1
|
Sonsöz MR, Demirtaş İ, Canbolat O, Karadamar N, Özkan E, Özateş YS. High-density lipoprotein cholesterol to c-reactive protein ratio predicts atrial fibrillation recurrence after electrical cardioversion. Lipids 2024. [PMID: 39523833 DOI: 10.1002/lipd.12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Atrial fibrillation (AF) recurrence after cardioversion is common, and inflammation plays a critical role in its pathophysiology. We aimed to elucidate the predictive role of the ratio of high-density lipoprotein cholesterol to c-reactive protein (HDL-C/CRP) as an inflammatory marker in AF recurrence after electrical cardioversion (ECV). We analyzed patients who underwent elective ECV for atrial fibrillation between June 2020 and December 2023. Baseline levels of HDL-C and CRP were obtained. Ninety-six patients were included. The median age was 59 years, and 48% were female. Atrial fibrillation recurred after ECV in 56 patients (58%). In the AF recurrence group, CHA2DS2-VASc score was higher (2 [1-3] vs. 1[0-2]; p = 0.013), left atrial diameter was larger (43 ± 5 vs. 40 ± 6 mm; p = 0.015), and HDL-C/CRP ratio was lower (5.6 [2.7-13.0] vs. 14.0 [4.8-38.0]; p = 0.003) compared with the sinus rhythm group. Cox regression analysis showed that HDL-C/CRP was a predictor of AF recurrence at follow-up (unadjusted HR = 0.97; CI 95%: 0.95-0.99; p = 0.004; adjusted HR = 0.98; CI 95%: 0.96-0.99; p = 0.030). ROC curve showed that HDL-C/CRP ratio was able to predict AF recurrence after ECV (AUC = 0.68; p = 0.003). Kaplan-Meier analysis showed that patients with baseline HDL-C/CRP <7.4 had higher AF recurrence (log-rank test p = 0.013). Our research demonstrated that the lower HDL-C/CRP ratio predicted AF recurrence after ECV during follow-up.
Collapse
Affiliation(s)
- Mehmet Rasih Sonsöz
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - İhsan Demirtaş
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Orkun Canbolat
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Nazime Karadamar
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Eyüp Özkan
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| | - Yelda Saltan Özateş
- Department of Cardiology, Basaksehir Cam & Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Zheng J, Hong BV, Agus JK, Tang X, Klebaner NR, Chen S, Guo F, Harvey DJ, Lebrilla CB, Zivkovic AM. Lutein and Zeaxanthin Enhance, Whereas Oxidation, Fructosylation, and Low pH Damage High-Density Lipoprotein Biological Functionality. Antioxidants (Basel) 2024; 13:616. [PMID: 38790721 PMCID: PMC11118252 DOI: 10.3390/antiox13050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
High-density lipoproteins (HDLs) are key regulators of cellular cholesterol homeostasis but are functionally altered in many chronic diseases. The factors that cause HDL functional loss in chronic disease are not fully understood. It is also unknown what roles antioxidant carotenoids play in protecting HDL against functional loss. The aim of this study was to measure how various disease-associated chemical factors including exposure to (1) Cu2+ ions, (2) hypochlorous acid (HOCL), (3) hydrogen peroxide (H2O2), (4) sialidase, (5) glycosidase, (6) high glucose, (7) high fructose, and (8) acidic pH, and the carotenoid antioxidants (9) lutein and (10) zeaxanthin affect HDL functionality. We hypothesized that some of the modifications would have stronger impacts on HDL particle structure and function than others and that lutein and zeaxanthin would improve HDL function. HDL samples were isolated from generally healthy human plasma and incubated with the corresponding treatments listed above. Cholesterol efflux capacity (CEC), lecithin-cholesterol acyl transferase (LCAT) activity, and paraoxonase-1 (PON1) activity were measured in order to determine changes in HDL functionality. Median HDL particle diameter was increased by acidic pH treatment and reduced by HOCl, high glucose, high fructose, N-glycosidase, and lutein treatments. Acidic pH, oxidation, and fructosylation all reduced HDL CEC, whereas lutein, zeaxanthin, and sialidase treatment improved HDL CEC. LCAT activity was reduced by acidic pH, oxidation, high fructose treatments, and lutein. PON1 activity was reduced by sialidase, glycosidase, H2O2, and fructose and improved by zeaxanthin and lutein treatment. These results show that exposure to oxidizing agents, high fructose, and low pH directly impairs HDL functionality related to cholesterol efflux and particle maturation, whereas deglycosylation impairs HDL antioxidant capacity. On the other hand, the antioxidants lutein and zeaxanthin improve or preserve both HDL cholesterol efflux and antioxidant activity but have no effect on particle maturation.
Collapse
Affiliation(s)
- Jingyuan Zheng
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| | - Brian V. Hong
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| | - Joanne K. Agus
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| | - Xinyu Tang
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| | - Nola R. Klebaner
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| | - Siyu Chen
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (S.C.); (C.B.L.)
| | - Fei Guo
- Department of Molecular and Cellular Biology, University of California Davis, Davis, CA 95616, USA;
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California Davis, Davis, CA 95616, USA;
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA; (S.C.); (C.B.L.)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California Davis, Davis, CA 95616, USA; (J.Z.); (B.V.H.); (J.K.A.); (X.T.); (N.R.K.)
| |
Collapse
|
3
|
Pagonas N, Mueller R, Weiland L, Jaensch M, Dammermann W, Seibert FS, Hillmeister P, Buschmann I, Christ M, Ritter O, Westhoff TH, Sasko B, Kelesidis T. Oxidized high-density lipoprotein associates with atrial fibrillation. Heart Rhythm 2024; 21:362-369. [PMID: 38040404 PMCID: PMC11073573 DOI: 10.1016/j.hrthm.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/07/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common heart arrhythmia and considered to be a progressive chronic disease associated with increased morbidity and mortality. Recent data suggest a link between inflammation, oxidative stress, and AF, although the underlying mechanisms are not fully understood. Because oxidized lipoproteins cause structural damage and electrophysiologic changes in cardiomyocytes, it is feasible that the transformation of atheroprotective high-density lipoprotein (HDL) into dysfunctional HDL contributes to the development of AF. OBJECTIVE The purpose of this study was to determine whether a reduced antioxidant function of HDL is associated with the presence of AF. METHODS In this multicenter cross-sectional cohort study, we assessed HDL function in sera of 1206 participants. Patients were divided into groups according to the presence of AF (n = 233) or no AF (n = 973). A validated cell-free biochemical assay was used to determine reduced HDL antioxidant function as assessed by increased normalized HDL lipid peroxide content (nHDLox). RESULTS Participants with AF had a 9% higher mean relative nHDLox compared to persons without AF (P = .025). nHDLox was strongly associated with AF in all models of logistic regression, including the analysis adjusted for age, sex, and risk factors for AF (all P ≤.01). CONCLUSION Reduced antioxidant HDL function is associated with the presence of AF, which supports growing evidence that impaired lipoprotein function is linked to electrophysiological changes in cardiomyocytes. nHDLox is one of several contributors to the initiation and perpetuation of AF.
Collapse
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany; Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| | - Rhea Mueller
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Linda Weiland
- Department of Cardiology, University Hospital Ruppin-Brandenburg, Medical School Theodor Fontane, Neuruppin, Germany
| | - Monique Jaensch
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Werner Dammermann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Center for Internal Medicine II, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Felix S Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Philipp Hillmeister
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Ivo Buschmann
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Angiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Martin Christ
- Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University Duisburg-Essen, Bottrop, Germany
| | - Oliver Ritter
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany; Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Benjamin Sasko
- Department of Cardiology, University Medical Center Brandenburg an der Havel, Medical School Theodor Fontane, Brandenburg an der Havel, Germany; Medical Department II, Marien Hospital Herne, Ruhr-University of Bochum, Herne, Germany
| | - Theodoros Kelesidis
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Hong BV, Zheng J, Agus JK, Tang X, Lebrilla CB, Jin LW, Maezawa I, Erickson K, Harvey DJ, DeCarli CS, Mungas DM, Olichney JM, Farias ST, Zivkovic AM. High-Density Lipoprotein Changes in Alzheimer's Disease Are APOE Genotype-Specific. Biomedicines 2022; 10:1495. [PMID: 35884800 PMCID: PMC9312991 DOI: 10.3390/biomedicines10071495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 01/09/2023] Open
Abstract
High-density lipoproteins (HDL) play a critical role in cholesterol homeostasis. Apolipoprotein E (APOE), particularly the E4 allele, is a significant risk factor for Alzheimer's disease but is also a key HDL-associated protein involved in lipid transport in both the periphery and central nervous systems. The objective was to determine the influence of the APOE genotype on HDL function and size in the context of Alzheimer's disease. HDL from 194 participants (non-demented controls, mild cognitive impairment, and Alzheimer's disease dementia) were isolated from the plasma. The HDL cholesterol efflux capacity (CEC), lecithin-cholesterol acyltransferase (LCAT) activity, and particle diameter were measured. Neuropsychological test scores, clinical dementia rating, and magnetic resonance imaging scores were used to determine if cognition is associated with HDL function and size. HDL CEC and LCAT activity were reduced in APOE3E4 carriers compared to APOE3E3 carriers, regardless of diagnosis. In APOE3E3 carriers, CEC and LCAT activity were lower in patients. In APOE3E4 patients, the average particle size was lower. HDL LCAT activity and particle size were positively correlated with the neuropsychological scores and negatively correlated with the clinical dementia rating. We provide evidence for the first time of APOE genotype-specific alterations in HDL particles in Alzheimer's disease and an association between HDL function, size, and cognitive function.
Collapse
Affiliation(s)
- Brian V. Hong
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Jingyuan Zheng
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Joanne K. Agus
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Xinyu Tang
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA;
| | - Lee-Way Jin
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Kelsey Erickson
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (L.-W.J.); (I.M.); (K.E.)
| | - Danielle J. Harvey
- Department of Public Health Sciences, University of California-Davis, Davis, CA 95616, USA;
| | - Charles S. DeCarli
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Dan M. Mungas
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - John M. Olichney
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Sarah T. Farias
- Department of Neurology, School of Medicine, University of California-Davis, Davis, CA 95817, USA; (C.S.D.); (D.M.M.); (J.M.O.); (S.T.F.)
| | - Angela M. Zivkovic
- Department of Nutrition, University of California-Davis, Davis, CA 95616, USA; (B.V.H.); (J.Z.); (J.K.A.); (X.T.)
| |
Collapse
|