in the nucleus. The NLS-bicyclic peptides repress the formation of nuclear F-actin, and impair transcriptional regulation and DSB repair. These observations highlight a potential role for NLS-linked bicyclic peptides in the manipulation of dynamics and functions of nuclear actin.
Collapse
Affiliation(s)
- Nanako Machida
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Daisuke Takahashi
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yuya Ueno
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Yoshihiro Nakama
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| | - Raphael J Gubeli
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Davide Bertoldo
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Masahiko Harata
- Laboratory of Molecular Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, 468-1, Aramaki Aza Aoba, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
6
|
Araújo TAT, de Souza A, Santana AF, Braga ARC, Custódio MR, Simões FR, Araújo GM, Miranda A, Alves F, Granito RN, Yu N, Renno ACM. Comparison of Different Methods for Spongin-like Collagen Extraction from Marine Sponges ( Chondrilla caribensis and Aplysina fulva): Physicochemical Properties and In Vitro Biological Analysis. MEMBRANES 2021; 11:membranes11070522. [PMID: 34357172 PMCID: PMC8304306 DOI: 10.3390/membranes11070522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
This study aimed to compare different protocols (Protocol 1: P1; Protocol 2: P2; Protocol 3: P3; Protocol 4: P4) for the extraction of spongin-like collagen (SC) from marine sponges. The SEM micrographs demonstrated a fibrillar structure for the extracts from Chondrilla caribensis and the nodular/particulate aggregates for Aplysina fulva. FTIR showed for all samples peaks similar to collagen for both species. For C. caribensis, the extracts obtained using P2, P3, and P4 protocols presented higher values of extraction yield, TPQ, and GAGs. P2 and P4 showed higher values of SC concentration and for antioxidant analysis. For A. fulva, P2, P3, and P4 provided a higher extraction yield besides an increase in the antioxidant assay. For both species, no difference was observed for Col quantification and TPQ analysis; also, higher values of GAGs were found using P2 and P4. Fibroblast proliferation observed for C. caribensis was lower for P1 on day 1 and for P2 and P3 on day 3 (for 50%) compared to the control group. There was a significant reduction in fibroblast cell proliferation for all A. fulva extracts evaluated. It can be concluded that protocols P2 and P4 were more efficient for extracting SC from C. caribensis.
Collapse
Affiliation(s)
- Tiago A. T. Araújo
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
- Correspondence: ; Tel.: +55-1398848-9279
| | - Amanda de Souza
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Alan F. Santana
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Anna Rafaela C. Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Márcio R. Custódio
- Laboratory of Marine Invertebrates Cell Biology, Institute of Biosciences, Universidade de São Paulo (USP), São Paulo 05508-090, SP, Brazil;
| | - Fábio R. Simões
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), Santos 11070-100, SP, Brazil; (F.R.S.); (G.M.A.)
| | - Gabriela M. Araújo
- Institute of Marine Sciences, Universidade Federal de São Paulo (UNIFESP), Santos 11070-100, SP, Brazil; (F.R.S.); (G.M.A.)
| | - Antônio Miranda
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil; (A.M.); (F.A.)
| | - Flávio Alves
- Department of Biophysics, Universidade Federal de São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil; (A.M.); (F.A.)
| | - Renata N. Granito
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| | - Na Yu
- National Dental Centre Singapore, 5 Second Hospital Avenue, Singapore 168938, Singapore;
| | - Ana Claudia M. Renno
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-220, SP, Brazil; (A.d.S.); (A.F.S.); (A.R.C.B.); (R.N.G.); (A.C.M.R.)
| |
Collapse
|
7
|
Varijakzhan D, Loh JY, Yap WS, Yusoff K, Seboussi R, Lim SHE, Lai KS, Chong CM. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar Drugs 2021; 19:246. [PMID: 33925365 PMCID: PMC8146879 DOI: 10.3390/md19050246] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022] Open
Abstract
Marine sponges are sessile invertebrates that can be found in temperate, polar and tropical regions. They are known to be major contributors of bioactive compounds, which are discovered in and extracted from the marine environment. The compounds extracted from these sponges are known to exhibit various bioactivities, such as antimicrobial, antitumor and general cytotoxicity. For example, various compounds isolated from Theonella swinhoei have showcased various bioactivities, such as those that are antibacterial, antiviral and antifungal. In this review, we discuss bioactive compounds that have been identified from marine sponges that showcase the ability to act as antibacterial, antiviral, anti-malarial and antifungal agents against human pathogens and fish pathogens in the aquaculture industry. Moreover, the application of such compounds as antimicrobial agents in other veterinary commodities, such as poultry, cattle farming and domesticated cats, is discussed, along with a brief discussion regarding the mode of action of these compounds on the targeted sites in various pathogens. The bioactivity of the compounds discussed in this review is focused mainly on compounds that have been identified between 2000 and 2020 and includes the novel compounds discovered from 2018 to 2021.
Collapse
Affiliation(s)
- Disha Varijakzhan
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Jiun-Yan Loh
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Wai-Sum Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights, Cheras, Kuala Lumpur 56000, Malaysia; (J.-Y.L.); (W.-S.Y.)
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Rabiha Seboussi
- Health Sciences Division, Al Ain Men’s College, Higher Colleges of Technology, Al Ain 17155, United Arab Emirates;
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates;
| | - Chou-Min Chong
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia;
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
8
|
Hayashi-Takanaka Y, Kina Y, Nakamura F, Becking LE, Nakao Y, Nagase T, Nozaki N, Kimura H. Histone modification dynamics as revealed by multicolor immunofluorescence-based single-cell analysis. J Cell Sci 2020; 133:jcs243444. [PMID: 32576661 PMCID: PMC7390643 DOI: 10.1242/jcs.243444] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 06/08/2020] [Indexed: 01/02/2023] Open
Abstract
Post-translational modifications on histones can be stable epigenetic marks or transient signals that can occur in response to internal and external stimuli. Levels of histone modifications fluctuate during the cell cycle and vary among different cell types. Here, we describe a simple system to monitor the levels of multiple histone modifications in single cells by multicolor immunofluorescence using directly labeled modification-specific antibodies. We analyzed histone H3 and H4 modifications during the cell cycle. Levels of active marks, such as acetylation and H3K4 methylation, were increased during the S phase, in association with chromatin duplication. By contrast, levels of some repressive modifications gradually increased during G2 and the next G1 phases. We applied this method to validate the target modifications of various histone demethylases in cells using a transient overexpression system. In extracts of marine organisms, we also screened chemical compounds that affect histone modifications and identified psammaplin A, which was previously reported to inhibit histone deacetylases. Thus, the method presented here is a powerful and convenient tool for analyzing the changes in histone modifications.
Collapse
Affiliation(s)
- Yoko Hayashi-Takanaka
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
| | - Yuto Kina
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Fumiaki Nakamura
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, PO Box 338, Bode 36, 6700 AH Wageningen, The Netherlands
| | - Yoichi Nakao
- Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | - Hiroshi Kimura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|