1
|
Ramzan M, Ahmed A, Siddiqui AJ, Khan MN, Nisa ZU, Raza A, Musharraf SG. Understanding the pattern of resistance in multi-drug resistant clinical isolates of Acinetobacter baumannii based on metabolomics approach. Microb Pathog 2025; 200:107307. [PMID: 39826862 DOI: 10.1016/j.micpath.2025.107307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Antimicrobial resistance (AMR) poses significant challenges to global public health. The major cause of AMR development is previous use of antibiotics, hospitalization, and the lack of efficient methods for screening AMR pathogens. Mass spectrometry techniques offer rapid, sensitive, and early detection of AMR both on proteomics and metabolomics levels. Hence, a metabolomics analysis on clinical isolates of A. baumannii was conducted to understand the resistance patterns exhibited by these isolates. A. baumannii (ATCC strain) and its clinical isolates (n = 26) were screened against five antibiotics i.e., ciprofloxacin, colistin, cefixime, gentamicin, and co-amoxiclav to obtain their resistance profile using antibiogram and MIC methods. After that, all the samples were analyzed in both positive and negative modes of Flow Injection-High Resolution-Electrospray Ionization Mass Spectrometry (FI-HR-ESI-MS) after 6 h of incubation. Data analysis revealed the identification of a total of 43 metabolites. The metabolites were then subjected to chemometric analysis to find any significant association of the metabolites with an increase in the MIC values. The chemometric analysis resulted in a total of eleven metabolites with p-values< 0.05 to be significantly associated with the resistance of A. baumannii isolates against the drugs. The concentrations of two metabolites, pyochelin, and L-serine, increased sequentially with the increase in MIC values (increase in resistance) of ciprofloxacin and cefixime, respectively. The study showed a significant association of metabolites with the resistance in A. baumannii isolates and can play a potential role in the development of new therapeutics against the arising antimicrobial resistance of A. baumannii towards various antibiotic drugs.
Collapse
Affiliation(s)
- Muhammad Ramzan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Amna Jabbar Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Muhammad Noman Khan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Zaib Un Nisa
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Ali Raza
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan
| | - Syed Ghulam Musharraf
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD), International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi-75270, Pakistan.
| |
Collapse
|
2
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
3
|
Kim YJ, Kim YS, Cha CJ. Taxonomic and genomic characterization of a siderophore-producing bacterium, Rhodoligotrophos ferricapiens sp. nov isolated from lettuce cultivation soil. Antonie Van Leeuwenhoek 2024; 118:43. [PMID: 39718642 DOI: 10.1007/s10482-024-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024]
Abstract
A Gram-stain-negative, aerobic, non-spore-forming, non-motile, coccus-shaped, and red-pigmented bacterial strain designated as CJ14T was isolated from lettuce cultivation soil in Yong-In, South Korea. Strain CJ14T grew optimally on Luria-Bertani agar at 37 ℃ and pH 7.0 in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain CJ14T belonged to the genus Rhodoligotrophos in the family Rhodoligotrophaceae and was closely related to Rhodoligotrophos defluvii lm1T (98.4% similarity). The genome size of strain CJ14T was 4.8 Mbp consisting of a single contig, and the DNA G + C content of strain CJ14T was 61.8%. The genomic comparison of strain CJ14T to R. defluvii lm1T showed an average nucleotide identity value of 77.9%, and the digital DNA-DNA hybridization value was 22.4%. Genomic analyses revealed that strain CJ14T possessed a gene cluster for ochrobactin biosynthesis, highly homologous to the siderophore gene cluster from Nitratireductor thuwali Nit1536T. Strain CJ14T contained ubiquinone (Q-10) as the predominant respiratory quinone. The major cellular fatty acids of strain CJ14T were C16:0, C19:0 cyclo ω8c and summed feature 8. The polar lipid profile was composed of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, diphosphatidylglycerol, one unidentified aminolipid, one unidentified glycolipid and five unidentified lipids. Based on polyphasic taxonomy study, strain CJ14T could be classified as a novel species of the genus Rhodoligotrophos, for which the name Rhodoligotrophos ferricapiens sp. nov. is proposed. The type strain is CJ14T (= KACC 23063T = JCM 36057T).
Collapse
Affiliation(s)
- Yu-Jin Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
| | - Yong-Seok Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, South Korea
- DNA Link, Inc, Seoul, 07793, Republic of Korea
| | - Chang-Jun Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, South Korea.
| |
Collapse
|
4
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Gräff ÁT, Barry SM. Siderophores as tools and treatments. NPJ ANTIMICROBIALS AND RESISTANCE 2024; 2:47. [PMID: 39649077 PMCID: PMC11621027 DOI: 10.1038/s44259-024-00053-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/03/2024] [Indexed: 12/10/2024]
Abstract
In the search for iron, an essential element in many biochemical processes, microorganisms biosynthesise dedicated chelators, known as siderophores, to sequester iron from their environment and actively transport the siderophore complex into the cell. This process has been implicated in bacterial pathogenesis and exploited through siderophore-antibiotic conjugates as a method for selective antibiotic delivery. Here we review this Trojan-horse approach including design considerations and potential in diagnostics and infection imaging.
Collapse
Affiliation(s)
- Á. Tamás Gräff
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| | - Sarah M. Barry
- Department of Chemistry, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Britannia House, London, SE1 1DB UK
| |
Collapse
|
6
|
Ricardi MM, Tribelli PM, Costa CS, Pezzoni M. Global transcriptional response of Pseudomonas aeruginosa to UVA radiation. Photochem Photobiol Sci 2024; 23:2029-2044. [PMID: 39470974 DOI: 10.1007/s43630-024-00649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/04/2024] [Indexed: 11/01/2024]
Abstract
Ultraviolet A (UVA) radiation is the major fraction of UV radiation reaching the Earth's surface. Its harmful effects on microorganisms, due mainly to oxidative damage, have been exploited for development of natural solar and commercial UVA-based disinfection methods. In this work, the global transcriptional response of Pseudomonas aeruginosa exposed to ultraviolet A (UVA) radiation was analyzed. To conduct this study, we analyzed the whole transcriptome of the PAO1 strain grown to logarithmic phase under sublethal doses of UVA or in the dark. We found that a total of 298 genes responded to UVA with a change of at least two-fold (5.36% of the total P. aeruginosa genome), and showed equal amount of induced and repressed genes. An important fraction of the induced genes were involved in the response to DNA damage and included induction of SOS, prophage and pyocins genes. The results presented in this study suggest that one of the main UVA targets are proteins carrying [Fe-S] clusters since several genes involved in the processes of synthesis, trafficking and assembly of these structures were upregulated. The management of intracellular iron levels also seems to be a robust response to this stress factor. The strong induction of genes involved in denitrification suggest that this pathway and/or reactive nitrogen species such as nitric oxide could have a role in the response to this radiation. Regarding the down-regulated genes, we found many involved in the biosynthesis of PQS, a quorum-sensing signal molecule with a possible role as endogenous photosensitizer.
Collapse
Affiliation(s)
- Martiniano M Ricardi
- IFIByNE (CONICET), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula M Tribelli
- IQUIBICEN (CONICET), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499B1650KNA, General San Martín, Prov. de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Otur Ç, Okay S, Konuksever Ö, Duyar O, Kaya Y, Kurt-Kızıldoğan A. Comprehensive characterization and resistome analysis of Antarctic Pseudomonas migulae strain CAS19. World J Microbiol Biotechnol 2024; 40:347. [PMID: 39397126 DOI: 10.1007/s11274-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Although traditionally considered pristine, Antarctica faces an increasing threat of antibiotic resistance due to human intervention. Here, we obtained a bacterial isolate, the CAS19 strain, from a lake water sample from Ardley Island, Antarctica and characterized it comprehensively. The CAS19 was a psychrotrophic and neutrophilic/alkalitolerant bacterium thriving at temperatures from 15 to 33 °C and pH levels from 6.0 to 9.0. Besides the production of siderophore and indole acetic acid, it also exhibited proteolytic and lipolytic activities. It was identified as Pseudomonas migulae by multilocus (16S rRNA, gyrB, rpoB and rpoD) sequence analysis, and its genome was 6.5 Mbps in length, had 59% GC content, and contained 5,821 coding sequences. The CAS19 was resistant to several antibiotics, including trimethoprim, penicillin, vancomycin, and erythromycin, confirmed by RT-qPCR analysis, with a notable increase in dfr (63-fold), bla (461-fold), vanW (31.7-fold) and macA (24.7-fold) expressions upon antibiotic exposure. Additionally, CAS19 exhibited resistance to heavy metals with an order of Cr(III) = Cu(II) > Ni(II) > Zn(II) > Cd(II), and showed diesel fuel (5%) degradation capacity. Cold-related genes cspA_2 and cspD were overexpressed at 4 and 15 °C, consistent with the cold adaptation mechanism. In conclusion, for the first time an Antarctic P. migulae isolate has been characterized in detail, uncovering a rich resistome repertoir that might be associated with anthropogenic disturbances.
Collapse
Affiliation(s)
- Çiğdem Otur
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, 06230, Türkiye.
| | - Ömer Konuksever
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Oğuzhan Duyar
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Yılmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye
| | - Aslıhan Kurt-Kızıldoğan
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayıs University, Samsun, 55139, Türkiye.
| |
Collapse
|
8
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Price CTD, Hanford HE, Al-Quadan T, Santic M, Shin CJ, Da'as MSJ, Abu Kwaik Y. Amoebae as training grounds for microbial pathogens. mBio 2024; 15:e0082724. [PMID: 38975782 PMCID: PMC11323580 DOI: 10.1128/mbio.00827-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Grazing of amoebae on microorganisms represents one of the oldest predator-prey dynamic relationships in nature. It represents a genetic "melting pot" for an ancient and continuous multi-directional inter- and intra-kingdom horizontal gene transfer between amoebae and its preys, intracellular microbial residents, endosymbionts, and giant viruses, which has shaped the evolution, selection, and adaptation of microbes that evade degradation by predatory amoeba. Unicellular phagocytic amoebae are thought to be the ancient ancestors of macrophages with highly conserved eukaryotic processes. Selection and evolution of microbes within amoeba through their evolution to target highly conserved eukaryotic processes have facilitated the expansion of their host range to mammals, causing various infectious diseases. Legionella and environmental Chlamydia harbor an immense number of eukaryotic-like proteins that are involved in ubiquitin-related processes or are tandem repeats-containing proteins involved in protein-protein and protein-chromatin interactions. Some of these eukaryotic-like proteins exhibit novel domain architecture and novel enzymatic functions absent in mammalian cells, such as ubiquitin ligases, likely acquired from amoebae. Mammalian cells and amoebae may respond similarly to microbial factors that target highly conserved eukaryotic processes, but mammalian cells may undergo an accidental response to amoeba-adapted microbial factors. We discuss specific examples of microbes that have evolved to evade amoeba predation, including the bacterial pathogens- Legionella, Chlamydia, Coxiella, Rickettssia, Francisella, Mycobacteria, Salmonella, Bartonella, Rhodococcus, Pseudomonas, Vibrio, Helicobacter, Campylobacter, and Aliarcobacter. We also discuss the fungi Cryptococcus, and Asperigillus, as well as amoebae mimiviruses/giant viruses. We propose that amoeba-microbe interactions will continue to be a major "training ground" for the evolution, selection, adaptation, and emergence of microbial pathogens equipped with unique pathogenic tools to infect mammalian hosts. However, our progress will continue to be highly dependent on additional genomic, biochemical, and cellular data of unicellular eukaryotes.
Collapse
Affiliation(s)
- Christopher T. D. Price
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Hannah E. Hanford
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Tasneem Al-Quadan
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | | | - Cheon J. Shin
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Manal S. J. Da'as
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
10
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
11
|
Kho CJY, Lau MML, Chung HH, Fukui K. Selection of vaccine candidates against Pseudomonas koreensis using reverse vaccinology and a preliminary efficacy trial in Empurau (Tor tambroides). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109688. [PMID: 38857817 DOI: 10.1016/j.fsi.2024.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
This study marks the first utilization of reverse vaccinology to develop recombinant subunit vaccines against Pseudomonas koreensis infection in Empurau (Tor tambroides). The proteome (5538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100 % and 81.2 %, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF-α and downregulation of IL-1β in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B-immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A-immunized fish. The research underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.
Collapse
Affiliation(s)
- Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama, 337-8570, Japan.
| |
Collapse
|
12
|
Reitz ZL. Predicting metallophore structure and function through genome mining. Methods Enzymol 2024; 702:371-401. [PMID: 39155119 DOI: 10.1016/bs.mie.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallophores are small molecule chelators that many microbes use to obtain trace metals from their environment. Through genome mining, where genomes are scanned for metallophore biosynthesis genes, one can not only identify which organisms are likely to produce a metallophore, but also predict the metallophore structure, thus preventing undesired reisolation of known compounds and accelerating characterization. Furthermore, the presence of accessory genes for the transport, utilization, and regulation can suggest the biological function and fate of a metallophore. Modern, user-friendly tools have made powerful genomic analyses accessible to scientists with no bioinformatics experience, but these tools are often not utilized to their full potential. This chapter provides an introduction to metallophore genomics and demonstrates how to use the free, publicly available antiSMASH platform to infer metallophore function and structure.
Collapse
Affiliation(s)
- Zachary L Reitz
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
13
|
Jackson M, Vineberg S, Theis KR. The Epistemology of Bacterial Virulence Factor Characterization. Microorganisms 2024; 12:1272. [PMID: 39065041 PMCID: PMC11278562 DOI: 10.3390/microorganisms12071272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The field of microbial pathogenesis seeks to identify the agents and mechanisms responsible for disease causation. Since Robert Koch introduced postulates that were used to guide the characterization of microbial pathogens, technological advances have substantially increased the capacity to rapidly identify a causative infectious agent. Research efforts currently focus on causation at the molecular level with a search for virulence factors (VFs) that contribute to different stages of the infectious process. We note that the quest to identify and characterize VFs sometimes lacks scientific rigor, and this suggests a need to examine the epistemology of VF characterization. We took this premise as an opportunity to explore the epistemology of VF characterization. In this perspective, we discuss how the characterization of various gene products that evolved to facilitate bacterial survival in the broader environment have potentially been prematurely mischaracterized as VFs that contribute to pathogenesis in the context of human biology. Examples of the reasoning that can affect misinterpretation, or at least a premature assignment of mechanistic causation, are provided. Our aim is to refine the categorization of VFs by emphasizing a broader biological view of their origin.
Collapse
Affiliation(s)
- Matthew Jackson
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Susan Vineberg
- Department of Philosophy, Wayne State University, Detroit, MI 48201, USA;
| | - Kevin R. Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
14
|
Neve RL, Giedraitis E, Akbari MS, Cohen S, Phelan VV. Secondary metabolite profiling of Pseudomonas aeruginosa isolates reveals rare genomic traits. mSystems 2024; 9:e0033924. [PMID: 38619244 PMCID: PMC11097636 DOI: 10.1128/msystems.00339-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram-negative opportunistic pathogen with remarkable phylogenetic and phenotypic variabilities. In this work, we applied classical molecular networking analysis to secondary metabolite profiling data from seven Pseudomonas aeruginosa strains, including five clinical isolates from the lung secretions of people with cystic fibrosis (CF). We provide three vignettes illustrating how secondary metabolite profiling aids in the identification of rare genomics traits in P. aeruginosa. First, we describe the identification of a previously unreported class of acyl putrescines produced by isolate mFLRO1. Secondary analysis of publicly available metabolomics data revealed that acyl putrescines are produced by <5% of P. aeruginosa strains. Second, we show that isolate SH3A does not produce di-rhamnolipids. Whole-genome sequencing and comparative genomics revealed that SH3A cannot produce di-rhamnolipids because its genome belongs to clade 5 of the P. aeruginosa phylogenetic tree. Previous phylogenetic analysis of thousands of P. aeruginosa strains concluded that <1% of publicly available genome sequences contribute to this clade. Last, we show that isolate SH1B does not produce the phenazine pyocyanin or rhamnolipids because it has a one-base insertion frameshift mutation (678insC) in the gene rhlR, which disrupts rhl-driven quorum sensing. Secondary analysis of the tens of thousands of publicly available genomes in the National Center for Biotechnology Information (NCBI) and the Pseudomonas Genome Database revealed that this mutation was present in only four P. aeruginosa genomes. Taken together, this study highlights that secondary metabolite profiling combined with genomic analysis can identify rare genetic traits of P. aeruginosa isolates.IMPORTANCESecondary metabolite profiling of five Pseudomonas aeruginosa isolates from cystic fibrosis sputum captured three traits present in <1%-5% of publicly available data, pointing to how our current library of P. aeruginosa strains may not represent the diversity within this species or the genetic variance that occurs in the CF lung.
Collapse
Affiliation(s)
- Rachel L. Neve
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Giedraitis
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Madeline S. Akbari
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Shirli Cohen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Vanessa V. Phelan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
15
|
Zhang C, Zaki FR, Won J, Boppart SA. A multimodal nonlinear optical microscopy study of the responses of Pseudomonas aeruginosa to blue light and antibiotic treatment. JOURNAL OF BIOPHOTONICS 2024; 17:e202300384. [PMID: 38010357 PMCID: PMC10961202 DOI: 10.1002/jbio.202300384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a multidrug-resistant human pathogen involved in numerous infections. Understanding the response of P. aeruginosa to various treatments is critical to developing new ways for the antimicrobial susceptibly test and more effective treatment methods. Conventional antimicrobial susceptibility tests lack molecular information at the single bacterium level. In this study, we used label-free multimodal nonlinear optical microscopy to identify an autofluorescence signal from pyoverdine, a siderophore of the bacteria, for quantification of P. aeruginosa responses to antibiotics and blue light treatment. We also discovered that the bleaching of the pyoverdine autofluorescence signals is correlated with the inactivation of P. aeruginosa and is perhaps one of the mechanisms involved in the blue light inactivation of P. aeruginosa.
Collapse
Affiliation(s)
- Chi Zhang
- Beckman Institute for Advanced Science and Technology
| | | | - Jungeun Won
- Beckman Institute for Advanced Science and Technology
- Department of Bioengineering
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology
- Department of Bioengineering
- Department of Electrical and Computer Engineering
- Cancer Center at Illinois
- Carle Illinois College of Medicine
- NIH/NIBIB Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign
| |
Collapse
|
16
|
Moreno-Fenoll C, Ardré M, Rainey PB. Polar accumulation of pyoverdin and exit from stationary phase. MICROLIFE 2024; 5:uqae001. [PMID: 38370141 PMCID: PMC10873284 DOI: 10.1093/femsml/uqae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
Pyoverdin is a water-soluble metal-chelator synthesized by members of the genus Pseudomonas and used for the acquisition of insoluble ferric iron. Although freely diffusible in aqueous environments, preferential dissemination of pyoverdin among adjacent cells, fine-tuning of intracellular siderophore concentrations, and fitness advantages to pyoverdin-producing versus nonproducing cells, indicate control of location and release. Here, using time-lapse fluorescence microscopy to track single cells in growing microcolonies of Pseudomonas fluorescens SBW25, we show accumulation of pyoverdin at cell poles. Accumulation occurs on cessation of cell growth, is achieved by cross-feeding in pyoverdin-nonproducing mutants and is reversible. Moreover, accumulation coincides with localization of a fluorescent periplasmic reporter, suggesting that pyoverdin accumulation at cell poles is part of the general cellular response to starvation. Compatible with this conclusion is absence of non-accumulating phenotypes in a range of pyoverdin mutants. Analysis of the performance of pyoverdin-producing and nonproducing cells under conditions promoting polar accumulation shows an advantage to accumulation on resumption of growth after stress. Examination of pyoverdin polar accumulation in a multispecies community and in a range of laboratory and natural species of Pseudomonas, including P. aeruginosa PAO1 and P. putida KT2440, confirms that the phenotype is characteristic of Pseudomonas.
Collapse
Affiliation(s)
- Clara Moreno-Fenoll
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Maxime Ardré
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Paul B Rainey
- Laboratory of Biophysics and Evolution, CBI, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| |
Collapse
|
17
|
Zhang H, Yang J, Cheng J, Zeng J, Ma X, Lin J. PQS and pyochelin in Pseudomonas aeruginosa share inner membrane transporters to mediate iron uptake. Microbiol Spectr 2024; 12:e0325623. [PMID: 38171001 PMCID: PMC10846271 DOI: 10.1128/spectrum.03256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Bacteria absorb different forms of iron through various channels to meet their needs. Our previous studies have shown that TseF, a type VI secretion system effector for Fe uptake, facilitates the delivery of outer membrane vesicle-associated Pseudomonas quinolone signal (PQS)-Fe3+ to bacterial cells by a process involving the Fe(III) pyochelin receptor FptA and the porin OprF. However, the form in which the PQS-Fe3+ complex enters the periplasm and how it is moved into the cytoplasm remain unclear. Here, we first demonstrate that the PQS-Fe3+ complex enters the cell directly through FptA or OprF. Next, we show that inner membrane transporters such as FptX, PchHI, and FepBCDG are not only necessary for Pseudomonas aeruginosa to absorb PQS-Fe3+ and pyochelin (PCH)-Fe3+ but are also necessary for the virulence of P. aeruginosa toward Galleria mellonella larvae. Furthermore, we suggest that the function of PQS-Fe3+ (but not PQS)-mediated quorum-sensing regulation is dependent on FptX, PchHI, and FepBCDG. Additionally, the findings indicate that unlike FptX, neither FepBCDG nor PchHI play roles in the autoregulatory loop involving PchR, but further deletion of fepBCDG and pchHI can reverse the inactive PchR phenotype caused by fptX deletion and reactivate the expression of the PCH pathway genes under iron-limited conditions. Finally, this work identifies the interaction between FptX, PchHI, and FepBCDG, indicating that a larger complex could be formed to mediate the uptake of PQS-Fe3+ and PCH-Fe3+. These results pave the way for a better understanding of the PQS and PCH iron absorption pathways and provide future directions for research on tackling P. aeruginosa infections.IMPORTANCEPseudomonas aeruginosa has evolved a number of strategies to acquire the iron it needs from its host, with the most common being the synthesis, secretion, and uptake of siderophores such as pyoverdine, pyochelin, and the quorum-sensing signaling molecule Pseudomonas quinolone signal (PQS). However, despite intensive studies of the siderophore uptake pathways of P. aeruginosa, our understanding of how siderophores transport iron across the inner membrane into the cytoplasm is still incomplete. Herein, we reveal that PQS and pyochelin in P. aeruginosa share inner membrane transporters such as FptX, PchHI, and FepBCDG to mediate iron uptake. Meanwhile, PQS and pyochelin-mediated signaling operate to a large extent via these inner membrane transporters. Our study revealed the existence of shared uptake pathways between PQS and pyochelin, which could lead us to reexamine the role of these two molecules in the iron uptake and virulence of P. aeruginosa.
Collapse
Affiliation(s)
- Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jing Zeng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Xin Ma
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| | - Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an, China
| |
Collapse
|
18
|
Hussein SM, Sofoluwe A, Paleja A, Duhme-Klair A, Thomas MS. Identification of a system for hydroxamate xenosiderophore-mediated iron transport in Burkholderia cenocepacia. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001425. [PMID: 38189440 PMCID: PMC10866019 DOI: 10.1099/mic.0.001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024]
Abstract
One of the mechanisms employed by the opportunistic pathogen Burkholderia cenocepacia to acquire the essential element iron is the production and release of two ferric iron chelating compounds (siderophores), ornibactin and pyochelin. Here we show that B. cenocepacia is also able to take advantage of a range of siderophores produced by other bacteria and fungi ('xenosiderophores') that chelate iron exclusively by means of hydroxamate groups. These include the tris-hydroxamate siderophores ferrioxamine B, ferrichrome, ferricrocin and triacetylfusarinine C, the bis-hydroxamates alcaligin and rhodotorulic acid, and the monohydroxamate siderophore cepabactin. We also show that of the 24 TonB-dependent transporters encoded by the B. cenocepacia genome, two (FhuA and FeuA) are involved in the uptake of hydroxamate xenosiderophores, with FhuA serving as the exclusive transporter of iron-loaded ferrioxamine B, triacetylfusarinine C, alcaligin and rhodotorulic acid, while both FhuA and FeuA are able to translocate ferrichrome-type siderophores across the outer membrane. Finally, we identified FhuB, a putative cytoplasmic membrane-anchored ferric-siderophore reductase, as being obligatory for utilization of all of the tested bis- and tris-hydroxamate xenosiderophores apart from alcaligin.
Collapse
Affiliation(s)
- Syakira Mohammed Hussein
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Aderonke Sofoluwe
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London WC2R 2LS, UK
| | - Ameya Paleja
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| | - Anne Duhme-Klair
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mark S. Thomas
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
19
|
Vadakkan K, Ngangbam AK, Sathishkumar K, Rumjit NP, Cheruvathur MK. A review of chemical signaling pathways in the quorum sensing circuit of Pseudomonas aeruginosa. Int J Biol Macromol 2024; 254:127861. [PMID: 37939761 DOI: 10.1016/j.ijbiomac.2023.127861] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Pseudomonas aeruginosa, an increasingly common competitive and biofilm organism in healthcare infection with sophisticated, interlinked and hierarchic quorum systems (Las, Rhl, PQS, and IQS), creates the greatest threats to the medical industry and has rendered prevailing chemotherapy medications ineffective. The rise of multidrug resistance has evolved into a concerning and potentially fatal occurrence for human life. P. aeruginosa biofilm development is assisted by exopolysaccharides, extracellular DNA, proteins, macromolecules, cellular signaling and interaction. Quorum sensing is a communication process between cells that involves autonomous inducers and regulators. Quorum-induced infectious agent biofilms and the synthesis of virulence factors have increased disease transmission, medication resistance, infection episodes, hospitalizations and mortality. Hence, quorum sensing may be a potential therapeutical target for bacterial illness, and developing quorum inhibitors as an anti-virulent tool could be a promising treatment strategy for existing antibiotics. Quorum quenching is a prevalent technique for treating infections caused by microbes because it diminishes microbial pathogenesis and increases microbe biofilm sensitivity to antibiotics, making it a potential candidate for drug development. This paper examines P. aeruginosa quorum sensing, the hierarchy of quorum sensing mechanism, quorum sensing inhibition and quorum sensing inhibitory agents as a drug development strategy to supplement traditional antibiotic strategies.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biology, St. Mary's College, Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | | | - Kuppusamy Sathishkumar
- Rhizosphere Biology Laboratory, Department of Microbiology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602 105, Tamil Nadu, India
| | | | | |
Collapse
|
20
|
Ungor I, Apidianakis Y. Bacterial synergies and antagonisms affecting Pseudomonas aeruginosa virulence in the human lung, skin and intestine. Future Microbiol 2024; 19:141-155. [PMID: 37843410 DOI: 10.2217/fmb-2022-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Pseudomonas aeruginosa requires a significant breach in the host defense to cause an infection. While its virulence factors are well studied, its tropism cannot be explained only by studying its interaction with the host. Why are P. aeruginosa infections so rare in the intestine compared with the lung and skin? There is not enough evidence to claim specificity in virulence factors deployed by P. aeruginosa in each anatomical site, and host physiology differences between the lung and the intestine cannot easily explain the observed differences in virulence. This perspective highlights a relatively overlooked parameter in P. aeruginosa virulence, namely, potential synergies with bacteria found in the human skin and lung, as well as antagonisms with bacteria of the human intestine.
Collapse
Affiliation(s)
- Izel Ungor
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia, 2109, Cyprus
| |
Collapse
|
21
|
Venkateswaran P, Vasudevan S, David H, Shaktivel A, Shanmugam K, Neelakantan P, Solomon AP. Revisiting ESKAPE Pathogens: virulence, resistance, and combating strategies focusing on quorum sensing. Front Cell Infect Microbiol 2023; 13:1159798. [PMID: 37457962 PMCID: PMC10339816 DOI: 10.3389/fcimb.2023.1159798] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
The human-bacterial association is long-known and well-established in terms of both augmentations of human health and attenuation. However, the growing incidents of nosocomial infections caused by the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter sp.) call for a much deeper understanding of these organisms. Adopting a holistic approach that includes the science of infection and the recent advancements in preventing and treating infections is imperative in designing novel intervention strategies against ESKAPE pathogens. In this regard, this review captures the ingenious strategies commissioned by these master players, which are teamed up against the defenses of the human team, that are equally, if not more, versatile and potent through an analogy. We have taken a basketball match as our analogy, dividing the human and bacterial species into two teams playing with the ball of health. Through this analogy, we make the concept of infectious biology more accessible.
Collapse
Affiliation(s)
- Parvathy Venkateswaran
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adityan Shaktivel
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Karthik Shanmugam
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Prasanna Neelakantan
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
22
|
Kho CJY, Lau MML, Chung HH, Chew IYY, Gan HM. Whole-Genome Sequencing of Pseudomonas koreensis Isolated from Diseased Tor tambroides. Curr Microbiol 2023; 80:255. [PMID: 37356021 DOI: 10.1007/s00284-023-03354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/28/2023] [Indexed: 06/27/2023]
Abstract
Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.
Collapse
Affiliation(s)
- Cindy Jia Yung Kho
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Melinda Mei Lin Lau
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Hung Hui Chung
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia.
| | - Ivy Yee Yen Chew
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Han Ming Gan
- Department of Biological Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Malaysia
- Patriot Biotech Sdn. Bhd., 47500, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
23
|
Makky S, Abdelrahman F, Rezk N, Easwaran M, El-Shibiny A. Phages for treatment Pseudomonas aeruginosa infection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:1-19. [PMID: 37770166 DOI: 10.1016/bs.pmbts.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pseudomonas aeruginosa is denoted as one of the highly threatening bacteria to the public health. It has acquired many virulent factors and resistant genes that make it difficult to control with conventional antibiotics. Thus, bacteriophage therapy (phage therapy) is a proposed alternative to antibiotics to fight against multidrug-resistant P. aeruginosa. Many phages have been isolated that exhibit a broad spectrum of activity against P. aeruginosa. In this chapter, the common virulent factors and the prevalence of antibiotic-resistance genes in P. aeruginosa were reported. In addition, recent efforts in the field of phage therapy against P. aeruginosa were highlighted, including wild-type phages, genetically modified phages, phage cocktails, and phage in combination with antibiotics against P. aeruginosa in the planktonic and biofilm forms. Recent regulations on phage therapy were also covered in this chapter.
Collapse
Affiliation(s)
- Salsabil Makky
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Fatma Abdelrahman
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Nouran Rezk
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt
| | - Maheswaran Easwaran
- Department of Biomedical Engineering, Sethu Institute of Technology, Virudhunagar, Tamil Nadu, India
| | - Ayman El-Shibiny
- Center for Microbiology and Phage Therapy, Zewail City of Science and Technology, October Gardens, 6th of October City, Giza, Egypt; Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt.
| |
Collapse
|
24
|
Cornelis P, Tahrioui A, Lesouhaitier O, Bouffartigues E, Feuilloley M, Baysse C, Chevalier S. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Biometals 2023; 36:255-261. [PMID: 35171432 DOI: 10.1007/s10534-022-00369-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.
Collapse
Affiliation(s)
- Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France.
- Laboratorium Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Marc Feuilloley
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Christine Baysse
- CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Université de Rennes, Rennes, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| |
Collapse
|
25
|
Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 2023; 107:1019-1038. [PMID: 36633626 DOI: 10.1007/s00253-022-12347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sonu Mehta
- Anthem Biosciences Private Limited, Bommasandra, Bangalore, Karnataka, 56009, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
26
|
Lin J, Yang J, Cheng J, Zhang W, Yang X, Ding W, Zhang H, Wang Y, Shen X. Pseudomonas aeruginosa H3-T6SS Combats H 2O 2 Stress by Diminishing the Amount of Intracellular Unincorporated Iron in a Dps-Dependent Manner and Inhibiting the Synthesis of PQS. Int J Mol Sci 2023; 24:1614. [PMID: 36675127 PMCID: PMC9866239 DOI: 10.3390/ijms24021614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The type VI secretion system (T6SS), a protein translocation nanomachine, is widely distributed in Gram-negative bacteria and delivers effectors directly into target cells or the extracellular environment to help the bacteria gain a competitive fitness advantage and promote bacterial survival in harmful environments. In this study, we demonstrated that the synthesis of the Pseudomonas quinolone signal (PQS) in Pseudomonas aeruginosa PAO1 was inhibited by the H3-T6SS gene cluster under iron-rich conditions, and that this inhibition was relieved under iron starvation conditions. Conversely, PQS differentially regulated the expression of the H3-T6SS structural genes and the effector protein gene tseF. The expression of tseF was inhibited by PQS, while the expressions of the H3-T6SS structural genes were positively regulated by PQS. Further studies showed that the H3-T6SS was involved in the resistance of P. aeruginosa to oxidative stress caused by hydrogen peroxide (H2O2). Interestingly, H3-T6SS expression was neither induced by H2O2 stress nor regulated by OxyR (a global anti-oxidative transcriptional regulator) but was positively regulated by RpoS (a major transcription regulator of the stress response). In addition, we found that the clpV3 (a structural gene of H3-T6SS) mutation resulted in upregulation of two proteins related to PQS synthesis and many proteins related to oxidative stress resistance, while the expression of some iron storage proteins, especially Dps, were significantly downregulated. Furthermore, the clpV3 mutation led to an increase in the intracellular free Fe2+ content of P. aeruginosa. Further studies showed that both the PQS deficient mutation and overexpression of dps effectively restored the H2O2 sensitive phenotype of the H3-T6SS mutant. Finally, we proposed the following model of H3-T6SS-mediated resistance to H2O2 stress in P. aeruginosa. H3-T6SS not only reduces the intracellular free Fe2+ level by upregulating the expression of ferritin Dps, but also inhibits the synthesis of PQS to mediate the resistance of P. aeruginosa to H2O2 stress. This study highlights the important role of H3-T6SS in the ability of P. aeruginosa to combat H2O2 stress and provides a perspective for understanding the stress response mechanism of bacteria.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
27
|
Tabcheh J, Vergalli J, Davin-Régli A, Ghanem N, Pages JM, Al-Bayssari C, Brunel JM. Rejuvenating the Activity of Usual Antibiotics on Resistant Gram-Negative Bacteria: Recent Issues and Perspectives. Int J Mol Sci 2023; 24:1515. [PMID: 36675027 PMCID: PMC9864949 DOI: 10.3390/ijms24021515] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Antibiotic resistance continues to evolve and spread beyond all boundaries, resulting in an increase in morbidity and mortality for non-curable infectious diseases. Due to the failure of conventional antimicrobial therapy and the lack of introduction of a novel class of antibiotics, novel strategies have recently emerged to combat these multidrug-resistant infectious microorganisms. In this review, we highlight the development of effective antibiotic combinations and of antibiotics with non-antibiotic activity-enhancing compounds to address the widespread emergence of antibiotic-resistant strains.
Collapse
Affiliation(s)
- Jinane Tabcheh
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Julia Vergalli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Anne Davin-Régli
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Noha Ghanem
- Faculty of Science 3, Lebanese University, Michel Slayman Tripoli Campus, Tripoli 1352, Lebanon
| | - Jean-Marie Pages
- Aix Marseille University, INSERM, SSA, MCT, 13385 Marseille, France
| | - Charbel Al-Bayssari
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut P.O. Box 55251, Lebanon
| | | |
Collapse
|
28
|
Williamson KS, Dlakić M, Akiyama T, Franklin MJ. The Pseudomonas aeruginosa RpoH (σ 32) Regulon and Its Role in Essential Cellular Functions, Starvation Survival, and Antibiotic Tolerance. Int J Mol Sci 2023; 24:1513. [PMID: 36675051 PMCID: PMC9866376 DOI: 10.3390/ijms24021513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
The bacterial heat-shock response is regulated by the alternative sigma factor, σ32 (RpoH), which responds to misfolded protein stress and directs the RNA polymerase to the promoters for genes required for protein refolding or degradation. In P. aeruginosa, RpoH is essential for viability under laboratory growth conditions. Here, we used a transcriptomics approach to identify the genes of the RpoH regulon, including RpoH-regulated genes that are essential for P. aeruginosa. We placed the rpoH gene under control of the arabinose-inducible PBAD promoter, then deleted the chromosomal rpoH allele. This allowed transcriptomic analysis of the RpoH (σ32) regulon following a short up-shift in the cellular concentration of RpoH by arabinose addition, in the absence of a sudden change in temperature. The P. aeruginosa ∆rpoH (PBAD-rpoH) strain grew in the absence of arabinose, indicating that some rpoH expression occurred without arabinose induction. When arabinose was added, the rpoH mRNA abundance of P. aeruginosa ∆rpoH (PBAD-rpoH) measured by RT-qPCR increased five-fold within 15 min of arabinose addition. Transcriptome results showed that P. aeruginosa genes required for protein repair or degradation are induced by increased RpoH levels, and that many genes essential for P. aeruginosa growth are induced by RpoH. Other stress response genes induced by RpoH are involved in damaged nucleic acid repair and in amino acid metabolism. Annotation of the hypothetical proteins under RpoH control included proteins that may play a role in antibiotic resistances and in non-ribosomal peptide synthesis. Phenotypic analysis of P. aeruginosa ∆rpoH (PBAD-rpoH) showed that it is impaired in its ability to survive during starvation compared to the wild-type strain. P. aeruginosa ∆rpoH (PBAD-rpoH) also had increased sensitivity to aminoglycoside antibiotics, but not to other classes of antibiotics, whether cultured planktonically or in biofilms. The enhanced aminoglycoside sensitivity of the mutant strain may be due to indirect effects, such as the build-up of toxic misfolded proteins, or to the direct effect of genes, such as aminoglycoside acetyl transferases, that are regulated by RpoH. Overall, the results demonstrate that RpoH regulates genes that are essential for viability of P. aeruginosa, that it protects P. aeruginosa from damage from aminoglycoside antibiotics, and that it is required for survival during nutrient-limiting conditions.
Collapse
Affiliation(s)
- Kerry S. Williamson
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Mensur Dlakić
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Tatsuya Akiyama
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Michael J. Franklin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
29
|
Kumari KS, Dixit S, Gaur M, Behera DU, Dey S, Sahoo RK, Dash P, Subudhi E. Taxonomic Assignment-Based Genome Reconstruction from Apical Periodontal Metagenomes to Identify Antibiotic Resistance and Virulence Factors. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010194. [PMID: 36676144 PMCID: PMC9861942 DOI: 10.3390/life13010194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin.
Collapse
Affiliation(s)
- K. Swapna Kumari
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Sangita Dixit
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
- Department of Biotechnology, Punjabi University, Patiala 147002, India
| | - Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Suchanda Dey
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Rajesh Kumar Sahoo
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Patitapaban Dash
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Enketeswara Subudhi
- Institute of Dental Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, India
- Correspondence: ; Tel.: +91-9861075829
| |
Collapse
|
30
|
Schalk IJ, Perraud Q. Pseudomonas aeruginosa and its multiple strategies to access iron. Environ Microbiol 2022; 25:811-831. [PMID: 36571575 DOI: 10.1111/1462-2920.16328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is a ubiquitous bacterium found in many natural and man-made environments. It is also a pathogen for plants, animals, and humans. As for almost all living organisms, iron is an essential nutrient for the growth of P. aeruginosa. The bacterium has evolved complex systems to access iron and maintain its homeostasis to survive in diverse natural and dynamic host environments. To access ferric iron, P. aeruginosa is able to produce two siderophores (pyoverdine and pyochelin), as well as use a variety of siderophores produced by other bacteria (mycobactins, enterobactin, ferrioxamine, ferrichrome, vibriobactin, aerobactin, rhizobactin and schizokinen). Furthermore, it can also use citrate, in addition to catecholamine neuromediators and plant-derived mono catechols, as siderophores. The P. aeruginosa genome also encodes three heme-uptake pathways (heme being an iron source) and one ferrous iron acquisition pathway. This review aims to summarize current knowledge concerning the molecular mechanisms involved in all the iron and heme acquisition strategies used by P. aeruginosa.
Collapse
Affiliation(s)
- Isabelle J Schalk
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| | - Quentin Perraud
- CNRS, UMR7242, ESBS, Strasbourg, France.,University of Strasbourg, UMR7242, ESBS, Strasbourg, France
| |
Collapse
|
31
|
Synthesis and study of new siderophore analog-ciprofloxacin conjugates with antibiotic activities against Pseudomonas aeruginosa and Burkholderia spp. Eur J Med Chem 2022; 245:114921. [DOI: 10.1016/j.ejmech.2022.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
|
32
|
Nicula NO, Lungulescu EM, Rimbu GA, Culcea A, Csutak O. Nutrient and organic pollutants removal in synthetic wastewater by Pseudomonas aeruginosa and Chryseobacterium sp./biofilter systems. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:881. [PMID: 36229564 DOI: 10.1007/s10661-022-10589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nutrient and organic pollution raise serious problems for aquatic ecosystems through the accumulation of organic carbon, the reduction of light penetration, and the loss of submerged aquatic vegetation. The over-enrichment of water with nitrogen and phosphorus leads to an imbalance in nutrient ratios, creating favorable conditions for toxic algal blooms, formation of oxygen-depleted water, etc. Thus, developing new technological solutions to reduce their amount is imperative. The present study investigates the capacity of Pseudomonas aeruginosa and Chryseobacterium sp. bacterial strains to form biofilm on solid support (biofilter), both individually and in tandem, using various analytical techniques. Also, the biofilm/biofilter systems' efficiency in removing nutrients such as nitrate, nitrite, ammonium, and phosphate ions from municipal wastewaters is assessed. The results showed a reduction of nutrient pollution of up to 91%, 98%, 55%, and 71% for nitrite, nitrate, ammonium, and phosphate ions. A reduction of about 78% of COD was also observed. The results were obtained in the absence of an additional aeration process, thus having a great potential for reducing total costs of wastewater treatment and developing ecological systems for wastewater management.
Collapse
Affiliation(s)
- Nicoleta-Oana Nicula
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
- Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest, Romania
| | - Eduard-Marius Lungulescu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania.
| | - Gimi A Rimbu
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Andreea Culcea
- National Institute for R&D in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, Bucharest, 030138, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor, Bucharest, Romania.
| |
Collapse
|
33
|
Awad M, Barnes TJ, Thomas N, Joyce P, Prestidge CA. Gallium Protoporphyrin Liquid Crystalline Lipid Nanoparticles: A Third-Generation Photosensitizer against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2022; 14:pharmaceutics14102124. [PMID: 36297559 PMCID: PMC9610264 DOI: 10.3390/pharmaceutics14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
The looming antimicrobial resistance pandemic has encouraged the investigation of antimicrobial photodynamic therapy (aPDT) as a promising technology to combat recalcitrant bacterial infections caused by antibiotic resistant strains. Here, we report on the optimization and effective application of gallium protoporphyrin liquid crystalline lipid nanoparticles (GaPP-LCNP) as a photosensitizer for aPDT against the Gram-negative bacteria P. aeruginosa in both planktonic and biofilm modes of growth. LCNP significantly enhanced the performance of GaPP as photosensitizer by two-fold, which was correlated with higher antibacterial activity, reducing the viability of planktonic P. aeruginosa by 7 log10 using 0.8 µM GaPP-LCNP and a light dose of 17 J.cm−2. Importantly, GaPP-LCNP also reduced the viability of biofilms by 6 log10 at relatively low light dose of 34.2 J.cm−2 using only 3 µM GaPP-LCNP. The high antibiofilm activity of GaPP-LCNP at low GaPP-LCNP dose indicated the high efficiency and safety profile of GaPP-LCNP as a promising platform for photodynamic inactivation of recalcitrant infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia
| | - Timothy J. Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Correspondence:
| |
Collapse
|
34
|
Dell’Anno F, Vitale GA, Buonocore C, Vitale L, Palma Esposito F, Coppola D, Della Sala G, Tedesco P, de Pascale D. Novel Insights on Pyoverdine: From Biosynthesis to Biotechnological Application. Int J Mol Sci 2022; 23:ijms231911507. [PMID: 36232800 PMCID: PMC9569983 DOI: 10.3390/ijms231911507] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pyoverdines (PVDs) are a class of siderophores produced mostly by members of the genus Pseudomonas. Their primary function is to accumulate, mobilize, and transport iron necessary for cell metabolism. Moreover, PVDs also play a crucial role in microbes’ survival by mediating biofilm formation and virulence. In this review, we reorganize the information produced in recent years regarding PVDs biosynthesis and pathogenic mechanisms, since PVDs are extremely valuable compounds. Additionally, we summarize the therapeutic applications deriving from the PVDs’ use and focus on their role as therapeutic target themselves. We assess the current biotechnological applications of different sectors and evaluate the state-of-the-art technology relating to the use of synthetic biology tools for pathway engineering. Finally, we review the most recent methods and techniques capable of identifying such molecules in complex matrices for drug-discovery purposes.
Collapse
|
35
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Roskova Z, Skarohlid R, McGachy L. Siderophores: an alternative bioremediation strategy? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153144. [PMID: 35038542 DOI: 10.1016/j.scitotenv.2022.153144] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 05/15/2023]
Abstract
Siderophores are small molecular weight iron scavengers that are mainly produced by bacteria, fungi, and plants. Recently, they have attracted increasing attention because of their potential role in environmental bioremediation. Although siderophores are generally considered to exhibit high specificity for iron, they have also been reported to bind to various metal and metalloid ions. This unique ability allows siderophores to solubilise and mobilise heavy metals and metalloids from soil, thereby facilitating their bioremediation. In addition, because of their redox nature, they can mediate the production of reactive oxygen species (ROS), and thus promote the biodegradation of organic contaminants. The aim of this review is to summarise the existing knowledge on the developed strategies of siderophore-assisted bioremediation of metals, metalloids, and organic contaminants. Additionally, this review also includes the biosynthesis and classification of microbial and plant siderophores.
Collapse
Affiliation(s)
- Zuzana Roskova
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Radek Skarohlid
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628 Prague, Czech Republic.
| |
Collapse
|
37
|
Liu L, Wang W, Wu S, Gao H. Recent Advances in the Siderophore Biology of Shewanella. Front Microbiol 2022; 13:823758. [PMID: 35250939 PMCID: PMC8891985 DOI: 10.3389/fmicb.2022.823758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Despite the abundance of iron in nature, iron acquisition is a challenge for life in general because the element mostly exists in the extremely insoluble ferric (Fe3+) form in oxic environments. To overcome this, microbes have evolved multiple iron uptake strategies, a common one of which is through the secretion of siderophores, which are iron-chelating metabolites generated endogenously. Siderophore-mediated iron transport, a standby when default iron transport routes are abolished under iron rich conditions, is essential under iron starvation conditions. While there has been a wealth of knowledge about the molecular basis of siderophore synthesis, uptake and regulation in model bacteria, we still know surprisingly little about siderophore biology in diverse environmental microbes. Shewanella represent a group of γ-proteobacteria capable of respiring a variety of organic and inorganic substrates, including iron ores. This respiratory process relies on a large number of iron proteins, c-type cytochromes in particular. Thus, iron plays an essential and special role in physiology of Shewanella. In addition, these bacteria use a single siderophore biosynthetic system to produce an array of macrocyclic dihydroxamate siderophores, some of which show particular biological activities. In this review, we first outline current understanding of siderophore synthesis, uptake and regulation in model bacteria, and subsequently discuss the siderophore biology in Shewanella.
Collapse
Affiliation(s)
- Lulu Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wei Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shihua Wu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
38
|
Guerrini M, d'Agostino S, Grepioni F, Braga D, Lekhan A, Turner RJ. Antimicrobial activity of supramolecular salts of gallium(III) and proflavine and the intriguing case of a trioxalate complex. Sci Rep 2022; 12:3673. [PMID: 35256712 PMCID: PMC8901752 DOI: 10.1038/s41598-022-07813-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
The use of the gallium oxalate complex [Ga(ox)3]3- as a building block in the formation of a drug-drug salt with the antimicrobial agent proflavine (PF) as its proflavinium cation (HPF+), namely [HPF]3[Ga(ox)3]·4H2O, is reported together with the preparation of the potassium salt K3[Ga(ox)3] and the novel dimeric gallium(III) salt K4[Ga2(ox)4(μ-OH)2]·2H2O. All compounds have been characterized by solid state methods, and their performance as antimicrobial agents has been evaluated by disk diffusion assay against the bacteria strains Pseudomonas aeruginosa ATCC27853, Staphylococcus aureus ATCC25923, and Escherichia coli ATCC25922. While the [HPF]3[Ga(ox)3]·4H2O drug-drug salt is effective against all three strains, the gallium oxalate salt K3[Ga(ox)3] showed impressive selectivity towards P. aeruginosa, with little to no antimicrobial activity against the other two organisms. This work presents novel breakthroughs towards Ga based antimicrobial agents.
Collapse
Affiliation(s)
- Marzia Guerrini
- Dipartimento di Chimica "Giacomo Ciamician", Università Di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Simone d'Agostino
- Dipartimento di Chimica "Giacomo Ciamician", Università Di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Fabrizia Grepioni
- Dipartimento di Chimica "Giacomo Ciamician", Università Di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Dario Braga
- Dipartimento di Chimica "Giacomo Ciamician", Università Di Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Andrii Lekhan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
39
|
Tuon FF, Dantas LR, Suss PH, Tasca Ribeiro VS. Pathogenesis of the Pseudomonas aeruginosa Biofilm: A Review. Pathogens 2022; 11:pathogens11030300. [PMID: 35335624 PMCID: PMC8950561 DOI: 10.3390/pathogens11030300] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is associated with several human infections, mainly related to healthcare services. In the hospital, it is associated with resistance to several antibiotics, which poses a great challenge to therapy. However, one of the biggest challenges in treating P. aeruginosa infections is that related to biofilms. The complex structure of the P. aeruginosa biofilm contributes an additional factor to the pathogenicity of this microorganism, leading to therapeutic failure, in addition to escape from the immune system, and generating chronic infections that are difficult to eradicate. In this review, we address several molecular aspects of the pathogenicity of P. aeruginosa biofilms.
Collapse
|
40
|
Iron Homeostasis in Pseudomonas aeruginosa: Targeting Iron Acquisition and Storage as an Antimicrobial Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:29-68. [DOI: 10.1007/978-3-031-08491-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Franklin T, Wu Y, Lang J, Li S, Yang R. Design of Polymeric Thin Films to Direct Microbial Biofilm Growth, Virulence, and Metabolism. Biomacromolecules 2021; 22:4933-4944. [PMID: 34694768 DOI: 10.1021/acs.biomac.1c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biofilms are ubiquitous in nature, yet strategies to direct biofilm behavior without genetic manipulation are limited. Due to the small selection of materials that have been used to successfully grow biofilms, the availability of functional materials that are able to support growth and program microbial functions remains a critical bottleneck in the design and deployment of functional yet safe microbes. Here, we report the design of insoluble pyridine-rich polymer surfaces synthesized using initiated chemical vapor deposition, which led to modulated biofilm growth and virulence in Pseudomonas aeruginosa (PAO1). A variety of extracellular virulence factors exhibited decreased production in response to the functional polymer, most significantly biomolecules also associated with iron acquisition, validating the material design strategy reported here. This report signifies a rich potential for materials-based strategies to direct the behavior of naturally occurring biofilms, which complement the existing genetic engineering toolkits in advancing microbiology, translational medicine, and biomanufacturing.
Collapse
Affiliation(s)
- Trevor Franklin
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, 120, Olin Hall, Ithaca, New York 14853, United States
| | - Yinan Wu
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, 120, Olin Hall, Ithaca, New York 14853, United States
| | - Jiayan Lang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, 120, Olin Hall, Ithaca, New York 14853, United States
| | - Sijin Li
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, 120, Olin Hall, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, 120, Olin Hall, Ithaca, New York 14853, United States
| |
Collapse
|
42
|
Transporter Gene-mediated Typing for Detection and Genome Mining of Lipopeptide-producing Pseudomonas. Appl Environ Microbiol 2021; 88:e0186921. [PMID: 34731056 PMCID: PMC8788793 DOI: 10.1128/aem.01869-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Pseudomonas lipopeptides (LPs) are involved in diverse ecological functions and have biotechnological application potential associated with their antimicrobial and/or antiproliferative activities. They are synthesized by multimodular nonribosomal peptide synthetases which, together with transport and regulatory proteins, are encoded by large biosynthetic gene clusters (BGCs). These secondary metabolites are classified in distinct families based on the sequence and length of the oligopeptide and size of the macrocycle, if present. The phylogeny of PleB, the MacB-like transporter that is part of a dedicated ATP-dependent tripartite efflux system driving export of Pseudomonas LPs, revealed a strong correlation with LP chemical diversity. As each LP BGC carries its cognate pleB, PleB is suitable as a diagnostic sequence for genome mining, allowing assignment of the putative metabolite to a particular LP family. In addition, pleB proved to be a suitable target gene for an alternative PCR method for detecting LP-producing Pseudomonas sp. and did not rely on amplification of catalytic domains of the biosynthetic enzymes. Combined with amplicon sequencing, this approach enabled typing of Pseudomonas strains as potential producers of a LP belonging to one of the known LP families, underscoring its value for strain prioritization. This finding was validated by chemical characterization of known LPs from three different families secreted by novel producers isolated from the rice or maize rhizosphere, namely, the type strains of Pseudomonas fulva (putisolvin), Pseudomonas zeae (tensin), and Pseudomonas xantholysinigenes (xantholysin). In addition, a new member of the Bananamide family, prosekin, was discovered in the type strain of Pseudomonas prosekii, which is an Antarctic isolate. IMPORTANCEPseudomonas spp. are ubiquitous bacteria able to thrive in a wide range of ecological niches, and lipopeptides often support their lifestyle but also their interaction with other micro- and macro-organisms. Therefore, the production of lipopeptides is widespread among Pseudomonas strains. Consequently, Pseudomonas lipopeptide research not only affects chemists and microbiologists but also touches a much broader audience, including biochemists, ecologists, and plant biologists. In this study, we present a reliable transporter gene-guided approach for the detection and/or typing of Pseudomonas lipopeptide producers. Indeed, it allows us to readily assess the lipopeptide diversity among sets of Pseudomonas isolates and differentiate strains likely to produce known lipopeptides from producers of potentially novel lipopeptides. This work provides a valuable tool that can also be integrated in a genome mining strategy and adapted for the typing of other specialized metabolites.
Collapse
|
43
|
Dunphy LJ, Kolling GL, Jenior ML, Carroll J, Attai AE, Farnoud F, Mathers AJ, Hughes MA, Papin JA. Multidimensional Clinical Surveillance of Pseudomonas aeruginosa Reveals Complex Relationships between Isolate Source, Morphology, and Antimicrobial Resistance. mSphere 2021; 6:e0039321. [PMID: 34259555 PMCID: PMC8386403 DOI: 10.1128/msphere.00393-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.
Collapse
Affiliation(s)
- Laura J. Dunphy
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Glynis L. Kolling
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Joanne Carroll
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - April E. Attai
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Farzad Farnoud
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Amy J. Mathers
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Molly A. Hughes
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
44
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
45
|
Valenzuela‐Heredia D, Henríquez‐Castillo C, Donoso R, Lavín P, Ringel MT, Brüser T, Campos JL. An unusual overrepresentation of genetic factors related to iron homeostasis in the genome of the fluorescent Pseudomonas sp. ABC1. Microb Biotechnol 2021; 14:1060-1072. [PMID: 33492712 PMCID: PMC8085936 DOI: 10.1111/1751-7915.13753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas inhabit diverse environments, such as soil, water, plants and humans. The variability of habitats is reflected in the diversity of the structure and composition of their genomes. This cosmopolitan bacterial genus includes species of biotechnological, medical and environmental importance. In this study, we report on the most relevant genomic characteristics of Pseudomonas sp. strain ABC1, a siderophore-producing fluorescent strain recently isolated from soil. Phylogenomic analyses revealed that this strain corresponds to a novel species forming a sister clade of the recently proposed Pseudomonas kirkiae. The genomic information reveals an overrepresented repertoire of mechanisms to hoard iron when compared to related strains, including a high representation of fecI-fecR family genes related to iron regulation and acquisition. The genome of the Pseudomonas sp. ABC1 contains the genes for non-ribosomal peptide synthetases (NRPSs) of a novel putative Azotobacter-related pyoverdine-type siderophore, a yersiniabactin-type siderophore and an antimicrobial betalactone; the last two are found only in a limited number of Pseudomonas genomes. Strain ABC1 can produce siderophores in a low-cost medium, and the supernatants from cultures of this strain promote plant growth, highlighting their biotechnological potential as a sustainable industrial microorganism.
Collapse
Affiliation(s)
| | - Carlos Henríquez‐Castillo
- Laboratorio de Fisiología y Genética Marina (FIGEMA)Centro de Estudios Avanzados de Zonas Áridas (CEAZA)CoquimboChile
- Facultad de Ciencias del MarUniversidad Católica del NorteCoquimboChile
| | - Raúl Donoso
- Programa Institucional de Fomento a la InvestigaciónDesarrollo, e Innovación (PIDi)Universidad Tecnológica MetropolitanaSantiagoChile
| | - Paris Lavín
- Facultad de Ciencias del Mar y Recursos BiológicosDepartamento de BiotecnologíaLaboratorio de Complejidad Microbiana y Ecología FuncionalInstituto AntofagastaUniversidad de AntofagastaAntofagastaChile
- Network for Extreme Environments Research (NEXER)Universidad de AntofagastaUniversidad de La Frontera y Universidad de MagallanesPunta ArenasChile
| | | | - Thomas Brüser
- Institute of MicrobiologyLeibniz University HannoverHannoverGermany
| | - José Luis Campos
- Facultad de Ingeniería y CienciasUniversidad Adolfo IbáñezViña del MarChile
| |
Collapse
|
46
|
Cain TJ, Smith AT. Ferric iron reductases and their contribution to unicellular ferrous iron uptake. J Inorg Biochem 2021; 218:111407. [PMID: 33684686 PMCID: PMC8035299 DOI: 10.1016/j.jinorgbio.2021.111407] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/29/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Iron is a necessary element for nearly all forms of life, and the ability to acquire this trace nutrient has been identified as a key virulence factor for the establishment of infection by unicellular pathogens. In the presence of O2, iron typically exists in the ferric (Fe3+) oxidation state, which is highly unstable in aqueous conditions, necessitating its sequestration into cofactors and/or host proteins to remain soluble. To counter this insolubility, and to compete with host sequestration mechanisms, many unicellular pathogens will secrete low molecular weight, high-affinity Fe3+ chelators known as siderophores. Once acquired, unicellular pathogens must liberate the siderophore-bound Fe3+ in order to assimilate this nutrient into metabolic pathways. While these organisms may hydrolyze the siderophore backbone to release the chelated Fe3+, this approach is energetically costly. Instead, iron may be liberated from the Fe3+-siderophore complex through reduction to Fe2+, which produces a lower-affinity form of iron that is highly soluble. This reduction is performed by a class of enzymes known as ferric reductases. Ferric reductases are broadly-distributed electron-transport proteins that are expressed by numerous infectious organisms and are connected to the virulence of unicellular pathogens. Despite this importance, ferric reductases remain poorly understood. This review provides an overview of our current understanding of unicellular ferric reductases (both soluble and membrane-bound), with an emphasis on the important but underappreciated connection between ferric-reductase mediated Fe3+ reduction and the transport of Fe2+ via ferrous iron transporters.
Collapse
Affiliation(s)
- Timothy J Cain
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
47
|
Gbian DL, Omri A. The Impact of an Efflux Pump Inhibitor on the Activity of Free and Liposomal Antibiotics against Pseudomonas aeruginosa. Pharmaceutics 2021; 13:pharmaceutics13040577. [PMID: 33919624 PMCID: PMC8072581 DOI: 10.3390/pharmaceutics13040577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, against P. aeruginosa isolates. Liposomes were prepared and characterized for their sizes and encapsulation efficiencies. The antimicrobial activities of formulations were determined by the microbroth dilution method. Their activity on P. aeruginosa biofilms was assessed, and the effect of sub-inhibitory concentrations on bacterial virulence factors, quorum sensing (QS) signals and bacterial motility was also evaluated. The average diameters of liposomes were 562.67 ± 33.74 nm for gentamicin and 3086.35 ± 553.95 nm for erythromycin, with encapsulation efficiencies of 13.89 ± 1.54% and 51.58 ± 2.84%, respectively. Liposomes and PABN combinations potentiated antibiotics by reducing minimum inhibitory and bactericidal concentrations by 4–32 fold overall. The formulations significantly inhibited biofilm formation and differentially attenuated virulence factor production as well as motility. Unexpectedly, QS signal production was not affected by treatments. Taken together, the results indicate that PABN shows potential as an adjuvant of liposomal macrolides and aminoglycosides in the management of lung infections in cystic fibrosis patients.
Collapse
Affiliation(s)
| | - Abdelwahab Omri
- Correspondence: ; Tel.: +1-705-675-1151-2190; Fax: +1-705-675-4844
| |
Collapse
|
48
|
Gonciarz RL, Renslo AR. Emerging role of ferrous iron in bacterial growth and host-pathogen interaction: New tools for chemical (micro)biology and antibacterial therapy. Curr Opin Chem Biol 2021; 61:170-178. [PMID: 33714882 PMCID: PMC8106656 DOI: 10.1016/j.cbpa.2021.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 01/27/2023]
Abstract
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host-pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.
Collapse
Affiliation(s)
- Ryan L Gonciarz
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
| |
Collapse
|
49
|
Jurado-Martín I, Sainz-Mejías M, McClean S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int J Mol Sci 2021; 22:3128. [PMID: 33803907 PMCID: PMC8003266 DOI: 10.3390/ijms22063128] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is a dominant pathogen in people with cystic fibrosis (CF) contributing to morbidity and mortality. Its tremendous ability to adapt greatly facilitates its capacity to cause chronic infections. The adaptability and flexibility of the pathogen are afforded by the extensive number of virulence factors it has at its disposal, providing P. aeruginosa with the facility to tailor its response against the different stressors in the environment. A deep understanding of these virulence mechanisms is crucial for the design of therapeutic strategies and vaccines against this multi-resistant pathogen. Therefore, this review describes the main virulence factors of P. aeruginosa and the adaptations it undergoes to persist in hostile environments such as the CF respiratory tract. The very large P. aeruginosa genome (5 to 7 MB) contributes considerably to its adaptive capacity; consequently, genomic studies have provided significant insights into elucidating P. aeruginosa evolution and its interactions with the host throughout the course of infection.
Collapse
Affiliation(s)
| | | | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin 4 D04 V1W8, Ireland; (I.J.-M.); (M.S.-M.)
| |
Collapse
|
50
|
Sambrano H, Castillo JC, Ramos CW, de Mayorga B, Chen O, Durán O, Ciniglio C, Aguilar C, Cisterna O, de Chial M. Prevalence of antibiotic resistance and virulent factors in nosocomial clinical isolates of Pseudomonas aeruginosa from Panamá. Braz J Infect Dis 2020; 25:101038. [PMID: 33285136 PMCID: PMC9392144 DOI: 10.1016/j.bjid.2020.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/23/2020] [Accepted: 11/08/2020] [Indexed: 12/31/2022] Open
Abstract
Background Pseudomonas aeruginosa is an important causative agent of nosocomial infections. As pathogen, P. aeruginosa is of increasing clinical importance due to its ability to develop high-level multidrug resistance (MDR). Methods The aim of the present study was to better understand the intrinsic virulence of circulating strains of Pseudomonas aeruginosa, by surveying and characterizing the antibiotic resistance profiles and prevalence of virulence factors in 51 clinical isolates of P. aeruginosa obtained from children admitted to Hospital del Niño-Panamá during the period of October 2016 until March 2017. Antimicrobial susceptibilities were assessed by determining the minimum inhibitory concentration for 12 antibiotics against P. aeruginosa clinical isolates using the VITEK system (https://www.biomerieux.com). Additionally, all isolates were examined by Polymerase Chain Reaction (PCR) for the presence of components of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes and betalactamases resistance genes (ESBL) using gene-specific primers. Results A total of 51 pyoverdine producing clinical isolates were analyzed, all of which expressed resistance genes such as genes of the MexAB-OprM efflux pump system (mexABR) and pyoverdine receptor genes (fpvA). Out of 51 MDR isolates, 22 were ESBL producers. The most common ESBL gene was blaTEM expressed by 43% of the isolates. The isolates tested in this study showed increased resistance to antibiotics in the following categories: (i) penicillins (ampicillin (69%), piperacillin (22%); (ii) pyrimethamines (trimethoprim, 65%); (iii) nitrofurans (nitrofurantoin, 63%), and (iv) third-generation cephalosporin cefotaxime (53%). These results underscore a high prevalence of MDR amongst clinical isolates from Panama. Conclusions The present study indicates that prevalence of BlaTEM-carrying strains is increasing with subsequent multidrug resistance in Panamá and as well reported worldwide. The virulent factors identified in this study provide valuable information regarding the prevalence of resistance genes and their potential impact on treatments that exploit the unique physiology of the pathogen. To prevent further spread of MDR, the proportions of resistant strains of Pseudomonas aeruginosa should be constantly evaluated on healthcare institutions of Panamá. More importantly, this information can be used to better understand the evolution and dissemination of strains hoping to prevent the development of resistance in Pseudomonas aeruginosa. Future studies quantifying the expression of these virulent genes will emphasize on the acquisition of multidrug resistance.
Collapse
Affiliation(s)
- Héctor Sambrano
- Universidad de Panamá, Programa de Maestría en Ciencias Biológicas, Panama
| | - Julio César Castillo
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología de Panamá (INDICASAT-AIP), Panama
| | - Carlos W Ramos
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Brenda de Mayorga
- Universidad de Panamá, Escuela de Biología, Departmento de Microbiología y Parasitología, Panama
| | - Olga Chen
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Ovidio Durán
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Carmelo Ciniglio
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | - Criseida Aguilar
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama
| | | | - Magaly de Chial
- Universidad de Panamá, Escuela de Biología, Departmento de Genética y Biología Molecular, Panama.
| |
Collapse
|