1
|
Kim SC, Kim MJ, Park JW, Shin YK, Jeong SY, Kim S, Ku JL. Effects of simulated microgravity on colorectal cancer organoids growth and drug response. Sci Rep 2024; 14:25526. [PMID: 39462078 PMCID: PMC11514040 DOI: 10.1038/s41598-024-76737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cellular and molecular dynamics of human cells are constantly affected by gravity. Alteration of the gravitational force disturbs the cellular equilibrium, which might modify physiological and molecular characteristics. Nevertheless, biological responses of cancer cells to reduced gravitational force remains obscure. Here, we aimed to comprehend not only transcriptomic patterns but drug responses of colorectal cancer (CRC) under simulated microgravity. We established four organoids directly from CRC patients, and organoids cultured in 3D clinostat were subjected to genome wide expression profiling and drug library screening. Our observations revealed changes in cell morphology and an increase in cell viability under simulated microgravity compared to their static controls. Transcriptomic analysis highlighted a significant dysregulation in the TBC1D3 family of genes. The upregulation of cell proliferation observed under simulated microgravity conditions was further supported by enriched cell cycle processes, as evidenced by the functional clustering of mRNA expressions using cancer hallmark and gene ontology terms. Our drug screening results indicated an enhanced response rate to 5-FU under conditions of simulated microgravity, suggesting potential implications for cancer treatment strategies in simulated microgravity.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Min Jung Kim
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea
| | - Young-Kyoung Shin
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Department of Surgery, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul, 03080, Korea.
| | - Sungwan Kim
- Department of Biomedical Engineering, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Zhou S, Xu H, Duan Y, Tang Q, Huang H, Bi F. Survival mechanisms of circulating tumor cells and their implications for cancer treatment. Cancer Metastasis Rev 2024; 43:941-957. [PMID: 38436892 DOI: 10.1007/s10555-024-10178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Metastasis remains the principal trigger for relapse and mortality across diverse cancer types. Circulating tumor cells (CTCs), which originate from the primary tumor or its metastatic sites, traverse the vascular system, serving as precursors in cancer recurrence and metastasis. Nevertheless, before CTCs can establish themselves in the distant parenchyma, they must overcome significant challenges present within the circulatory system, including hydrodynamic shear stress (HSS), oxidative damage, anoikis, and immune surveillance. Recently, there has been a growing body of compelling evidence suggesting that a specific subset of CTCs can persist within the bloodstream, but the precise mechanisms of their survival remain largely elusive. This review aims to present an outline of the survival challenges encountered by CTCs and to summarize the recent advancements in understanding the underlying survival mechanisms, suggesting their implications for cancer treatment.
Collapse
Affiliation(s)
- Shuang Zhou
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huanji Xu
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yichun Duan
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qiulin Tang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Huixi Huang
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Bi
- Division of Abdominal Cancer, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Wang X, Zhou Y, Wang L, Haseeb A, Li H, Zheng X, Guo J, Cheng X, Yin W, Sun N, Sun P, Zhang Z, Yang H, Fan K. Fascin-1 Promotes Cell Metastasis through Epithelial-Mesenchymal Transition in Canine Mammary Tumor Cell Lines. Vet Sci 2024; 11:238. [PMID: 38921985 PMCID: PMC11209228 DOI: 10.3390/vetsci11060238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
Canine mammary tumors (CMTs) are the most common type of tumor in female dogs. In this study, we obtained a metastatic key protein, Fascin-1, by comparing the proteomics data of in situ tumor and metastatic cell lines from the same individual. However, the role of Fascin-1 in the CMT cell line is still unclear. Firstly, proteomics was used to analyze the differential expression of Fascin-1 between the CMT cell lines CHMm and CHMp. Then, the overexpression (CHMm-OE and CHMp-OE) and knockdown (CHMm-KD and CHMp-KD) cell lines were established by lentivirus transduction. Finally, the differentially expressed proteins (DEPs) in CHMm and CHMm-OE cells were identified through proteomics. The results showed that the CHMm cells isolated from CMT abdominal metastases exhibited minimal expression of Fascin-1. The migration, adhesion, and invasion ability of CHMm-OE and CHMp-OE cells increased, while the migration, adhesion, and invasion ability of CHMm-KD and CHMp-KD cells decreased. The overexpression of Fascin-1 can upregulate the Tetraspanin 4 (TSPAN4) protein in CHMm cells and increase the number of migrations. In conclusion, re-expressed Fascin-1 could promote cell EMT and increase lamellipodia formation, resulting in the enhancement of CHMm cell migration, adhesion, and invasion in vitro. This may be beneficial to improve female dogs' prognosis of CMT.
Collapse
Affiliation(s)
- Xin Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Ye Zhou
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Linhao Wang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Abdul Haseeb
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX 77843, USA
| | - Xiaoliang Cheng
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Zhenbiao Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Huizhen Yang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| | - Kuohai Fan
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China; (X.W.)
| |
Collapse
|
4
|
Clevenger AJ, McFarlin MK, Gorley JPM, Solberg SC, Madyastha AK, Raghavan SA. Advances in cancer mechanobiology: Metastasis, mechanics, and materials. APL Bioeng 2024; 8:011502. [PMID: 38449522 PMCID: PMC10917464 DOI: 10.1063/5.0186042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Within the tumor microenvironment (TME), tumor cells are exposed to numerous mechanical forces, both internally and externally, which contribute to the metastatic cascade. From the initial growth of the tumor to traveling through the vasculature and to the eventual colonization of distant organs, tumor cells are continuously interacting with their surroundings through physical contact and mechanical force application. The mechanical forces found in the TME can be simplified into three main categories: (i) shear stress, (ii) tension and strain, and (iii) solid stress and compression. Each force type can independently impact tumor growth and progression. Here, we review recent bioengineering strategies, which have been employed to establish the connection between mechanical forces and tumor progression. While many cancers are explored in this review, we place great emphasis on cancers that are understudied in their response to mechanical forces, such as ovarian and colorectal cancers. We discuss the major steps of metastatic transformation and present novel, recent advances in model systems used to study how mechanical forces impact the study of the metastatic cascade. We end by summarizing systems that incorporate multiple forces to expand the complexity of our understanding of how tumor cells sense and respond to mechanical forces in their environment. Future studies would also benefit from the inclusion of time or the aspect of mechanical memory to further enhance this field. While the knowledge of mechanical forces and tumor metastasis grows, developing novel materials and in vitro systems are essential to providing new insight into predicting, treating, and preventing cancer progression and metastasis.
Collapse
Affiliation(s)
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
5
|
Zhang Y, O'Mahony A, He Y, Barber T. Hydrodynamic shear stress' impact on mammalian cell properties and its applications in 3D bioprinting. Biofabrication 2024; 16:022003. [PMID: 38277669 DOI: 10.1088/1758-5090/ad22ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/26/2024] [Indexed: 01/28/2024]
Abstract
As an effective cell assembly method, three-dimensional bioprinting has been widely used in building organ models and tissue repair over the past decade. However, different shear stresses induced throughout the entire printing process can cause complex impacts on cell integrity, including reducing cell viability, provoking morphological changes and altering cellular functionalities. The potential effects that may occur and the conditions under which these effects manifest are not clearly understood. Here, we review systematically how different mammalian cells respond under shear stress. We enumerate available experimental apparatus, and we categorise properties that can be affected under disparate stress patterns. We also summarise cell damaging mathematical models as a predicting reference for the design of bioprinting systems. We concluded that it is essential to quantify specific cell resistance to shear stress for the optimisation of bioprinting systems. Besides, as substantial positive impacts, including inducing cell alignment and promoting cell motility, can be generated by shear stress, we suggest that we find the proper range of shear stress and actively utilise its positive influences in the development of future systems.
Collapse
Affiliation(s)
- Yani Zhang
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Aidan O'Mahony
- Inventia Life Science Pty Ltd, Alexandria, Sydney, NSW 2015, Australia
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Tracie Barber
- School of Mechanical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Clevenger AJ, McFarlin MK, Collier CA, Sheshadri VS, Madyastha AK, Gorley JPM, Solberg SC, Stratman AN, Raghavan SA. Peristalsis-Associated Mechanotransduction Drives Malignant Progression of Colorectal Cancer. Cell Mol Bioeng 2023; 16:261-281. [PMID: 37811008 PMCID: PMC10550901 DOI: 10.1007/s12195-023-00776-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/21/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction In the colorectal cancer (CRC) tumor microenvironment, cancerous and precancerous cells continuously experience mechanical forces associated with peristalsis. Given that mechanical forces like shear stress and strain can positively impact cancer progression, we explored the hypothesis that peristalsis may also contribute to malignant progression in CRC. We defined malignant progression as enrichment of cancer stem cells and the acquisition of invasive behaviors, both vital to CRC progression. Methods We leveraged our peristalsis bioreactor to expose CRC cell lines (HCT116), patient-derived xenograft (PDX1,2) lines, or non-cancerous intestinal cells (HIEC-6) to forces associated with peristalsis in vitro. Cells were maintained in static control conditions or exposed to peristalsis for 24 h prior to assessment of cancer stem cell (CSC) emergence or the acquisition of invasive phenotypes. Results Exposure of HCT116 cells to peristalsis significantly increased the emergence of LGR5+ CSCs by 1.8-fold compared to static controls. Peristalsis enriched LGR5 positivity in several CRC cell lines, notably significant in KRAS mutant lines. In contrast, peristalsis failed to increase LGR5+ in non-cancerous intestinal cells, HIEC-6. LGR5+ emergence downstream of peristalsis was dependent on ROCK and Wnt activity, and not YAP1 activation. Additionally, HCT116 cells adopted invasive morphologies when exposed to peristalsis, with increased filopodia density and epithelial to mesenchymal gene expression, in a Wnt dependent manner. Conclusions Peristalsis associated forces drive malignant progression of CRC via ROCK, YAP1, and Wnt-related mechanotransduction. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00776-w.
Collapse
Affiliation(s)
- Abigail J. Clevenger
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Maygan K. McFarlin
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Claudia A. Collier
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Vibha S. Sheshadri
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Anirudh K. Madyastha
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - John Paul M. Gorley
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Spencer C. Solberg
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
| | - Amber N. Stratman
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis, MO USA
| | - Shreya A. Raghavan
- Department of Biomedical Engineering, Texas A&M University, 5016 Emerging Technologies Building, 3120 TAMU, College Station, TX 77843 USA
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX USA
| |
Collapse
|
7
|
Fu AB, Xiang SF, He QJ, Ying MD. Kelch-like proteins in the gastrointestinal tumors. Acta Pharmacol Sin 2023; 44:931-939. [PMID: 36266566 PMCID: PMC10104798 DOI: 10.1038/s41401-022-01007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/22/2022] [Indexed: 11/08/2022] Open
Abstract
Gastrointestinal tumors have become a worldwide health problem with high morbidity and poor clinical outcomes. Chemotherapy and surgery, the main treatment methods, are still far from meeting the treatment needs of patients, and targeted therapy is in urgent need of development. Recently, emerging evidence suggests that kelch-like (KLHL) proteins play essential roles in maintaining proteostasis and are involved in the progression of various cancers, functioning as adaptors in the E3 ligase complex and promoting the specific degradation of substrates. Therefore, KLHL proteins should be taken into consideration for targeted therapy strategy discovery. This review summarizes the current knowledge of KLHL proteins in gastrointestinal tumors and discusses the potential of KLHL proteins as potential drug targets and prognostic biomarkers.
Collapse
Affiliation(s)
- An-Bo Fu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Gastroenterology, Zhejiang University, Hangzhou, 310002, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310002, China
| | - Sen-Feng Xiang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Qiao-Jun He
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Mei-Dan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
9
|
Zheng L, Li L, Wang B, Zhang S, Fu Z, Cheng A, Liang X. Annexin A1 affects tumor metastasis through epithelial-mesenchymal transition: a narrative review. Transl Cancer Res 2022; 11:4416-4433. [PMID: 36644197 PMCID: PMC9834584 DOI: 10.21037/tcr-22-1544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/12/2022] [Indexed: 12/28/2022]
Abstract
Background and Objective Annexin A1 (annexin I, ANXA1), the first discovered member of the annexin superfamily, plays important roles in tumor development, invasion, metastasis, apoptosis and drug resistance based on tumor type-specific patterns of expression. The acquisition of the epithelial-mesenchymal transition (EMT) characteristics is an essential mechanism of metastasis because they increase the mobility and invasiveness of cancer cells. Cancer invasion and metastasis remain major health problems worldwide. Elucidating the role and mechanism of ANXA1 in the occurrence of EMT will help advance the development of novel therapeutic strategies. Hence, this review aims to attract everyone's attention to the important role of ANXA1 in tumors and provide new ideas for clinical tumor treatment. Methods The PubMed database was mainly used to search for various English research papers and reviews related to the role of ANXA1 in tumors and EMT published from November 1994 to April 2022. The search terms used mainly include ANXA1, EMT, tumor, cancer, carcinoma, and mechanism. Key Content and Findings This article mainly provides a summary of the roles of ANXA1 and EMT in tumor metastasis as well as the various mechanisms via which ANXA1 facilitates the occurrence of EMT, thereby affecting tumor metastasis. In addition, the expression of ANXA1 in different metastatic tumor cell lines and its roles in tumorigenesis and development are also elaborated. This article has found many tumorous therapeutic targets related to ANXA1 and EMT, further confirming that ANXA1 has a huge potential for the diagnosis, treatment and prognosis of certain cancers. Conclusions Both the abnormal expression of ANXA1 and the occurrence of EMT are closely related to the invasion and metastasis of tumors, and more interestingly, ANXA1 can impact EMT directly or indirectly by mediating signaling pathways and adhesion among cells. We need more studies to elucidate the effects of ANXA1 on tumor invasion, migration and metastasis through EMT in vitro and in vivo clearly, and ultimately in patients to identify more therapeutic targets.
Collapse
Affiliation(s)
- Lulu Zheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Lanxin Li
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shanshan Zhang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuqiong Fu
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoqiu Liang
- Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
10
|
Stemness, Inflammation and Epithelial-Mesenchymal Transition in Colorectal Carcinoma: The Intricate Network. Int J Mol Sci 2021; 22:ijms222312891. [PMID: 34884696 PMCID: PMC8658015 DOI: 10.3390/ijms222312891] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023] Open
Abstract
In global cancer statistics, colorectal carcinoma (CRC) ranks third by incidence and second by mortality, causing 10.0% of new cancer cases and 9.4% of oncological deaths worldwide. Despite the development of screening programs and preventive measures, there are still high numbers of advanced cases. Multiple problems compromise the treatment of metastatic colorectal cancer, one of these being cancer stem cells—a minor fraction of pluripotent, self-renewing malignant cells capable of maintaining steady, low proliferation and exhibiting an intriguing arsenal of treatment resistance mechanisms. Currently, there is an increasing body of evidence for intricate associations between inflammation, epithelial–mesenchymal transition and cancer stem cells. In this review, we focus on inflammation and its role in CRC stemness development through epithelial–mesenchymal transition.
Collapse
|
11
|
Li K, Wu R, Zhou M, Tong H, Luo KQ. Desmosomal proteins of DSC2 and PKP1 promote cancer cells survival and metastasis by increasing cluster formation in circulatory system. SCIENCE ADVANCES 2021; 7:eabg7265. [PMID: 34586853 PMCID: PMC8480931 DOI: 10.1126/sciadv.abg7265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
To study how cancer cells can withstand fluid shear stress (SS), we isolated SS-resistant breast and lung cancer cells using a microfluidic circulatory system. These SS-resistant cells showed higher abilities to form clusters, survive in circulation, and metastasize in mice. These SS-resistant cells expressed 4.2- to 5.3-fold more desmocollin-2 (DSC2) and plakophilin-1 (PKP1) proteins. The high expression of DSC2 and PKP1 facilitated cancer cells to form clusters in circulation, and also activated PI3K/AKT/Bcl-2–mediated pathway to increase cell survival. The high levels of DSC2 and PKP1 are also important for maintaining high expression of vimentin, which stimulates fibronectin/integrin β1/FAK/Src/MEK/ERK/ZEB1–mediated metastasis. Moreover, higher levels of DSC2 and PKP1 were detected in tumor samples from patients with breast and lung cancer, and their high expression was correlated with lower overall survival and worse disease progression. DSC2 and PKP1 may serve as new biomarkers for detecting and targeting metastatic circulating tumor cells.
Collapse
Affiliation(s)
- Koukou Li
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Renfei Wu
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Muya Zhou
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Haibo Tong
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Q. Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
12
|
Reischl S, Lee JH, Miltschitzky JRE, Vieregge V, Walter RL, Twardy V, Kasajima A, Friess H, Kamaly N, Neumann PA. Ac2-26-Nanoparticles Induce Resolution of Intestinal Inflammation and Anastomotic Healing via Inhibition of NF-κB Signaling in a Model of Perioperative Colitis. Inflamm Bowel Dis 2021; 27:1379-1393. [PMID: 33512505 DOI: 10.1093/ibd/izab008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Although in most patients with inflammatory bowel diseases, conservative therapy is successful, a significant proportion of patients still require surgery once in their lifetime. Development of a safe perioperative treatment to dampen colitis activity without disturbance of anastomotic healing is an urgent and unmet medical need. Annexin A1 (ANXA1) has been shown to be effective in reducing colitis activity. Herein, a nanoparticle-based perioperative treatment approach was used for analysis of the effects of ANXA1 on the resolution of inflammation after surgery for colitis. METHODS Anxa1-knockout mice were used to delineate the effects of ANXA1 on anastomotic healing. A murine model of preoperative dextran sodium sulfate colitis was performed. Collagen-IV-targeted polymeric nanoparticles, loaded with the ANXA1 biomimetic peptide Ac2-26 (Ac2-26-NPs), were synthesized and administered perioperatively during colitis induction. The effects of the Ac2-26-NPs on postoperative recovery and anastomotic healing were evaluated using the disease activity index, histological healing scores, and weight monitoring. Ultimately, whole-genome RNA sequencing of the anastomotic tissue was performed to unravel underlying molecular mechanisms. RESULTS Anxa1-knockout exacerbated the inflammatory response in the healing anastomosis. Treatment with Ac2-26-NPs improved preoperative colitis activity (P < 0.045), postoperative healing scores (P < 0.018), and weight recovery (P < 0.015). Whole-genome RNA sequencing revealed that the suppression of proinflammatory cytokine and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was associated with the treatment effects and a phenotypic switch toward anti-inflammatory M2 macrophages. CONCLUSIONS Proresolving therapy with Ac2-26-NPs promises to be a potent perioperative therapy because it improves colitis activity and even intestinal anastomotic healing by the suppression of proinflammatory signaling.
Collapse
Affiliation(s)
- Stefan Reischl
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Jong Hyun Lee
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark
| | | | - Vincent Vieregge
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Robert Leon Walter
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Vanessa Twardy
- University of Muenster, School of Medicine, Department of Surgery, Muenster, Germany
| | - Atsuko Kasajima
- Technical Technical University of Munich, School of Medicine, Institute of Pathology, Munich, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Department of Surgery, Munich, Germany
| | - Nazila Kamaly
- Technical University of Denmark, Department of Health Technology, Copenhagen, Denmark.,Imperial College London, Department of Chemistry, Molecular Sciences Research Hub, London, United Kingdom
| | | |
Collapse
|
13
|
Cell specific variation in viability in suspension in in vitro Poiseuille flow conditions. Sci Rep 2021; 11:13997. [PMID: 34234155 PMCID: PMC8263586 DOI: 10.1038/s41598-021-91865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/26/2021] [Indexed: 11/20/2022] Open
Abstract
The influence of Poiseuille flow on cell viability has applications in the areas of cancer metastasis, lab-on-a-chip devices and flow cytometry. Indeed, retaining cell viability is important in the emerging field of adoptive cell therapy, as cells need to be returned to patients’ bodies, while the viability of other cells, which are perhaps less accustomed to suspension in a fluidic environment, is important to retain in flow cytometers and other such devices. Despite this, it is unclear how Poiseuille flow affects cell viability. Following on from previous studies which investigated the viability and inertial positions of circulating breast cancer cells in identical flow conditions, this study investigated the influence that varying flow rate, and the corresponding Reynolds number has on the viability of a range of different circulating cells in laminar pipe flow including primary T-cells, primary fibroblasts and neuroblastoma cells. It was found that Reynolds numbers as high as 9.13 had no effect on T-cells while the viabilities of neuroblastoma cells and intestinal fibroblasts were significantly reduced in comparison. This indicates that in vitro flow devices need to be tailored to cell-specific flow regimes.
Collapse
|
14
|
Role of Annexin A1 in Squamous Cell Lung Cancer Progression. DISEASE MARKERS 2021; 2021:5520832. [PMID: 33959206 PMCID: PMC8075699 DOI: 10.1155/2021/5520832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022]
Abstract
Lung cancer remains the primary cause of cancer-related death worldwide, and its molecular mechanisms of tumor progression need further characterization to improve the clinical management of affected patients. The role of Annexin A1 (ANXA1) in tumorigenesis and cancer progression in general and especially in lung cancer remains to be controversial and seems to be highly tissue specific and inconsistent among tumor initiation, progression, and metastasis. In the current study, we investigated ANXA1 expression in 81 squamous cell lung cancer (SQCLC), 86 pulmonary adenocarcinoma (AC), and 30 small cell lung cancer (SCLC) patient-derived tissue samples and its prognostic impact on patient's survival. Mechanistically, we analyzed the impact of ANXA1 expression on proliferation and migration of SQCLC cell lines using CRISPR-Cas9 and mammalian overexpression vectors. Strong expression of ANXA1 was significantly correlated to longer overall survival only in SQCLC patients (P = 0.019). Overexpression of ANXA1 promoted proliferation in SQCLC cell lines but suppressed their migration, while knockout of ANXA1 promoted cell migration and suppressed proliferation. In conclusion, ANXA1 expression might elongate patients' survival by inhibiting tumor cell migration and subsequent metastasis.
Collapse
|
15
|
Wei L, Li L, Liu L, Yu R, Li X, Luo Z. Knockdown of Annexin-A1 Inhibits Growth, Migration and Invasion of Glioma Cells by Suppressing the PI3K/Akt Signaling Pathway. ASN Neuro 2021; 13:17590914211001218. [PMID: 33706561 PMCID: PMC7958645 DOI: 10.1177/17590914211001218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ANXA1, which can bind phospholipid in a calcium dependent manner, is reported to play a pivotal role in tumor progression. However, the role and mechanism of ANXA1 involved in the occurrence and development of malignant glioma are still not well studied. Therefore, we explored the effects of ANXA1 on normal astrocytes and glioma cell proliferation, apoptosis, migration and invasion and the underlying mechanisms. We found that ANXA1 was markedly up-regulated in glioma cell lines and glioma tissues. Down-regulation of ANXA1 inhibited normal astrocytes and glioma cell proliferation and induced the cell apoptosis, which suggested that the consequences of loss of Annexin 1 are not specific to the tumor cells. Furthermore, the siRNA-ANXA1 treatment significantly reduced tumor growth rate and tumor weight. Moreover, decreasing ANXA1 expression caused G2/M phase arrest by repressing expression levels of cdc25C, cdc2 and cyclin B1. Interestingly, ANXA1 did not affect the expressions of β-catenin, GSK-3β and NF-κB, the key signaling molecules associated with cancer progression. However, siRNA-ANXA1 was found to negatively regulate phosphorylation of AKT and the expression and activity of MMP2/-9. Finally, the decrease of cell proliferation and invasiveness induced by ANXA1 down-regulation was partially reversed by combined treatment with AKT agonist insulin-like growth factor-1 (IGF-1). Meanwhile, the inhibition of glioma cell proliferation and invasiveness induced by ANXA1 down-regulation was further enhanced by combined treatment with AKT inhibitor LY294002. In summary, these findings demonstrate that ANXA1 regulates proliferation, migration and invasion of glioma cells via PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liqing Wei
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Yu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Yang D, Ma X, Xu J, Jia K, Liu X, Zhang P. Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biol Ther 2021; 22:238-247. [PMID: 33632059 DOI: 10.1080/15384047.2021.1883186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Emerging documents revealed that E2 enzyme family has been implicated in regulating the progression of numerous human cancers. Ubiquitin-conjugating enzyme E2 J1 (UBE2J1), a member of E2 enzyme family, has been reported to participate in the biological process of medulloblastoma, while little is known about its functionality in endometrial cancer (EC). Gene expression at the mRNA and protein levels were identified using RT-qPCR and western blot analysis, separately. The alteration on cell proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) process was determined through 5-Ethynyl-2'-deoxyuridine, cell adhesion, wound healing and transwell assays as well as western blot analysis. The role of UBE2J1 in xenograft tumor in mice was determined. Luciferase reporter and chromatin immunoprecipitation assays were conducted to reveal the undering mechanism of UBE2J1. Our results indicated that UBE2J1 displayed high level in EC tissues and cells and predicted poor prognosis of EC patients. In addition, UBE2J1 depletion inhibited cell proliferation, adhesion, motion, EMT process invitro, and repressed tumor growth invivo. Rescue assays manifested that ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate treatment reversed the effects of UBE2J1 on PI3K/AKT pathway activation and malignant phenotypes of EC cells. Finally, zinc finger X-chromosomal protein (zfx), with high expression in EC tissues, was verified to activate UBE2J1 transcription by binding to UBE2J1 promoter. In conclusion, all facts signified that zfx-induced upregulation of UBE2J1 accelerated the progression of EC via regulating the PI3K/AKT signaling pathway, which suggested that UBE2J1 might be of great significance in probing into the underlying therapeutic strategies of EC.
Collapse
Affiliation(s)
- Dexin Yang
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xin Ma
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Jie Xu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| |
Collapse
|
17
|
Novizio N, Belvedere R, Pessolano E, Tosco A, Porta A, Perretti M, Campiglia P, Filippelli A, Petrella A. Annexin A1 Released in Extracellular Vesicles by Pancreatic Cancer Cells Activates Components of the Tumor Microenvironment, through Interaction with the Formyl-Peptide Receptors. Cells 2020; 9:cells9122719. [PMID: 33353163 PMCID: PMC7767312 DOI: 10.3390/cells9122719] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/12/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most aggressive cancers in the world. Several extracellular factors are involved in its development and metastasis to distant organs. In PC, the protein Annexin A1 (ANXA1) appears to be overexpressed and may be identified as an oncogenic factor, also because it is a component in tumor-deriving extracellular vesicles (EVs). Indeed, these microvesicles are known to nourish the tumor microenvironment. Once we evaluated the autocrine role of ANXA1-containing EVs on PC MIA PaCa-2 cells and their pro-angiogenic action, we investigated the ANXA1 paracrine effect on stromal cells like fibroblasts and endothelial ones. Concerning the analysis of fibroblasts, cell migration/invasion, cytoskeleton remodeling, and the different expression of specific protein markers, all features of the cell switching into myofibroblasts, were assessed after administration of wild type more than ANXA1 Knock-Out EVs. Interestingly, we demonstrated a mechanism by which the ANXA1-EVs complex can stimulate the activation of formyl peptide receptors (FPRs), triggering mesenchymal switches and cell motility on both fibroblasts and endothelial cells. Therefore, we highlighted the importance of ANXA1/EVs-FPR axes in PC progression as a vehicle of intercommunication tumor cells-stroma, suggesting a specific potential prognostic/diagnostic role of ANXA1, whether in soluble form or even if EVs are captured in PC.
Collapse
Affiliation(s)
- Nunzia Novizio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Emanuela Pessolano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Mauro Perretti
- The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende 43, 84081 Baronissi, Italy;
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy; (N.N.); (R.B.); (E.P.); (A.T.); (A.P.); (P.C.)
- Correspondence: ; Tel.: +39-089-969-762; Fax: +39-089-969-602
| |
Collapse
|
18
|
Cellular Mechanisms of Circulating Tumor Cells During Breast Cancer Metastasis. Int J Mol Sci 2020; 21:ijms21145040. [PMID: 32708855 PMCID: PMC7404335 DOI: 10.3390/ijms21145040] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary site and travel in the blood stream. A higher number of CTCs increases the risk of breast cancer metastasis, and it is inversely associated with the survival rates of patients with breast cancer. Although the numbers of CTCs are generally low and the majority of CTCs die in circulation, the survival of a few CTCs can seed the development of a tumor at a secondary location. An increasing number of studies demonstrate that CTCs undergo modification in response to the dynamic biophysical environment in the blood due in part to fluid shear stress. Fluid shear stress generates reactive oxygen species (ROS), triggers redox-sensitive cell signaling, and alters the function of intracellular organelles. In particular, the mitochondrion is an important target organelle in determining the metastatic phenotype of CTCs. In healthy cells, mitochondria produce adenosine triphosphate (ATP) via oxidative phosphorylation in the electron transport chain, and during oxidative phosphorylation, they produce physiological levels of ROS. Mitochondria also govern death mechanisms such as apoptosis and mitochondrial permeability transition pore opening to, in order eliminate unwanted or damaged cells. However, in cancer cells, mitochondria are dysregulated, causing aberrant energy metabolism, redox homeostasis, and cell death pathways that may favor cancer invasiveness. In this review, we discuss the influence of fluid shear stress on CTCs with an emphasis on breast cancer pathology, then discuss alterations of cellular mechanisms that may increase the metastatic potentials of CTCs.
Collapse
|
19
|
Li L, Zhang R, Liu Y, Zhang G. ANXA4 Activates JAK-STAT3 Signaling by Interacting with ANXA1 in Basal-Like Breast Cancer. DNA Cell Biol 2020; 39:1649-1656. [PMID: 32552056 DOI: 10.1089/dna.2020.5570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Annexin A4 (encoded by the ANXA4 gene) is a calcium ion (Ca2+)- and phospholipid-binding protein of the Annexin family. In this study, we checked the expression profile of ANXA4 in basal-like breast cancer (BLBC) and its association with survival outcomes using pan-cancer data from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project. Then, using MDA-MB-231 and MDA-MB-468 cells, we explored the functional role of ANXA4 in regulating a cancer-related signaling pathway and identified potential partners of ANXA4. The results showed that expression of total ANXA4 and the two dominant ANXA4 protein-coding transcripts (ENST00000409920.5 and ENST00000394295.4) was consistently upregulated in tumor tissues compared with normal breast tissues. BLBC patients with high ANXA4 expression had significantly worse overall survival, progression-free survival, and disease-free survival than those with low ANXA4 expression. ANXA4 could positively modulate cyclin D1 expression and G1/S progression in the two cell lines. An in vivo tumor model showed that ANXA4 inhibition significantly slowed the growth of tumors derived from the two BLBC cell lines. ANXA4 could increase JAK1 expression and STAT3 phosphorylation (Y705). ANXA4 colocalized with ANXA1 in some MDA-MB-231 cells. A co-immunoprecipitation assay confirmed direct binding between ANXA4 and ANXA1. Knockdown of ANXA1 reduced JAK1 expression and STAT3 phosphorylation and impaired ANXA4-induced upregulation of JAK1 and p-STAT3. In conclusion, this study revealed that aberrant ANXA4 upregulation is associated with poor survival in BLBC. ANXA4 could activate JAK-STAT3 signaling by elevating the expression of JAK1 and p-STAT3, which was mediated by direct interaction with ANXA1.
Collapse
Affiliation(s)
- Lei Li
- Department of Radiotherapy and People's Hospital of Shanxi Province, Taiyuan, China
| | - Rong Zhang
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi Province, Taiyuan, China
| | - Ying Liu
- Department of Oncology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Gong Zhang
- Department of Radiotherapy and People's Hospital of Shanxi Province, Taiyuan, China
| |
Collapse
|
20
|
Huang Y, Xu YQ, Feng SY, Zhang X, Ni JD. LncRNA TDRG1 Promotes Proliferation, Invasion and Epithelial-Mesenchymal Transformation of Osteosarcoma Through PI3K/AKT Signal Pathway. Cancer Manag Res 2020; 12:4531-4540. [PMID: 32606946 PMCID: PMC7304679 DOI: 10.2147/cmar.s248964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Objective This study aimed to investigate the effect of long non-coding TDRG1 on proliferation and migration of osteosarcoma cells through PI3K/AKT signaling pathway. Materials and Methods Altogether 87 cases of osteosarcoma tissues and adjacent tissues were collected, and osteosarcoma cells and osteoblasts were purchased. The expression of LncRNA TDRG1 in tissues and cells was detected by RT-PCR. Si-NC, si-TDRG1, and Sh-TDRG1 were transfected into osteosarcoma cells. L740Y-P (activator of PI3K/AKT pathway) and LY294002 (inhibitor of PI3k/AKT pathway) were used to interfere with PI3k/Akt signaling pathway in osteosarcoma cells. qRT-PCR was used to detect the expression of TDRG1 in osteosarcoma tissues and cells. WB was used to detect the expression of p-PI3K, p-AKT, N-cadherin, E-Cadherin, vimentin, Bax, Caspase-3, and Bcl-2 in cells. CCK-8, Transwell and cell scratch tests were used to detect cell proliferation, invasion and migration, and flow cytometry was used to detect cell apoptosis. Results TDRG1 was highly expressed in osteosarcoma, and the levels of p-PI3K and p-AKT were also up-regulated. Cell experiments showed that inhibiting the expression of TDRG1 could inhibit the proliferation, invasion, migration and EMT of osteosarcoma cells, promote the apoptosis of cells, and up-regulating the expression of TDRG1 could promote the proliferation, invasion, migration and EMT of osteosarcoma cells and inhibit the apoptosis of cells. The 740Y-P intervention could reverse the inhibition of Si-TDRG1 on osteosarcoma cell proliferation, invasion, migration and EMT and the promotion of cell apoptosis. LY294002 intervention could reverse the promotion of Sh-TDRG1 on osteosarcoma cell proliferation, invasion, migration and EMT and the inhibition of cell apoptosis. Conclusion TDRG1 is highly expressed in osteosarcoma tissue. Silencing the expression of osteosarcoma can inhibit the proliferation, invasion, migration and EMT of osteosarcoma cells by inhibiting PI3K/AKT signaling pathway, which may be a new target for diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yan Huang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| | - Yong-Qiang Xu
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, People's Republic of China
| | - Si-Yin Feng
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, People's Republic of China
| | - Xiang Zhang
- Department of Orthopaedics, Hunan Provincial People's Hospital, Changsha, Hunan Province, People's Republic of China
| | - Jiang-Dong Ni
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
21
|
Connolly S, Newport D, McGourty K. The mechanical responses of advecting cells in confined flow. BIOMICROFLUIDICS 2020; 14:031501. [PMID: 32454924 PMCID: PMC7200165 DOI: 10.1063/5.0005154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/21/2020] [Indexed: 05/03/2023]
Abstract
Fluid dynamics have long influenced cells in suspension. Red blood cells and white blood cells are advected through biological microchannels in both the cardiovascular and lymphatic systems and, as a result, are subject to a wide variety of complex fluidic forces as they pass through. In vivo, microfluidic forces influence different biological processes such as the spreading of infection, cancer metastasis, and cell viability, highlighting the importance of fluid dynamics in the blood and lymphatic vessels. This suggests that in vitro devices carrying cell suspensions may influence the viability and functionality of cells. Lab-on-a-chip, flow cytometry, and cell therapies involve cell suspensions flowing through microchannels of approximately 100-800 μ m. This review begins by examining the current fundamental theories and techniques behind the fluidic forces and inertial focusing acting on cells in suspension, before exploring studies that have investigated how these fluidic forces affect the reactions of suspended cells. In light of these studies' findings, both in vivo and in vitro fluidic cell microenvironments shall also be discussed before concluding with recommendations for the field.
Collapse
Affiliation(s)
- S Connolly
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - D Newport
- School of Engineering, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | | |
Collapse
|