1
|
Deng Z, Xu M, Ding Z, Kong J, Liu J, Zhang Z, Cao P. ID2 promotes tumor progression and metastasis in thyroid cancer. Endocrine 2024; 84:1051-1063. [PMID: 38195969 PMCID: PMC11208273 DOI: 10.1007/s12020-023-03674-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Inhibitor of DNA Binding 2 (ID2) plays a crucial role in tumor cell proliferation, invasion, metastasis, and stemness. Aberrant ID2 expression is associated with poor prognosis in various cancers. However, the specific function of ID2 in thyroid cancer remain unclear. METHOD The TCGA database were utilized to explore the clinical relevance of ID2 in cancer. GO, KEGG, and TIMER were employed to predict the potential roles of ID2 in cancer. Functional analysis, including CCK-8, colony formation, transwell, wound healing, and sphere formation experiments, were conducted to determine the biological functions of ID2 in human cancers. Western blot (WB), RT-qPCR, and immunohistochemical (IHC) analyses were used to investigate the relationship between ID2 and downstream targets. RESULTS Our study revealed significant overexpression of ID2 in various malignant tumor cells. Knocking ID2 significantly inhibited cancer cell proliferation and invasion, while overexpressing ID2 enhanced these capabilities. Additionally, ID2 mediates resistance of cancer cells to protein kinase B (or Akt) inhibitions. Further WB and IHC experiments indicated that ID2 promotes the phosphorylation activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, thereby upregulating the expression of downstream proliferation, epithelial-mesenchymal transition (EMT), and stemness-related markers. CONCLUSION We found that ID2 significantly promotes thyroid cancer cell proliferation, migration, EMT, and stemness through the PI3K/Akt pathway. Moreover, ID2 plays a crucial role in regulating cancer immune responses. It may serve as a potential biomarker for enhancing the efficacy of chemotherapy, targeted therapy, and immunotherapy against cancer.
Collapse
Affiliation(s)
- Zhongming Deng
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Min Xu
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zhenghua Ding
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Jianqiao Kong
- Department of General Surgery, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Juanjuan Liu
- Department of Anesthesiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Zelin Zhang
- Department of Oncology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Ping Cao
- Department of Oncology Department, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| |
Collapse
|
2
|
Mao W, Wang K, Sun S, Wu J, Chen M, Geng J, Luo M. ID2 Inhibits Bladder Cancer Progression and Metastasis via PI3K/AKT Signaling Pathway. Front Cell Dev Biol 2021; 9:738364. [PMID: 34746132 PMCID: PMC8570141 DOI: 10.3389/fcell.2021.738364] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Accepted: 10/06/2021] [Indexed: 01/10/2023] Open
Abstract
Background: Inhibitors of DNA-binding (ID) proteins are important regulators of cell proliferation and differentiation. The aim of this study was to evaluated the role of ID proteins in bladder cancer (BCa) and related molecular mechanisms. Methods: The TCGA database was analyzed for the expression and clinical significance of ID proteins. The expression of ID2 was determined by qRT-PCR, immunohistochemical staining and western blot. The role of ID2 was determined by CCK-8, colony formation, wound healing, transwell and xenograft tumor assays, and the potential mechanism of ID2 in BCa was investigated by RNA sequencing. Results: ID2 expression was significantly downregulated in TCGA database and clinical samples, and high ID2 expression was associated with low-grade tumor staging and correlated with better overall survival, disease specific survival (DSS) and progress free interval (PFI). In vivo and in vitro experiments showed that knockdown of ID2 promoted proliferation, migration, invasion and metastasis of BCa cells, while overexpression of ID2 significantly inhibited cell proliferation, migration, invasion and metastasis. Mechanistically, ID2 acts as a tumor suppressor through PI3K/AKT signaling pathway to inhibit the progression and metastasis of BCa. Conclusion: Our results suggest that ID2 exerts tumor suppressive effects in BCa through PI3K/AKT signaling pathway, and altered ID2 expression can be used as a biomarker of BCa progression and metastasis.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Shidong Hospital of Yangpu District, Shanghai, China
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Keyi Wang
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Jiang Geng
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| | - Ming Luo
- Department of Urology, School of Medicine, Shanghai Tenth People’s Hospital, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Kim HR, Moon JH, Lee JH, Lim YC. Inhibitor of DNA Binding 2 (ID2): A Novel Marker for Lymph Node Metastasis in Head and Neck Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:6479-6488. [PMID: 33783641 DOI: 10.1245/s10434-021-09832-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2020] [Accepted: 02/19/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Although aggressive invasion and sequential lymph node metastasis (LNM) significantly affect the prognosis of patients with head and neck squamous cell carcinoma (HNSCC), studies on identifying the factors that regulate this process remain scarce. This study found an inhibitor of DNA binding 2 (ID2) as a novel molecule involved in the regulation of invasion and LNM of HNSCC and further verified its functional role. METHODS The study examined the translational significance between ID2 expression levels and the presence of LNM as well as the prognosis for 119 patients with HNSCC after treatment. In addition, in vitro and in vivo experiments were performed using ID2 gene-modulated HNSCC cell lines to determine the functional role of ID2 in the invasion and LNM of HNSCC. RESULTS Elevated levels of ID2 expression were closely associated with the presence of LNM in 119 patients with HNSCC, resulting in a poor prognosis. Overexpression of ID2-induced invasion and LNM of HNSCC cells was observed in vitro and in vivo. By contrast, knockdown of the ID2 gene diminished invasion and LNM of HNSCC cells. In addition, the ID2 expression level increased the expression level of matrix metalloproteinase 1 (MMP1), a molecule downstream to ID2. Furthermore, silencing of MMP1 in ID2-overexpressed HNSCC cells rescued the elevated invasion and LNM capabilities of these cells, suggesting that ID2 enhances invasion and LNM partly via MMP1 activation. CONCLUSION In the invasion and LNM of HNSCC, ID2 plays an important role by modulating MMP1 expression, suggesting ID2-MMP1 axis to be a novel alternative therapeutic target for invasion and LNM of HNSCC.
Collapse
Affiliation(s)
- Hye Ryun Kim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jung Hwa Moon
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Jun Hwan Lee
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea
| | - Young Chang Lim
- Department of Otorhinolaryngology - Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Sedlmeier G, Al‐Rawi V, Buchert J, Yserentant K, Rothley M, Steshina A, Gräßle S, Wu R, Hurrle T, Richer W, Decraene C, Thiele W, Utikal J, Abuillan W, Tanaka M, Herten D, Hill CS, Garvalov BK, Jung N, Bräse S, Sleeman JP. Id1 and Id3 Are Regulated Through Matrix‐Assisted Autocrine BMP Signaling and Represent Therapeutic Targets in Melanoma. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- Georg Sedlmeier
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Vanessa Al‐Rawi
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Justyna Buchert
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Klaus Yserentant
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | - Melanie Rothley
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Anastasia Steshina
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Simone Gräßle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Ruo‐Lin Wu
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Thomas Hurrle
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
| | - Wilfrid Richer
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Charles Decraene
- CNRS UMR144 Translational Research Department Institut Curie PSL Research University 26 rue d'Ulm Paris Cedex 05 75248 France
| | - Wilko Thiele
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| | - Jochen Utikal
- Skin Cancer Unit German Cancer Research Center (DKFZ) Im Neuenheimer Feld 280 69120 Heidelberg Germany
- Department of Dermatology, Venereology and Allergology University Medical Center Mannheim Ruprecht‐Karl University of Heidelberg Theodor‐Kutzer‐Ufer 1–3 68167 Mannheim Germany
| | - Wasim Abuillan
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
| | - Motomu Tanaka
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- Center for Integrative Medicine and Physics Institute for Advanced Study Kyoto University Yoshida Ushinomiya‐cho Sakyo‐Ku Kyoto 606‐8501 Japan
- Center for Integrative Medicine and Physics Institute for Advanced Study, Kyoto University Kyoto 606‐8501 Japan
| | - Dirk‐Peter Herten
- Institute of Physical Chemistry University of Heidelberg Im Neuenheimer Feld 229 69120 Heidelberg Germany
- College of Medical and Dental Sciences & School of Chemistry University of Birmingham Birmingham UK
- Centre of Membrane Proteins and Receptors (COMPARE) Universities of Birmingham and Nottingham UK
| | | | - Boyan K. Garvalov
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
| | - Nicole Jung
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC) Karlsruhe Institute of Technology Campus South, Building 30.42, Fritz‐Haber‐Weg 6 76131 Karlsruhe Germany
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS) Karlsruhe Institute of Technology (KIT) Hermann‐von‐Helmholtz‐Platz 1 D‐76344 Eggenstein‐Leopoldshafen Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Mannheim Institute for Innate Immunoscience (MI3) Medical Faculty Mannheim of the University of Heidelberg Ludolf‐Krehl‐Strasse 13–17 68167 Mannheim Germany
- Institute of Biological and Chemical Systems – Biological Information Processing (IBCS‐BIP) Karlsruhe Institute of Technology Campus North, Building 319, Hermann‐von‐Helmholtz‐Platz 1 76344 Eggenstein‐Leopoldshafen Germany
| |
Collapse
|
5
|
Kamarajah SK, Marson EJ, Zhou D, Wyn-Griffiths F, Lin A, Evans RPT, Bundred JR, Singh P, Griffiths EA. Meta-analysis of prognostic factors of overall survival in patients undergoing oesophagectomy for oesophageal cancer. Dis Esophagus 2020; 33:5843554. [PMID: 32448903 DOI: 10.1093/dote/doaa038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/22/2020] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Currently, the American Joint Commission on Cancer (AJCC) staging system is used for prognostication for oesophageal cancer. However, several prognostically important factors have been reported but not incorporated. This meta-analysis aimed to characterize the impact of preoperative, operative, and oncological factors on the prognosis of patients undergoing curative resection for oesophageal cancer. METHODS This systematic review was performed according to PRISMA guidelines and eligible studies were identified through a search of PubMed, Scopus, and Cochrane CENTRAL databases up to 31 December 2018. A meta-analysis was conducted with the use of random-effects modeling to determine pooled univariable hazard ratios (HRs). The study was prospectively registered with the PROSPERO database (Registration: CRD42018157966). RESULTS One-hundred and seventy-one articles including 73,629 patients were assessed quantitatively. Of the 122 factors associated with survival, 39 were significant on pooled analysis. Of these. the strongly associated prognostic factors were 'pathological' T stage (HR: 2.07, CI95%: 1.77-2.43, P < 0.001), 'pathological' N stage (HR: 2.24, CI95%: 1.95-2.59, P < 0.001), perineural invasion (HR: 1.54, CI95%: 1.36-1.74, P < 0.001), circumferential resection margin (HR: 2.17, CI95%: 1.82-2.59, P < 0.001), poor tumor grade (HR: 1.53, CI95%: 1.34-1.74, P < 0.001), and high neutrophil:lymphocyte ratio (HR: 1.47, CI95%: 1.30-1.66, P < 0.001). CONCLUSION Several tumor biological variables not included in the AJCC 8th edition classification can impact on overall survival. Incorporation and validation of these factors into prognostic models and next edition of the AJCC system will enable personalized approach to prognostication and treatment.
Collapse
Affiliation(s)
- Sivesh K Kamarajah
- Northern Oesophagogastric Cancer Unit, Newcastle University NHS Foundation Trust Hospitals, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, University of Newcastle, Newcastle upon Tyne, UK
| | - Ella J Marson
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Dengyi Zhou
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Aaron Lin
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Richard P T Evans
- Department of Upper Gastrointestinal Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - James R Bundred
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Pritam Singh
- Department of Upper Gastrointestinal Surgery, Royal Surrey County Hospital NHS Foundation Trust, Guildford, UK
| | - Ewen A Griffiths
- Department of Upper Gastrointestinal Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Cui J, Song Y, Han X, Hu J, Chen Y, Chen X, Xu X, Xing Y, Lu H, Cai L. Targeting 14-3-3ζ Overcomes Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors in Lung Adenocarcinoma via BMP2/Smad/ID1 Signaling. Front Oncol 2020; 10:542007. [PMID: 33123465 PMCID: PMC7571474 DOI: 10.3389/fonc.2020.542007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/11/2020] [Accepted: 08/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background: The 14-3-3ζ protein, which acts as a putative oncoprotein, has been found to promote the proliferation, metastasis, and chemoresistance of cancer cells in several cancers including lung adenocarcinoma (LUAD); however, its significance in epidermal growth factor receptor–tyrosine kinase inhibitor (EGFR-TKI) resistance remains unknown. Methods: The Cancer Genome Atlas (TCGA) database was used to determine 14-3-3ζ expression in pancancer and LUAD. 14-3-3ζ and ID1 expression was then examined in clinical LUAD samples by immunohistochemistry (IHC). Lentiviral transfection with 14-3-3ζ-specific small hairpin RNA (shRNA) was used to establish stable 14-3-3ζ knockdown gefitinib-resistant PC9 (PC9/GR) and H1975 cell lines. The effect of 14-3-3ζ knockdown on reversing EGFR-TKI resistance was determined in vitro by Cell Counting Kit-8 (CCK-8), wound healing, Transwell assays, and flow cytometry. A xenograft tumor model was established to evaluate the role of 14-3-3ζ in EGFR-TKI resistance. Microarray analysis results showed multiple pathways regulated by 14-3-3ζ-shRNA. Results: In the present study, we demonstrated that based on the TCGA, pancancer and LUAD 14-3-3ζ expression was elevated and predicted unfavorable prognosis. In addition, high 14-3-3ζ expression was associated with advanced T stage, TNM stage, presence of lymph node metastasis and, importantly, poor treatment response to EGFR-TKIs in LUAD patients with EGFR-activating mutations. 14-3-3ζ shRNA sensitized EGFR-TKI-resistant human LUAD cells to gefitinib and reversed epithelial-to-mesenchymal transition (EMT). After 14-3-3ζ depletion, bone morphogenetic protein (BMP) signaling activation was decreased in EGFR-TKI-resistant cells in microarray analysis, which was further validated by Western blot analysis. Furthermore, the expression of 14-3-3ζ positively correlates with ID1 expression in human EGFR-mutant LUAD patient samples. In vivo, there was a reduction in the tumor burden in mice treated with 14-3-3ζ shRNA and gefitinib compared to mice treated with gefitinib alone. Conclusion: Our work uncovers a hitherto unappreciated role of 14-3-3ζ in EGFR-TKI resistance. This study might provide a potential therapeutic approach for treating LUAD patients harboring EGFR mutations.
Collapse
Affiliation(s)
- Jinfang Cui
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuejiao Han
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jing Hu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanbo Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xuesong Chen
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaomin Xu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hailing Lu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Wang X, Zhao Y, Fei X, Lu Q, Li Y, Yuan Y, Lu C, Li C, Chen H. LEF1/Id3/HRAS axis promotes the tumorigenesis and progression of esophageal squamous cell carcinoma. Int J Biol Sci 2020; 16:2392-2404. [PMID: 32760207 PMCID: PMC7378645 DOI: 10.7150/ijbs.47035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 01/04/2023] Open
Abstract
Our previous study demonstrated that lymphoid enhancer-binding factor 1 (LEF1) could promote the progression of esophageal squamous cell carcinoma (ESCC). However, the regulatory mechanism of LEF1 was not clear thoroughly. Herein, we continued to explore the downstream mechanism of LEF1 in ESCC. In this study, we applied western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry, RNA-Seq analysis, a luciferase reporter assay, chromatin immunoprecipitation (ChIP), bioinformatics analysis, and a series of functional assays in vitro and in vivo. The results demonstrated that LEF1 regulated directly the expression of Id3. Id3 was highly expressed in ESCC tissues and correlated with histologic differentiation (p=0.011), pT stage (p<0.01) and AJCC stage (p<0.01) in ESCC patients. Moreover, Id3 could serve as a prognostic factor of ESCC. By various functional experiments, overexpression of Id3 promoted the proliferation, migration, invasion, EMT, and tumorgenicity. Mechanistically, Id3 could regulate ERK/MAPK signaling pathway via activating HRAS to perform its biological function. Furthermore, activating ERK/MAPK signaling pathway promoted the expression of Id3 gene in turn, indicating that a positive regulatory loop between Id3 and ERK/MAPK pathway may exist in ESCC. In summary, LEF1/Id3/HRAS axis could promote the tumorigenesis and progression of ESCC via activating ERK/MAPK signaling pathway. Targeting this cascade may provide a valid antitumor strategy to delay ESCC progress.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yue Zhao
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Xiang Fei
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Qijue Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yang Li
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chaojing Lu
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Chunguang Li
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Hezhong Chen
- Department of Thoracic Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
8
|
Chen J, Zhang F, Wang D, Yang Z, Liu S, Dong Z. Prognostic ability of DNA-binding protein inhibitor ID-1 expression in patients with oral squamous cell carcinoma. Oncol Lett 2020; 19:3917-3922. [PMID: 32382338 PMCID: PMC7202274 DOI: 10.3892/ol.2020.11506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2019] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA-binding protein inhibitor ID-1 (ID-1) plays a vital role in the development of cancer. In the present study, ID-1 expression in oral squamous cell carcinoma (OSCC), and its association with prognosis were investigated in 128 patients with OSCC, treated at the Qilu Hospital of Shandong University and followed up for an additional 10 years. Immunohistochemical analysis was performed to detect ID-1 expression, and the association between ID-1 expression and recurrence, and estimated disease-specific survival (DSS) time were subsequently analyzed using the Mann-Whitney U test and the Kaplan-Meier method, respectively. In addition, the log-rank test was implemented to compare the survival curves and multivariate Cox proportional hazards analysis was performed to assess the prognostic value of ID-1. The results demonstrated that ID-1 was highly expressed in the majority of OSCC tissues investigated, and ID-1 expression was significantly higher in cases with recurrence of local tumors and lymph node metastasis. Furthermore, higher ID-1 expression levels were associated with a shorter DSS time. Taken together, the results of the present study suggest that ID-1 may serve as an independent prognostic factor to predict DSS time in patients with OSCC.
Collapse
Affiliation(s)
- Jian Chen
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zhongjun Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shaohua Liu
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zuoqing Dong
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Melief J, Pico de Coaña Y, Maas R, Fennemann FL, Wolodarski M, Hansson J, Kiessling R. High expression of ID1 in monocytes is strongly associated with phenotypic and functional MDSC markers in advanced melanoma. Cancer Immunol Immunother 2020; 69:513-522. [PMID: 31953577 PMCID: PMC7113206 DOI: 10.1007/s00262-019-02476-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/21/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
The efficacy of immunotherapies for malignant melanoma is severely hampered by local and systemic immunosuppression mediated by myeloid-derived suppressor cells (MDSC). Inhibitor of differentiation 1 (ID1) is a transcriptional regulator that was shown to be centrally involved in the induction of immunosuppressive properties in myeloid cells in mice, while it was overexpressed in CD11b+ cells in the blood of late-stage melanoma patients. Therefore, we comprehensively assessed ID1 expression in PBMC from stage III and IV melanoma patients, and studied ID1 regulation in models for human monocyte differentiation towards monocyte-derived dendritic cells. A highly significant elevation of ID1 was observed in CD33+CD11b+CD14+HLA-DRlow monocytic MDSC in the blood of melanoma patients compared to their HLA-DRhigh counterparts, while expression of ID1 correlated positively with established MDSC markers S100A8/9 and iNOS. Moreover, expression of ID1 in monocytes significantly decreased in PBMC samples taken after surgical removal of melanoma metastases, compared to those taken before surgery. Finally, maturation of monocyte-derived DC coincided with a significant downregulation of ID1. Together, these data indicate that increased ID1 expression is strongly associated with expression of phenotypic and immunosuppressive markers of monocytic MDSC, while downregulation is associated with a more immunogenic myeloid phenotype. As such, ID1 may be an additional phenotypic marker for monocytic MDSC. Investigation of ID1 as a pharmacodynamic biomarker or its use as a target for modulating MDSC is warranted.
Collapse
Affiliation(s)
- Jeroen Melief
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.
| | - Yago Pico de Coaña
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| | - Roeltje Maas
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Felix-Lennart Fennemann
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Department of Tumor Immunology, Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Wolodarski
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden.,Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institute, Visionsgatan 4, 171 64 Solna, Stockholm, Sweden
| |
Collapse
|
10
|
Lu L, Wang P, Zou Y, Zha Z, Huang H, Guan M, Wu Y, Liu G. IL-1β Promotes Stemness of Tumor Cells by Activating Smad/ID1 Signaling Pathway. Int J Med Sci 2020; 17:1257-1268. [PMID: 32547321 PMCID: PMC7294920 DOI: 10.7150/ijms.44285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/25/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background: IL-1β is reported to be involved in cancer development and distant metastasis. However, the underlying mechanism of IL-1β upon malignant behaviors remains largely unknown. In this study, we aimed to study whether IL-1β could enhance the stemness traits of tumor cells. Methods: The concentrations of serum IL-1β in head and neck squamous cell carcinoma (HNSCC) and melanoma patients were detected using ELISA assay. The effect and mechanisms of IL-1β on tumor cell growth, migration, invasion and stemness characters were studied using HNSCC cell SCC7 and melanoma cell B16-F10. The underlying mechanisms were further explored. Results: Enhanced concentrations of IL-1β were positively correlated with advanced tumor stage in both HNSCC and melanoma patients. IL-1β treatment led to a significant increase in tumor growth both in vitro and in vivo. IL-1β stimulation promoted cell proliferation, colony formation and tumorigenicity. In addition, IL-1β-stimulated tumor cells gained enhanced capabilities on wounding healing and invasion capabilities. Moreover, IL-1β stimulation promoted the stem-like capabilities of both HNSCC cells and melanoma cells, including the enrichment of aldehyde dehydrogenase+ (ALDH+) cells, up-regulation of stem cell related markers Nanog, OCT4, and SOX2, sphere formation and chemoresistance. Mechanistically, IL-1β treatment promoted the phosphorylation of Smad1/5/8 and activated its downstream target inhibitor of differentiation 1 (ID1). Silencing ID1 abrogated sphere formation and upregulated expression of stemness genes which were induced by IL-1β stimulation. Conclusion: Our data demonstrates that IL-1β promotes the stemness of HNSCC and melanoma cells through activating Smad/ID1 signal pathway.
Collapse
Affiliation(s)
- Lin Lu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Peipei Wang
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Yonghong Zou
- Department of Gynecology and Obstetrics, Ji'an City Center People's Hospital, Jiangxi, China, 343000
| | - Zhiqiang Zha
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180
| | - Haowei Huang
- Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China, 510180.,Department of Medical Oncology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China, 510180
| |
Collapse
|
11
|
Han L, Cui D, Li B, Xu WW, Lam AKY, Chan KT, Zhu Y, Lee NP, Law SY, Guan XY, Qin YR, Chan KW, Ma S, Tsao SW, Cheung AL. MicroRNA-338-5p reverses chemoresistance and inhibits invasion of esophageal squamous cell carcinoma cells by targeting Id-1. Cancer Sci 2019; 110:3677-3688. [PMID: 31646712 PMCID: PMC6890449 DOI: 10.1111/cas.14220] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 12/13/2022] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapeutic agent commonly used to treat esophageal squamous cell carcinoma (ESCC), but acquisition of chemoresistance frequently occurs and the underlying mechanisms are not fully understood. We found that microRNA (miR)-338-5p was underexpressed in ESCC cells with acquired 5-FU chemoresistance. Forced expression of miR-338-5p in these cells resulted in downregulation of Id-1, and restoration of both in vitro and in vivo sensitivity to 5-FU treatment. The effects were abolished by reexpression of Id-1. In contrast, miR-338-5p knockdown induced 5-FU resistance in chemosensitive esophageal cell lines, and knockdown of both miR-338-5p and Id-1 resensitized the cells to 5-FU. In addition, miR-338-5p had suppressive effects on migration and invasion of ESCC cells. Luciferase reporter assay confirmed a direct interaction between miR-338-5p and the 3'-UTR of Id-1. We also found that miR-338-5p was significantly downregulated in tumor tissue and serum samples of patients with ESCC. Notably, low serum miR-338-5p expression level was associated with poorer survival and poor response to 5-FU/cisplatin-based neoadjuvant chemoradiotherapy. In summary, we found that miR-338-5p can modulate 5-FU chemoresistance and inhibit invasion-related functions in ESCC by negatively regulating Id-1, and that serum miR-338-5p could be a novel noninvasive prognostic and predictive biomarker in ESCC.
Collapse
Affiliation(s)
- Liang Han
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| | - Di Cui
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| | - Bin Li
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
- Present address:
College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Wen Wen Xu
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
- Present address:
Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityChina
| | - Alfred King Y. Lam
- Department of PathologyGriffith Medical School and Menzies Health Institute QueenslandGold CoastQLDAustralia
| | - Kin Tak Chan
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | - Yun Zhu
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| | - Nikki P.Y. Lee
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | - Simon Y.K. Law
- Department of SurgeryThe University of Hong KongHong Kong SARChina
| | - Xin Yuan Guan
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Yan Ru Qin
- Department of Clinical OncologyFirst Affiliated HospitalZhengzhou UniversityZhengzhouChina
| | - Kwok Wah Chan
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Stephanie Ma
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| | - Sai Wah Tsao
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| | - Annie L.M. Cheung
- Li Ka ShingFaculty of MedicineSchool of Biomedical SciencesThe University of Hong KongHong Kong SARChina
| |
Collapse
|
12
|
Chowdhury IH, Narra HP, Sahni A, Khanipov K, Fofanov Y, Sahni SK. Enhancer Associated Long Non-coding RNA Transcription and Gene Regulation in Experimental Models of Rickettsial Infection. Front Immunol 2019; 9:3014. [PMID: 30687302 PMCID: PMC6333757 DOI: 10.3389/fimmu.2018.03014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022] Open
Abstract
Recent discovery that much of the mammalian genome does not encode protein-coding genes (PCGs) has brought widespread attention to long noncoding RNAs (lncRNAs) as a novel layer of biological regulation. Enhancer lnc (elnc) RNAs from the enhancer regions of the genome carry the capacity to regulate PCGs in cis or in trans. Spotted fever rickettsioses represent the consequence of host infection with Gram-negative, obligate intracellular bacteria in the Genus Rickettsia. Despite being implicated in the pathways of infection and inflammation, the roles of lncRNAs in host response to Rickettsia species have remained a mystery. We have profiled the expression of host lncRNAs during infection of susceptible mice with R. conorii as a model closely mimicking the pathogenesis of human spotted fever rickettsioses. RNA sequencing on the lungs of infected hosts yielded reads mapping to 74,964 non-coding RNAs, 206 and 277 of which were determined to be significantly up- and down-regulated, respectively, in comparison to uninfected controls. Following removal of short non-coding RNAs and ambiguous transcripts, remaining transcripts underwent in-depth analysis of mouse lung epigenetic signatures H3K4Me1 and H3K4Me3, active transcript markers (POLR2A, p300, CTCF), and DNaseI hypersensitivity sites to identify two potentially active and highly up-regulated elncRNAs NONMMUT013718 and NONMMUT024103. Using Hi-3C sequencing resource, we further determined that genomic loci of NONMMUT013718 and NONMMUT024103 might interact with and regulate the expression of nearby PCGs, namely Id2 (inhibitor of DNA binding 2) and Apol10b (apolipoprotein 10b), respectively. Heterologous reporter assays confirmed the activity of elncRNAs as the inducers of their predicted PCGs. In the lungs of infected mice, expression of both elncRNAs and their targets was significantly higher than mock-infected controls. Induced expression of NONMMUT013718/Id2 in murine macrophages and NONMMUT024103/Apol10b in endothelial cells was also clearly evident during R. conorii infection in vitro. Finally, shRNA mediated knock-down of NONMMUT013718 and NONMMUT024103 elncRNAs resulted in reduced expression of endogenous Id2 and Apl10b, demonstrating the regulatory roles of these elncRNAs on their target PCGs. Our results provide very first experimental evidence suggesting altered expression of pulmonary lncRNAs and elncRNA-mediated regulation of PCGs involved in immunity and during host interactions with pathogenic rickettsiae.
Collapse
Affiliation(s)
- Imran H Chowdhury
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, University Boulevard, Galveston, TX, United States
| |
Collapse
|
13
|
Ke J, Wu R, Chen Y, Abba ML. Inhibitor of DNA binding proteins: implications in human cancer progression and metastasis. Am J Transl Res 2018; 10:3887-3910. [PMID: 30662638 PMCID: PMC6325517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2018] [Accepted: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are a class of helix-loop-helix (HLH) transcription regulatory factors that act as dominant-negative antagonists of other basic HLH proteins through the formation of non-functional heterodimers. These proteins have been shown to play critical roles in a wide range of tumor-associated processes, including cell differentiation, cell cycle progression, migration and invasion, epithelial-mesenchymal transition, angiogenesis, stemness, chemoresistance, tumorigenesis, and metastasis. The aberrant expression of ID proteins has not only been detected in many types of human cancers, but is also associated with advanced tumor stages and poor clinical outcome. In this review, we provide an overview of the key biological functions of ID proteins including affiliated signaling pathways. We also describe the regulation of ID proteins in cancer progression and metastasis, and elaborate on expression profiles in cancer and the implications for prognosis. Lastly, we outline strategies for the therapeutic targeting of ID proteins as a promising and effective approach for anticancer therapy.
Collapse
Affiliation(s)
- Jing Ke
- Department of Liver Disease, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei 230022, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Ruolin Wu
- Department of Hepatopancreatobiliary Surgery and Organ Transplantation Center, Department of General Surgery, First Affiliated Hospital of Anhui Medical University218 Jixi Avenue, Hefei 230022, Anhui, China
- Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, University of HeidelbergMannheim 68167, Germany
| | - Yong Chen
- Department of Medical Oncology, Subei People’s HospitalYangzhou, Jiangsu 225000, China
| | - Mohammed L Abba
- Department of Hematology and Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of HeidelbergMannheim, Germany
| |
Collapse
|
14
|
Hu Y, Luo KJ, Wen J, Zhu ZH. Strong expression of Id-1 in metastatic lymph nodes from esophageal squamous cell carcinoma is associated with better clinical outcome. J Thorac Dis 2018; 10:5499-5507. [PMID: 30416799 DOI: 10.21037/jtd.2018.09.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Abstract
Background Over-expression of inhibitor of differentiation or DNA binding 1 (Id-1) is associated with poor prognosis in esophageal squamous cell carcinoma (ESCC). However, some biomarkers discordant expression in metastasis has been reported previously. We aimed to confirm possible differential expression and prognostic value of Id-1 in paired metastatic lymph node (PMLN). Methods Expression of Id-1 in primary tumors (PT) and paired regional metastatic lymph nodes of ESCC were evaluated with immunohistochemical (IHC) analysis. Statistical analysis of Kaplan-Meier method was performed to test the prognostic significance of Id-1 expression. Results The expression of Id-1 was down-regulated in metastatic lymph nodes compared with primary esophageal tumors (P<0.001). Patients with 1 to 2 lymph nodes involved had significantly higher Id-1 expression in metastatic lymph nodes (P=0.028). The similar association was observed between a ratio of involved to examined lymph nodes ≤0.2 and high level Id-1 expression in lymphatic metastases (P=0.011). Better overall survival with statistical significance was observed in patients with higher level Id-1 expression in metastatic lymph nodes (P=0.015). The results of Id-1 expression in metastatic lymph node and paired PT was to predict prognosis effective in out cohort (P=0.035). Conclusions The level of Id-1 protein expression was down-regulated from PT to metastatic lymph node. It was contrary to previous studies that strong expression of Id-1 in metastatic lymph nodes was associated with better clinical outcomes in patients with stage T3N1-3M0 ESCC.
Collapse
Affiliation(s)
- Yi Hu
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Kong-Jia Luo
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jing Wen
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Zhi-Hua Zhu
- State Key Laboratory of Oncology in South China, Cancer Center Sun Yat-sen University, Guangzhou 510060, China.,Department of Thoracic Oncology, Cancer Center, Sun Yat-sen University, Guangzhou 510060, China
| |
Collapse
|
15
|
Li XF, Ling K, Yan XJ. Significance of expression of ID-1, ID-3, and NF-κB in colorectal adenocarcinoma. Shijie Huaren Xiaohua Zazhi 2018; 26:1307-1312. [DOI: 10.11569/wcjd.v26.i21.1307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of inhibitor of differentiation/DNA binding (ID)-1, ID-3, and nuclear factor-kappa B (NF-κB) in colorectal adenocarcinoma and to analyze their clinical significance.
METHODS Eighty-eight colorectal adenocarcinoma tissues, 43 colorectal high-grade intraepithelial neoplasia tissues, and 34 normal colonic mucosal tissues (>5 cm away from the edge of tumor) were collected. Expression of ID-1, ID-3, and NF-κB in these tissue samples was detected by immunochemistry.
RESULTS Expression of ID-1, ID-3, and NF-κB differed significantly between colorectal adenocarcinoma tissues and control tissues. Expression of ID-1, ID-3, and NF-κB was correlated with proliferation index and lesion depth. Expression of ID-1 and ID-3 was correlated with tumor differentiation. Expression of NF-κB was correlated with metastasis. There was a positive correlation between ID-1 and ID-3 expression in colorectal adenocarcinoma tissues.
CONCLUSION High expression of ID-1, ID-3 and NF-κB can promote the formation and progression of colorectal adenocarcinoma. ID-1 and ID-3 may have a synergistic effect.
Collapse
Affiliation(s)
- Xue-Feng Li
- Department of Internal Medicine, the Second People Hospital of Fuyang District, Hangzhou 311404, Zhejiang Province, China
| | - Kai Ling
- Department of Gastroenterology, the Second People Hospital of Fuyang District, Hangzhou 311404, Zhejiang Province, China
| | - Xiao-Jun Yan
- Department of Gastroenterology, the Second People Hospital of Fuyang District, Hangzhou 311404, Zhejiang Province, China
| |
Collapse
|
16
|
Zhu Y, Zhang W, Wang P. Smoking and gender modify the effect of TWIST on patient survival in head and neck squamous carcinoma. Oncotarget 2017; 8:85816-85827. [PMID: 29156759 PMCID: PMC5689649 DOI: 10.18632/oncotarget.20682] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
PURPOSE TWIST is a critical factor for predicting prognosis in several human cancers. Here, we study the prognostic significance of TWIST1 and TWIST2 in Head and Neck squamous cell carcinoma (HNSCC) as well as interactions of TWISTs with both gender and smoking in patient survival. METHODS upper quartile normalized RNA-seq V2 RSEM values of TWIST1 and TWIST2 expressions were retrieved from a TCGA HNSCC dataset. Kaplan-Meier survival curves were used to assess the associations of TWIST1 and TWIST2 with patient survival, and multivariate Cox proportional hazards regression models were used to estimate the hazards ratios (HRs) and their 95% confidence intervals (CIs). RESULTS Survival analyses showed that high TWIST1 expression was associated with a poor overall survival at a borderline significance level, while a superior but not statistically significant overall survival was observed in high TWIST2 expression. The multivariate Cox proportional hazards regression model showed a significantly elevated risk of death (HR=1.37, p = 0.038) in patients with high TWIST1 compared to low TWIST1, and a borderline significantly decreased risk of death (HR = 0.74, p = 0.055) in patients with high TWIST2 compared to low TWIST2. Further stratification analyses showed that increased risks of death were found significantly in male and borderline significantly in smoker patients with high TWIST1 compared to low one, and a significantly decreased risk of death in non-smoker patients with high TWIST2 compared to low one. CONCLUSIONS TWIST1 and TWIST2 are differentially associated with HNSCC patient survival. Gender and smoking could modify the effect of TWISTs on the risk of death in HNSCC patients.
Collapse
Affiliation(s)
- Yun Zhu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjuan Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ping Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Cancer Genetic Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77025, USA
| |
Collapse
|
17
|
Qiu L, Tan X, Lin J, Liu RY, Chen S, Geng R, Wu J, Huang W. CDC27 Induces Metastasis and Invasion in Colorectal Cancer via the Promotion of Epithelial-To-Mesenchymal Transition. J Cancer 2017; 8:2626-2635. [PMID: 28900500 PMCID: PMC5595092 DOI: 10.7150/jca.19381] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Distant metastasis is the primary cause of cancer-related death among patients with colorectal cancer (CRC), and the discovery of novel therapeutic targets by further exploring the molecular mechanisms of CRC metastasis is therefore urgently needed. We previously illustrated that CDC27 overexpression promoted proliferation in CRC, but no studies have emphasized the role of CDC27 in cancer metastasis thus far. Our previous data indicated that the expression of CDC27 was significantly associated with distant metastasis in patient tissues, and therefore, in this study, we focused on the investigation of the potential mechanisms of CDC27 in CRC metastasis. The results revealed that CDC27 promoted the metastasis, invasion and sphere-formation capacity of DLD1 cells, but that the inhibition of CDC27 in HCT116 cells suppressed metastasis both in vitro and in vivo. Mechanistic analyses revealed that CDC27 promoted epithelial-to-mesenchymal transition (EMT), as demonstrated by the reduced expression of the epithelial markers ZO-1 and E-cadherin and the enhanced expression of the mesenchymal markers ZEB1 and Snail in HCT116 and DLD1 cells. Further mechanistic investigation indicated that CDC27 promoted metastasis and sphere-formation capacity in an ID1-dependent manner. In conclusion, we first demonstrated the role of CDC27 in cancer metastasis and showed that CDC27 may serve as a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Lin Qiu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Department of Hematology/Oncology, Guangzhou Women and Children's Medical center, Guangzhou Medical University, Guangzhou, Guangdong
| | - Xin Tan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiaxin Lin
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou.,Guangdong Lung Cancer Institute, Guangdong General Hospital and Guangdong Academy of Medical Sciences, Guangzhou
| | - Ran-Yi Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Shuai Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Rong Geng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Jiangxue Wu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| | - Wenlin Huang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou
| |
Collapse
|
18
|
Ding W, Shehadeh LA. New incriminating evidence against IGF2. Transl Cancer Res 2017; 6:S949-S952. [PMID: 30613484 DOI: 10.21037/tcr.2017.06.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA.,Vascular Biology Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
19
|
Emerging roles of the bone morphogenetic protein pathway in cancer: potential therapeutic target for kinase inhibition. Biochem Soc Trans 2017; 44:1117-34. [PMID: 27528760 DOI: 10.1042/bst20160069] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/04/2016] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) belong to the transforming growth factor-β (TGF-β) family signalling pathway. Similar to TGF-β, the complex roles of BMPs in development and disease are demonstrated by their dichotomous roles in various cancers and cancer stages. Although early studies implicated BMP signalling in tumour suppressive phenotypes, the results of more recent experiments recognize BMPs as potent tumour promoters. Many of these complexities are becoming illuminated by understanding the role of BMPs in their contextual role in unique cell types of cancer and the impact of their surrounding tumour microenvironment. Here we review the emerging roles of BMP signalling in cancer, with a focus on the molecular underpinnings of BMP signalling in individual cancers as a valid therapeutic target for cancer prevention and treatment.
Collapse
|
20
|
Xu WW, Li B, Guan XY, Chung SK, Wang Y, Yip YL, Law SYK, Chan KT, Lee NPY, Chan KW, Xu LY, Li EM, Tsao SW, He QY, Cheung ALM. Cancer cell-secreted IGF2 instigates fibroblasts and bone marrow-derived vascular progenitor cells to promote cancer progression. Nat Commun 2017; 8:14399. [PMID: 28186102 PMCID: PMC5309924 DOI: 10.1038/ncomms14399] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/30/2016] [Accepted: 12/22/2016] [Indexed: 02/05/2023] Open
Abstract
Local interactions between cancer cells and stroma can produce systemic effects on distant organs to govern cancer progression. Here we show that IGF2 secreted by inhibitor of differentiation (Id1)-overexpressing oesophageal cancer cells instigates VEGFR1-positive bone marrow cells in the tumour macroenvironment to form pre-metastatic niches at distant sites by increasing VEGF secretion from cancer-associated fibroblasts. Cancer cells are then attracted to the metastatic site via the CXCL5/CXCR2 axis. Bone marrow cells transplanted from nude mice bearing Id1-overexpressing oesophageal tumours enhance tumour growth and metastasis in recipient mice, whereas systemic administration of VEGFR1 antibody abrogates these effects. Mechanistically, IGF2 regulates VEGF in fibroblasts via miR-29c in a p53-dependent manner. Analysis of patient serum samples showed that concurrent elevation of IGF2 and VEGF levels may serve as a prognostic biomarker for oesophageal cancer. These findings suggest that the Id1/IGF2/VEGF/VEGFR1 cascade plays a critical role in tumour-driven pathophysiological processes underlying cancer progression.
Collapse
Affiliation(s)
- Wen Wen Xu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Bin Li
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xin Yuan Guan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sookja K. Chung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yang Wang
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou 510632, China
| | - Yim Ling Yip
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Simon Y. K. Law
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kin Tak Chan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nikki P. Y. Lee
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Surgery, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwok Wah Chan
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Li Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - En Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, 22 Xinling Road, Shantou, 515041 Guangdong, China
| | - Sai Wah Tsao
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qing-Yu He
- College of Life Science and Technology, Jinan University, 601 West Huangpu Blvd., Guangzhou 510632, China
| | - Annie L. M. Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Kejizhong 2nd Rd., Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
- Centre for Cancer Research, Li Ka Shing Faculty of Medicine, 21 Sassoon Road, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
21
|
Hu M, Cui F, Liu F, Wang J, Wei X, Li Y. BMP signaling pathways affect differently migration and invasion of esophageal squamous cancer cells. Int J Oncol 2016; 50:193-202. [DOI: 10.3892/ijo.2016.3802] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2016] [Accepted: 12/05/2016] [Indexed: 11/06/2022] Open
|
22
|
Antonângelo L, Tuma T, Fabro A, Acencio M, Terra R, Parra E, Vargas F, Takagaki T, Capelozzi V. Id-1, Id-2, and Id-3 co-expression correlates with prognosis in stage I and II lung adenocarcinoma patients treated with surgery and adjuvant chemotherapy. Exp Biol Med (Maywood) 2016; 241:1159-68. [PMID: 26869608 DOI: 10.1177/1535370216632623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Inhibitors of DNA binding/inhibitors of differentiation (Id) protein family have been shown to be involved in carcinogenesis. However, the roles of Id during lung adenocarcinoma (ADC) progression remain unclear. Eighty-eight ADC samples were evaluated for Id-1,2,3 level and angiogenesis (CD 34 and VEGF microvessel density) by immunohistochemistry and morphometry. The impact of these markers was tested on follow-up until death or recurrence. A significant difference between tumor and normal tissue was found for Id-1,2,3 expression (P < 0.01). In addition, high levels of nuclear Id-1 were associated with higher angiogenesis in the tumor stroma (P < 0.01). Equally significant was the association between patients in T1-stage and low cytoplasmic Id-2, as well as patients in stage-IIb and low Id-3. High cytoplasm Id-3 expression was also directly associated to lymph nodes metastasis (P = 0.05). Patients at stages I to III, with low Id-1 and Id-3 cytoplasm histoscores showed significant long metastasis-free survival time than those with high Id-1 or Id-3 expression (P = 0.04). Furthermore, high MVD-CD34 and MVD-VEGF expression were associated with short recurrence-free survival compared to low MVD-CD34 and MVD-VEGF expressions (P = 0.04). Cox model analyses controlled for age, lymph node metastasis, and adjuvant treatments showed that nuclear Id-1, cytoplasmic Id-3, and MVD-CD34 were significantly associated with survival time. Median score for nuclear Id-1 and cytoplasmic Id-3 divided patients in two groups, being that those with increased Id-1 and Id-3 presented higher risk of death. Ids showed an independent prognostic value in patients with lung ADC, regardless of disease stage. Id-1 and Id-3 should be considered new target candidates in the development of personalized therapy in lung ADC.
Collapse
Affiliation(s)
- Leila Antonângelo
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Taila Tuma
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Alexandre Fabro
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Milena Acencio
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Ricardo Terra
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Edwin Parra
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Francisco Vargas
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Teresa Takagaki
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Vera Capelozzi
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| |
Collapse
|
23
|
Yu VZ, Wong VCL, Dai W, Ko JMY, Lam AKY, Chan KW, Samant RS, Lung HL, Shuen WH, Law S, Chan YP, Lee NPY, Tong DKH, Law TT, Lee VHF, Lung ML. Nuclear Localization of DNAJB6 Is Associated With Survival of Patients With Esophageal Cancer and Reduces AKT Signaling and Proliferation of Cancer Cells. Gastroenterology 2015; 149:1825-1836.e5. [PMID: 26302489 DOI: 10.1053/j.gastro.2015.08.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/17/2014] [Revised: 07/14/2015] [Accepted: 08/19/2015] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS The DnaJ (Hsp40) homolog, subfamily B, member 6 (DNAJB6) is part of a family of proteins that regulates chaperone activities. One of its isoforms, DNAJB6a, contains a nuclear localization signal and regulates β-catenin signaling during breast cancer development. We investigated the role of DNAJB6 in the pathogenesis of esophageal squamous cell carcinoma (ESCC). METHODS We performed immunohistochemical analyses of primary ESCC samples and lymph node metastases from a cohort of 160 patients who underwent esophagectomy with no preoperative chemoradiotherapy at Hong Kong Queen Mary Hospital. Data were collected on patient outcomes over a median time of 12.1 ± 2.9 months. Retrospective survival association analyses were performed. Wild-type and mutant forms of DNAJB6a were overexpressed in cancer cell lines (KYSE510, KYSE 30TSI, KYSE140, and KYSE70TS), which were analyzed in proliferation and immunoblot assays, or injected subcutaneously into nude mice. Levels of DNAJB6 were knocked down in ESCC cell lines (KYSE450 and T.Tn), immortalized normal esophageal epithelial cell lines (NE3 and NE083), and other cells with short hairpin RNAs, or by genome engineering. Bimolecular fluorescence complementation was used to study interactions between proteins in living cells. RESULTS In primary ESCC samples, patients whose tumors had high nuclear levels of DNAJB6 had longer overall survival times (19.2 ± 1.8 months; 95% confidence interval [CI], 15.6-22.8 mo) than patients whose tumors had low nuclear levels of DNAJB6 (12.6 ± 1.4 mo; 95% CI, 9.8-15.4 mo; P = .004, log-rank test). Based on Cox regression analysis, patients whose tumors had high nuclear levels of DNAJB6 had a lower risk of death than patients with low levels (hazard ratio, 0.562; 95% CI, 0.379-0.834; P = .004). Based on log-rank analysis and Cox regression analysis, the combination of the nuclear level of DNAJB6 and the presence of lymph node metastases at diagnosis could be used to stratify patients into groups with good or bad outcomes (P < .0005 for both analyses). There was a negative association between the nuclear level of DNAJB6 and the presence of lymph node metastases (P = .022; Pearson χ(2) test). Cancer cell lines that overexpressed DNAJB6a formed tumors more slowly in nude mice than control cells or cells that expressed a mutant form of DNAJB6a that did not localize to the nucleus. DNAJB6 knockdown in cancer cell lines promoted their growth as xenograft tumors in mice. A motif of histidine, proline, and aspartic acid in the J domain of DNAJB6a was required for its tumor-suppressive effects and signaling via AKT1. Loss of DNAJB6a resulted in up-regulation of AKT signaling in cancer cell lines and immortalized esophageal epithelial cells. Expression of a constitutively active form of AKT1 restored proliferation to tumor cells that overexpressed DNAJB6a, and DNAJB6a formed a complex with AKT1 in living cells. The expression of DNAJB6a reduced the sensitivity of ESCC to AKT inhibitors; the expression level of DNAJB6a affected AKT signaling in multiple cancer cell lines. CONCLUSIONS Nuclear localization of DNAJB6 is associated with longer survival times of patients with ESCC. DNAJB6a reduces AKT signaling, and DNAJB6 expression in cancer cells reduces their proliferation and growth of xenograft tumors in mice. DNAJB6a might be developed as a biomarker for progression of ESCC.
Collapse
Affiliation(s)
- Valen Zhuoyou Yu
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Victor Chun-Lam Wong
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Wei Dai
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Josephine Mun-Yee Ko
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Alfred King-Yin Lam
- Department of Cancer Molecular Pathology, Griffith Medical School and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Kwok Wah Chan
- Department of Pathology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Rajeev S Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Hong Lok Lung
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Wai Ho Shuen
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Simon Law
- Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Yuen Piu Chan
- Department of Pathology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Nikki Pui-Yue Lee
- Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Daniel King Hung Tong
- Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Tsz Ting Law
- Department of Surgery, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region; Center for Cancer Research, University of Hong Kong Li Ka Shing Faculty of Medicine, Pokfulam, Hong Kong, Special Administrative Region.
| |
Collapse
|
24
|
Zheng Z, He X, Xie C, Hua S, Li J, Wang T, Yao M, Vignarajan S, Teng Y, Hejazi L, Liu B, Dong Q. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation. Oncotarget 2015; 5:12304-16. [PMID: 25365190 PMCID: PMC4322978 DOI: 10.18632/oncotarget.2639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023] Open
Abstract
A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyi He
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chanlu Xie
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| | - Sheng Hua
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jianfang Li
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, and Gastroenterology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Tingfeng Wang
- Department of General Surgery, Nanhui Central Hospital. Shanghai, China
| | - Mu Yao
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Soma Vignarajan
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ying Teng
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Leila Hejazi
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| | - Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, and Gastroenterology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Qihan Dong
- Central Clinical School and Bosch Institute, The University of Sydney and Department of Endocrinology and Sydney Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia. School of Science and Health, The University of Western Sydney, Australia
| |
Collapse
|
25
|
Zheng Z, Liu B, Wu X. RhoGDI2 up-regulates P-glycoprotein expression via Rac1 in gastric cancer cells. Cancer Cell Int 2015; 15:41. [PMID: 25901126 PMCID: PMC4404694 DOI: 10.1186/s12935-015-0190-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2014] [Accepted: 03/28/2015] [Indexed: 11/21/2022] Open
Abstract
Multidrug resistance (MDR) is a major clinical obstacle in treatment of gastric cancer. Previously, using 2D electrophoresis-mass spectrometry, we identified RhoGDI2 as a contributor to 5-FU resistance in colon cancer cells, and also confer gastric cancer cells resistance to 5-FU. Here, we reported RhoGDI2 also induced MDR in gastric cancer cell line (MKN-45). To explore the underlining mechanism, we detected the mRNA, protein expression, activity of P-glycoprotein (P-gp) in MKN-45 stably transfected with RhoGDI2 expressing or control vector. All the mRNA, protein level, activity were increased by 130%, 230%, 35% respectively after ectopic expression of RhoGDI2. RhoGDI2 was correlated with P-gp expression in gastric cancer tissues as detected by immunohistochemistry. To further study how RhoGDI2 up-regulates P-gp expression, we tested the activity of Rac1 in MKN-45/RhoGDI2 and MKN-45/GFP. Ectopic expression of RhoGDI2 increased Rac1 activity (P < 0.05). For more important, silencing of Rac1 expression by siRNA decreased P-gp expression to undetectable level. Overall, these findings suggest that RhoGDI2 up-regulates P-gp expression via Rac1 to induce MDR.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032 People's Republic of China
| | - Bingya Liu
- Department of Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, and Gastroenterology, Ruijin Hospital, Jiaotong University School of Medicine, Shanghai, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, 270 Dongan Road, Shanghai, 200032 People's Republic of China
| |
Collapse
|
26
|
TGF-β1-induced expression of Id-1 is associated with tumor progression in gastric cancer. Med Oncol 2014; 31:19. [PMID: 24861919 DOI: 10.1007/s12032-014-0019-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 12/19/2022]
Abstract
Transforming growth factor β1 (TGF-β1) and inhibitor of differentiation/DNA-binding 1 (Id-1) have been shown to be associated with aggressive metastatic behavior of cancer cells in many malignant tumors. However, their role in gastric cancer (GC) has not been established. In this study, we investigated the relationship between expression of Id-1 and TGF-β1 in GC as well as their association with GC progression. The immunohistochemical analysis of 71 human GC samples indicated that both Id-1 and TGF-β1 were markedly upregulated in tumor tissue compared with the adjacent tissue; in addition, a significant positive correlation was found between the expression levels of Id-1 and TGF-β1 by Pearson's correlation analysis. Furthermore, the investigation of the association of Id-1 and TGF-β1 with patient clinical characteristics revealed that Id-1 expression was significantly correlated with tumor differentiation, while TGF-β1 was associated with lymph node metastasis. The results were validated in vitro by using a GC cell line, AGS. The expression of Id-1 was upregulated at 24 and 48 h after the treatment with TGF-β1, whereas it did not affect the proliferation of cells. TGF-β1 also influenced the expression of N-cadherin and β-catenin. Our results suggested that Id-1 and TGF-β1 played important roles in the progression of GC, in which Id-1 might act as a downstream mediator of TGF-β1 signaling through a regulatory mechanism involving N-cadherin and β-catenin. The TGF-β1/Id-1 axis might serve as a future therapeutic target for GC.
Collapse
|
27
|
Li B, Tsao SW, Chan KW, Ludwig DL, Novosyadlyy R, Li YY, He QY, Cheung ALM. Id1-induced IGF-II and its autocrine/endocrine promotion of esophageal cancer progression and chemoresistance--implications for IGF-II and IGF-IR-targeted therapy. Clin Cancer Res 2014; 20:2651-62. [PMID: 24599933 DOI: 10.1158/1078-0432.ccr-13-2735] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To investigate the autocrine/endocrine role of Id1-induced insulin-like growth factor-II (IGF-II) in esophageal cancer, and evaluate the potential of IGF-II- and IGF-type I receptor (IGF-IR)-targeted therapies. EXPERIMENTAL DESIGN Antibody array-based screening was used to identify differentially secreted growth factors from Id1-overexpressing esophageal cancer cells. In vitro and in vivo assays were performed to confirm the induction of IGF-II by Id1, and to study the autocrine and endocrine effects of IGF-II in promoting esophageal cancer progression. Human esophageal cancer tissue microarray was analyzed for overexpression of IGF-II and its correlation with that of Id1 and phosphorylated AKT (p-AKT). The efficacy of intratumorally injected IGF-II antibody and intraperitoneally injected cixutumumab (fully human monoclonal IGF-IR antibody) was evaluated using in vivo tumor xenograft and experimental metastasis models. RESULTS Id1 overexpression induced IGF-II secretion, which promoted cancer cell proliferation, survival, and invasion by activating AKT in an autocrine manner. Overexpression of IGF-II was found in 21 of 35 (60%) esophageal cancer tissues and was associated with upregulation of Id1 and p-AKT. IGF-II secreted by Id1-overexpressing esophageal cancer xenograft could instigate the growth of distant esophageal tumors, as well as promote metastasis of circulating cancer cells. Targeting IGF-II and IGF-IR had significant suppressive effects on tumor growth and metastasis in mice. Cixutumumab treatment enhanced the chemosensitivity of tumor xenografts to fluorouracil and cisplatin. CONCLUSIONS The Id1-IGF-II-IGF-IR-AKT signaling cascade plays an important role in esophageal cancer progression. Blockade of IGF-II/IGF-IR signaling has therapeutic potential in the management of esophageal cancer.
Collapse
Affiliation(s)
- Bin Li
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New YorkAuthors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Sai Wah Tsao
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New YorkAuthors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Kwok Wah Chan
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New YorkAuthors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Dale L Ludwig
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Ruslan Novosyadlyy
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Yuk Yin Li
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Qing Yu He
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| | - Annie L M Cheung
- Authors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New YorkAuthors' Affiliations: Department of Anatomy, Centre for Cancer Research; Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR; Institute of Life and Health Engineering, Jinan University, Guangzhou, China; and ImClone Systems Corporation, a wholly owned subsidiary of Eli Lilly & Co, New York, New York
| |
Collapse
|
28
|
Lai J, Cai Q, Biel MA, Wang C, Hu X, Wang S, Lin J. Id1 and NF-κB promote the generation of CD133+ and BMI-1+ keratinocytes and the growth of xenograft tumors in mice. Int J Oncol 2014; 44:1481-9. [PMID: 24572994 PMCID: PMC4027876 DOI: 10.3892/ijo.2014.2309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2013] [Accepted: 01/21/2014] [Indexed: 01/29/2023] Open
Abstract
Id1 and NF-κB are highly expressed in oral squamous cell carcinoma (OSCC). Whether they have a synergistic role in the carcinogenesis of OSCC is unclear. The current study was designed to demonstrate the synergy of both Id1 and NF-κB in the underlying disease mechanisms of OSCC using in vitro and in vivo animal models. Id1 and NF-κB strengthened the expression of both CD133 and BMI-1 in OSCC cell cultures. CD133(+) and BMI-1(+) keratinocytes from OSCC tissues and cell cultures initiated the growth of xenograft tumors in SCID/Beige mice. Id1 and NF-κB regulate the expression of CD133 and BMI-1 in an additive or synergistic manner in OSCC, which is associated with the generation of naïve and self-renewable keratinocytes and initiate the growth of xenograft tumors in vivo.
Collapse
Affiliation(s)
- Jinhuo Lai
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Qian Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangdong, P.R. China
| | - Merrill A Biel
- Ear, Nose and Throat Specialty Care of Minnesota, Minneapolis, MN, USA
| | - Chuan Wang
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Xiaohua Hu
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Shaoyuan Wang
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| | - Jizhen Lin
- Department of Oncology of Union Hospital, Institute of Immunotherapy, Fujian Medical University, Fuzhou, P.R. China
| |
Collapse
|
29
|
Chan D, Tsoi MYT, Liu CD, Chan SH, Law SYK, Chan KW, Chan YP, Gopalan V, Lam AKY, Tang JCO. Oncogene GAEC1 regulates CAPN10 expression which predicts survival in esophageal squamous cell carcinoma. World J Gastroenterol 2013; 19:2772-2780. [PMID: 23687414 PMCID: PMC3653151 DOI: 10.3748/wjg.v19.i18.2772] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/08/2012] [Revised: 11/03/2012] [Accepted: 02/06/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify the downstream regulated genes of GAEC1 oncogene in esophageal squamous cell carcinoma and their clinicopathological significance.
METHODS: The anti-proliferative effect of knocking down the expression of GAEC1 oncogene was studied by using the RNA interference (RNAi) approach through transfecting the GAEC1-overexpressed esophageal carcinoma cell line KYSE150 with the pSilencer vector cloned with a GAEC1-targeted sequence, followed by MTS cell proliferation assay and cell cycle analysis using flow cytometry. RNA was then extracted from the parental, pSilencer-GAEC1-targeted sequence transfected and pSilencer negative control vector transfected KYSE150 cells for further analysis of different patterns in gene expression. Genes differentially expressed with suppressed GAEC1 expression were then determined using Human Genome U133 Plus 2.0 cDNA microarray analysis by comparing with the parental cells and normalized with the pSilencer negative control vector transfected cells. The most prominently regulated genes were then studied by immunohistochemical staining using tissue microarrays to determine their clinicopathological correlations in esophageal squamous cell carcinoma by statistical analyses.
RESULTS: The RNAi approach of knocking down gene expression showed the effective suppression of GAEC1 expression in esophageal squamous cell carcinoma cell line KYSE150 that resulted in the inhibition of cell proliferation and increase of apoptotic population. cDNA microarray analysis for identifying differentially expressed genes detected the greatest levels of downregulation of calpain 10 (CAPN10) and upregulation of trinucleotide repeat containing 6C (TNRC6C) transcripts when GAEC1 expression was suppressed. At the tissue level, the high level expression of calpain 10 protein was significantly associated with longer patient survival (month) of esophageal squamous cell carcinoma compared to the patients with low level of calpain 10 expression (37.73 ± 16.33 vs 12.62 ± 12.44, P = 0.032). No significant correction was observed among the TNRC6C protein expression level and the clinocopathologcial features of esophageal squamous cell carcinoma.
CONCLUSION: GAEC1 regulates the expression of CAPN10 and TNRC6C downstream. Calpain 10 expression is a potential prognostic marker in patients with esophageal squamous cell carcinoma.
Collapse
|
30
|
Sumida T, Murase R, Onishi-Ishikawa A, McAllister SD, Hamakawa H, Desprez PY. Targeting Id1 reduces proliferation and invasion in aggressive human salivary gland cancer cells. BMC Cancer 2013; 13:141. [PMID: 23517130 PMCID: PMC3639030 DOI: 10.1186/1471-2407-13-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2012] [Accepted: 03/18/2013] [Indexed: 11/17/2022] Open
Abstract
Background Salivary gland cancer (SGC) is one of the common malignancies of the head and neck area. It develops in the minor and major salivary glands and sometimes metastasizes to other organs, particularly to the lungs. Inhibitors of differentiation (Id) proteins are negative regulators of basic helix-loop-helix transcription factors that control malignant cell behavior and tumor aggressiveness in many tissues. In this study, our goal was to determine the potential role of Id proteins, particularly Id1, during human SGC cell progression. Methods We first determined the expression levels of Id1 and Id2 in four SGC cell lines: two adenocarcinoma of the salivary gland (HSG and HSY) and two adenoid cystic carcinoma (ACC2 and ACCM) cell lines. We then used constructs that expressed antisense cDNAs to Id1 or Id2 to knockdown the expression of these proteins in cell lines where they were highly expressed, and determined the effects of the knockdown on cell proliferation, migration and invasion. Results Id1 mRNA and protein were detectable in all cell lines, and expression of Id2 was variable, from absent to high. The ACC2 and ACCM cell lines expressed both Id1 and Id2, but Id1 was expressed at a higher level in the more aggressive ACCM cell line in comparison toACC2 cells as confirmed by Id1 promoter-reporter assays. We therefore focused on the ACCM cells for the remainder of the study. We found that proliferation and invasiveness of ACCM cells were strongly reduced after Id1 knockdown whereas Id2 suppression had only a slight effect. Results of scratch and colony formation assays also confirmed that ACCM cell aggressiveness was significantly reduced upon Id1 knockdown. Finally, this knockdown resulted in reduced c-myc and enhanced cyclin-dependent kinase inhibitor p21 expression. Conclusions These results demonstrate that Id1 plays an important role in the control of human SGC cell aggressiveness and suggest a potential role as a marker of diagnosis, prognosis and progression of SGCs. Id1 suppression could represent a novel and effective approach for the treatment of salivary gland cancer.
Collapse
Affiliation(s)
- Tomoki Sumida
- Department of Oral and Maxillofacial Surgery, Ehime University School of Medicine, 454 Shitsukawa, Toon-City, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Zheng Z, He XY, Li JF, Yu BQ, Chen XH, Ji J, Zhang JN, Gu QL, Zhu ZG, Liu BY. RhoGDI2 confers resistance to 5-fluorouracil in human gastric cancer cells. Oncol Lett 2012; 5:255-260. [PMID: 23255931 DOI: 10.3892/ol.2012.949] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2012] [Accepted: 08/08/2012] [Indexed: 11/06/2022] Open
Abstract
Resistance to 5-fluorouracil (5-FU) in patients with gastric cancer is a serious therapeutic problem and major efforts are underway to understand the underlying mechanisms. We have previously identified RhoGDI2 as a contributor to 5-FU resistance in colon cancer cells using 2D electrophoresis and mass spectrometry and the current study aimed to further investigate this role. The expression of RhoGDI2 in seven gastric cancer cell lines was positively correlated with resistance to 5-FU. Lower 5-FU sensitivity of isolated tumor cells from patients with gastric cancer was also associated with higher RhoGDI2 expression. Ectopic expression of RhoGDI2 in gastric cancer cells increased the resistance to 5-FU and reverted low dose 5-FU-induced G2/M phase arrest without affecting the population of sub-G1 cells. Overall, these findings suggest that RhoGDI2 is associated with 5-FU resistance and is a potential therapeutic target for enhancing chemotherapy efficacy in gastric cancer.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yuen HF, McCrudden CM, Grills C, Zhang SD, Huang YH, Chan KK, Chan YP, Wong MLY, Law S, Srivastava G, Fennell DA, Dickson G, El-Tanani M, Chan KW. Combinatorial use of bone morphogenetic protein 6, noggin and SOST significantly predicts cancer progression. Cancer Sci 2012; 103:1145-54. [PMID: 22364398 PMCID: PMC7685053 DOI: 10.1111/j.1349-7006.2012.02252.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2011] [Revised: 02/17/2012] [Accepted: 02/20/2012] [Indexed: 12/15/2022] Open
Abstract
Emerging evidence has indicated a role of the bone morphogenetic proteins (BMP) in the pathogenesis of certain cancers. The signaling of BMP family members is tightly regulated by their antagonists, including noggin and SOST, which are, in turn, positively regulated by BMP, thereby forming a negative feedback loop. Consequently, the expression of these antagonists should be taken into account in studies on the prognostic significance of BMP. In the present paper, we correlated protein and mRNA expression levels of BMP6, noggin and SOST, alone or in combination, with patient survival in various types of cancer. We found that BMP6 alone was not significantly correlated with esophageal squamous cell carcinoma patient survival. Instead, a high level of inhibitor of differentiation 1, a downstream factor of BMP6, was associated with shorter survival in patients whose tumors stained strongly for BMP6. Knockdown of noggin in esophageal cancer cell line EC109, which expresses BMP6 strongly and SOST weakly, enhanced the non-adherent growth of the cells. Noggin and SOST expression levels, when analyzed alone, were not significantly correlated with patient survival. However, high BMP6 activity, defined by strong BMP6 expression coupled with weak noggin or SOST expression, was significantly associated with shorter survival in esophageal squamous cell carcinoma patients. We further confirmed that BMP6 activity could be used as a prognostic indicator in prostate, bladder and colorectal cancers, using publicly available data on BMP6, noggin and SOST mRNA expression and patient survival. Our results strongly suggest that BMP6, noggin and SOST could be used in combination as a prognostic indicator in cancer progression.
Collapse
Affiliation(s)
- Hiu-Fung Yuen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Prognostic Relevance of Id-1 Expression in Patients With Resectable Esophageal Squamous Cell Carcinoma. Ann Thorac Surg 2012; 93:1682-8. [DOI: 10.1016/j.athoracsur.2012.01.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/31/2011] [Revised: 01/23/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
|
34
|
Hu H, Wang YL, Wang GW, Wong YC, Wang XF, Wang Y, Xu KX. A novel role of Id-1 in regulation of epithelial-to-mesenchymal transition in bladder cancer. Urol Oncol 2012; 31:1242-53. [PMID: 22226665 DOI: 10.1016/j.urolonc.2011.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVE Inhibitor of differentiation or DNA binding -1 (Id-1) has been shown to be increased in several types of advanced cancer, and to be associated with aggressive and metastatic abilities of cancer cells. Recently, more and more evidence indicates that epithelial-to-mesenchymal transition (EMT) is an important mechanism taking place during tumor invasion and metastasis, but the molecular pathways underlying EMT have not been clearly established. This study was to investigate the expression of Id-1 in bladder cancer and its association with EMT. MATERIALS AND METHODS A total of 169 tissues, consisting of 147 primary bladder cancers and 22 adjacent normal tissues were included in this study. Id-1, E-cadherin, and β-catenin were examined immunohistochemically in paraffin sections. The pBabe-Id-1 expression retroviral vector and retroviral vectors containing an Id-1-specific small interfering RNA oligonucleotides (si-Id-1) were transfected into 2 bladder cancer cell lines respectively. Then, we used Western blotting and immunofluorescent staining to detect the cellular expression of epithelial markers and mesenchymal markers. The invasion and migration ability of bladder cancer cells were identified by type I collagen invasion assay and wound closure assay. RESULTS We demonstrated that increased Id-1 expression was associated with advanced tumor stage and grade. In addition, the increased Id-1 expression in bladder tumors was also correlated with decreased membranous E-cadherin and β-catenin expression. In vitro, studies showed that inactivation of the Id-1 gene conferred morphologic transition of bladder cancer cells from a fibroblastic to epithelial appearance, and overexpression of Id-1 could lead to acquisition of a fibroblastic spindle cell phenotype accompanied by loss of cell-to-cell contacts. By Western blotting and immunofluorescent staining, we showed that the expression level of Id-1 was correlated with the expression of mesenchymal markers but was inversely correlated with the expression of epithelial markers. Moreover, results of collagen invasion and wound closure assays showed ectopic Id-1 expression led to increased ability of invasion and migration. CONCLUSIONS Our results suggest that Id-1 may play roles in tumor progression and EMT activation in bladder cancer.
Collapse
Affiliation(s)
- Hao Hu
- Department of Urology, Peking University People's Hospital, Peking University Health Science Center, Beijing, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
He X, Zheng Z, Li J, Ben Q, Liu J, Zhang J, Ji J, Yu B, Chen X, Su L, Zhou L, Liu B, Yuan Y. DJ-1 promotes invasion and metastasis of pancreatic cancer cells by activating SRC/ERK/uPA. Carcinogenesis 2012; 33:555-62. [PMID: 22223849 DOI: 10.1093/carcin/bgs002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
A major hallmark of pancreatic ductal adenocarcinoma (PDAC) is extensive local tumor invasion and early systemic dissemination. DJ-1 has been shown to prevent cell death via the Akt pathway, thereby playing an important role in cancer progression and Parkinson's disease development. Here, we investigated the role of DJ-1 in tumor invasion and metastasis of pancreatic cancer and showed that DJ-1 is upregulated in 68.5% of pancreatic cancer specimens, correlated with tumor stage and predictive of short overall survival. Knockdown of DJ-1 expression in two PDAC cell lines reduced cell migration and invasion potential in vitro and inhibited metastasis in vivo. Knockdown of DJ-1 led to cytoskeleton disruption and diminished urokinase plasminogen activator (uPA) activity and expression, without affecting plasminogen activator inhibitor-1 and uPA receptor (uPAR) expression. All these effects were reversed by restoration of DJ-1 expression. In determining the pathway through which DJ-1 regulated cell migration and invasion, DJ-1 was found not to regulate Akt phosphorylation. Rather, it promoted extracellular signal-regulated kinase (ERK) and SRC phosphorylation. Inhibition of the ERK pathway in PDAC mimicked the effects of DJ-1 on cell migration, invasion, actin cytoskeleton and uPA/uPAR system and abolished the effects on promoting PDAC cell invasion and migration. These data represent the first identification of an important function of DJ-1, which is to regulate the invasion and metastasis properties of PDAC through the ERK/uPA cascade.
Collapse
Affiliation(s)
- Xiangyi He
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheung PY, Yip YL, Tsao SW, Ching YP, Cheung ALM. Id-1 induces cell invasiveness in immortalized epithelial cells by regulating cadherin switching and Rho GTPases. J Cell Biochem 2011; 112:157-68. [PMID: 21053361 DOI: 10.1002/jcb.22911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
Epithelial-mesenchymal transition (EMT), characterized by cadherin switching, contributes to cancer metastasis. Our recent study showed that Id-1 (inhibitor of differentiation-1) promotes metastasis in esophageal cancer cells, but whether the invasive and metastatic dynamics can be induced early in the carcinogenesis process is still unclear. Immortalization is regarded as the initial stage in the malignant transformation of normal cells. In this study, we investigated the role and mechanisms of Id-1 in inducing EMT and cell invasiveness in immortalized esophageal epithelial cells. We found that immortalized epithelial cells expressed higher endogenous levels of Id-1 compared with normal cells. Ectopic Id-1 expression inhibited the differentiation of immortalized esophageal epithelial cells and promoted cadherin switching, which was accompanied by increased adhesiveness to extracellular matrix, cell motility, migratory potential and matrix metalloproteinase-dependent invasiveness. GTPase activity assays showed that over-expression or short-hairpin RNA knockdown of Id-1 led to corresponding changes in Rac1 activity, whereas RhoA activity was significantly decreased with Id-1 depletion. Inhibitors targeting Rac1, RhoA, and Rho kinase suppressed the invasiveness of Id-1-expressing NE2-hTERT cells. Knockdown of N-cadherin in Id-1-over-expressing cells inhibited cell invasiveness and down-regulated RhoA activity. These data suggest that the Id-1-induced invasive potential may be regulated through the N-cadherin-RhoA axis and Rac1 activation.
Collapse
Affiliation(s)
- P Y Cheung
- Department of Anatomy, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
37
|
Lee KW, Kim JH, Han S, Sung CO, Do IG, Ko YH, Um SH, Kim SH. Twist1 Is an Independent Prognostic Factor of Esophageal Squamous Cell Carcinoma and Associated with Its Epithelial–Mesenchymal Transition. Ann Surg Oncol 2011; 19:326-35. [DOI: 10.1245/s10434-011-1867-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2010] [Indexed: 12/28/2022]
|
38
|
Kolokythas A, Miloro M, Zhou X. Review of MicroRNA Proposed Target Genes in Oral Cancer. Part II. EJOURNAL OF ORAL MAXILLOFACIAL RESEARCH 2011; 2:e2. [PMID: 24421989 PMCID: PMC3886061 DOI: 10.5037/jomr.2011.2202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/16/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023]
Abstract
Objectives Cancer is the product of alterations in oncogenes, tumour suppressor genes
and most recently microRNA genes not as a single event or single change but
rather as a multistep process. The role of microRNA genes in carcinogenesis
is recently explored and appears to be an early event in the pathogenesis of
this as well as other disease processes and occurs via gene regulation by
their own products, the microRNAs. The purpose of this article was to review
the literature concerning MicroRNA proposed target genes in oral cancer. Material and Methods A review of the available literature from 2000 to 2011 regarding the
potential roles assumed by microRNAs in oral cancer was undertaken using
PubMed, Medline, Scholar Google and Scopus. Keywords for the search were:
microRNA and oral cancer and target genes, microRNA deregulation and oral
cancer, microRNA and carcinogenesis in the head and neck/oral cavity.
English language full length articles were reviewed. Results Several microRNAs deregulated in oral cancer have been functionally validated
and their exact target genes have been identified. Furthermore the
carcinogenesis pathways impacted by these alterations has been proposed for
some of these microRNAs. Conclusions The expanding knowledge of specific roles of certain microRNAs is further
contributing to our understanding of the complexity of tumour progression
and behaviour. Consideration of this information and incorporation into
treatment modalities through targeted therapy could potentially enhance our
abilities to improve outcome especially when other established therapies
have failed.
Collapse
Affiliation(s)
- Antonia Kolokythas
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago USA. ; Center of Molecular Biology and Oral Diseases, College of Dentistry, University of Illinois at Chicago USA. ; Cancer Center, University of Illinois at Chicago USA
| | - Michael Miloro
- Department of Oral and Maxillofacial Surgery, University of Illinois at Chicago USA
| | - Xiaofeng Zhou
- Center of Molecular Biology and Oral Diseases, College of Dentistry, University of Illinois at Chicago USA. ; Department of Periodontics, College of Dentistry, University of Illinois at Chicago USA
| |
Collapse
|
39
|
Cheng YJ, Tsai JW, Hsieh KC, Yang YC, Chen YJ, Huang MS, Yuan SS. Id1 promotes lung cancer cell proliferation and tumor growth through Akt-related pathway. Cancer Lett 2011; 307:191-9. [PMID: 21536374 DOI: 10.1016/j.canlet.2011.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2011] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 11/24/2022]
Abstract
Overexpression of Id family proteins inhibits cell differentiation and enhances cell proliferation and invasiveness. Although Id1 is the Id family member mostly linked to tumorigenesis, its role in lung cancer is unclear. An elevated Id1 expression was observed in lung cancer cell lines as well as lung cancer tissues. Id1 overexpression increased cell proliferation while Id1 knockdown decreased cell proliferation, mostly through Akt-related pathway. Nude mice study further confirmed an increased tumor growth in Id1-overexpressing cells and a decreased tumor growth in Id1-knockdowned cells. In conclusion, inactivation of Id1 may provide a novel strategy for treatment of lung cancer patients.
Collapse
Affiliation(s)
- Yu-Jen Cheng
- Division of Thoracic Surgery, Department of Surgery, E-DA Hospital, No. 1 E-DA Road, Jiau-Shu, Kaohsiung 824, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
40
|
Wong VCL, Chen H, Ko JMY, Chan KW, Chan YP, Law S, Chua D, Kwong DLW, Lung HL, Srivastava G, Tang JCO, Tsao SW, Zabarovsky ER, Stanbridge EJ, Lung ML. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype. Int J Cancer 2011; 130:83-95. [DOI: 10.1002/ijc.25970] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/13/2010] [Accepted: 12/30/2010] [Indexed: 01/08/2023]
|
41
|
Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis. Br J Cancer 2011; 104:841-9. [PMID: 21326238 PMCID: PMC3048215 DOI: 10.1038/bjc.2011.25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022] Open
Abstract
Background: Oesophageal squamous cell carcinoma (SCC) causes the highest number of cancer deaths in some regions of Northern China. Previously, we narrowed down a critical region at 9q33-34, identified to be associated with tumour-suppressive function of deleted in oesophageal cancer 1 (DEC1) in oesophageal SCC. Methods: We generated DEC1 antibody and constructed tissue microarrays (TMAs) utilising tissue specimens from Henan, a high-risk region for oesophageal SCC, to investigate the importance of DEC1 expression in this cancer. Results: Tissue microarray immunohistochemical staining reveals significant loss of DEC1 from hyperplasia, to tumour, and to lymph node metastasis. In addition, the loss of DEC1 in tumour is age-dependent. Interestingly, there is significant abrogation of DEC1 expression in patients with a family history of oesophageal SCC. Deleted in oesophageal cancer 1 localises to both the cytoplasm and nucleus. The vesicular pattern of DEC1 in the cytoplasm appears to localise at the Golgi and Golgi–endoplasmic reticulum intermediate compartment. Conclusion: This is the first TMA study to suggest a clinical association of DEC1 in lymph node metastatic oesophageal SCC, early onset oesophageal SCC and familial oesophageal SCC development. Subcellular localisation of DEC1 and its expression in oesophageal SCC tissues provide important insight for further deciphering the molecular mechanism of DEC1 in oesophageal SCC development.
Collapse
|
42
|
Chan SHK, Yee Ko JM, Chan KW, Chan YP, Tao Q, Hyytiainen M, Keski-Oja J, Law S, Srivastava G, Tang J, Tsao SW, Chen H, Stanbridge EJ, Lung ML. The ECM protein LTBP-2 is a suppressor of esophageal squamous cell carcinoma tumor formation but higher tumor expression associates with poor patient outcome. Int J Cancer 2010; 129:565-73. [DOI: 10.1002/ijc.25698] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/31/2010] [Accepted: 08/31/2010] [Indexed: 11/09/2022]
|
43
|
Rothschild SI, Kappeler A, Ratschiller D, Betticher DC, Tschan MP, Gugger M, Gautschi O. The stem cell gene "inhibitor of differentiation 1" (ID1) is frequently expressed in non-small cell lung cancer. Lung Cancer 2010; 71:306-11. [PMID: 20709421 DOI: 10.1016/j.lungcan.2010.06.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/03/2010] [Revised: 06/21/2010] [Accepted: 06/28/2010] [Indexed: 10/25/2022]
Abstract
AIMS Inhibitor of differentiation 1 (ID1) plays a role in cellular differentiation, proliferation, angiogenesis and tumor invasion. As shown recently, ID1 is positively regulated by the tyrosine kinase SRC in lung carcinoma cell lines and with that appears as a potential new therapeutic target in non-small cell carcinoma (NSCLC). To substantiate this hypothesis we examined ID1, SRC and matrix metalloproteinase-9 (MMP-9) immunohistochemically in human NSCLC specimens. METHODS From 61 consecutive patient tissue samples of a tumor tissue bank a one core tissue microarray (TMA) was produced and whole slide tissue samples of preinvasive lesions used. The staining of commercial antibodies was assessed by the H-score. Statistical analyses based on Spearman's rank correlation coefficient. RESULTS ID1 was expressed in the nucleus in 70% of squamous cell carcinomas and 50% of non-squamous cell carcinomas and in vascular endothelium of non-tumor tissue. Cytoplasmic staining was found in all samples for SRC and in 93% for MMP-9. ID1-positive tissue samples co-expressed SRC and MMP-9 in 94%. In non-squamous cell carcinomas, H-scores of ID1 and SRC correlated with each other (p=0.04). H-score of MMP-9 correlated with tumor grade (p=0.04). The carcinoma findings were reflected in preinvasive lesions. CONCLUSIONS We describe for the first time the immunohistochemical expression of ID1 in the majority of NSCLC samples. The almost general co-expression of ID1, SRC and MMP-9 supports their cooperation in vivo and warrants further investigation of ID1 as a therapeutic target.
Collapse
|
44
|
Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M. Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F. Cancer Res 2010; 70:3823-32. [PMID: 20388805 DOI: 10.1158/0008-5472.can-09-3048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Id proteins (Id1 to Id4) are helix-loop-helix transcription factors that promote metastasis. It was found that Semaphorin 3F (SEMA3F), a potent inhibitor of metastasis, was repressed by Id2. High metastatic human tumor cell lines had relatively high amounts of Id2 and low SEMA3F levels compared with their low metastatic counterparts. No correlation between metastatic potential and expression of the other Id family members was observed. Furthermore, ectopic expression of Id2 in low metastatic tumor cells downregulated SEMA3F and, as a consequence, enhanced their ability to migrate and invade, two requisite steps of metastasis in vivo. Id2 overexpression was driven by the c-myc oncoprotein. SEMA3F was a direct target gene of the E47/Id2 pathway. Two E-box sites, which bind E protein transcription factors including E47, were identified in the promoter region of the SEMA3F gene. E47 directly activated SEMA3F promoter activity and expression and promoted SEMA3F biological activities, including filamentous actin depolymerization, inactivation of RhoA, and inhibition of cell migration. Silencing of SEMA3F inhibited the E47-induced SEMA3F expression and biological activities, confirming that these E47-induced effects were SEMA3F dependent. E47 did not induce expression of the other members of the SEMA3 family. Id2, a dominant-negative inhibitor of E proteins, abrogated the E47-induced SEMA3F expression and biological activities. Thus, high metastatic tumor cells overexpress c-myc, leading to upregulation of Id2 expression; the aberrantly elevated amount of Id2 represses SEMA3F expression and, as a consequence, enhances the ability of tumor cells to migrate and invade.
Collapse
Affiliation(s)
- Silvia Coma
- Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
45
|
Maw MK, Fujimoto J, Tamaya T. Role of inhibitor of DNA binding-1 protein is related to angiogenesis in the tumor advancement of uterine endometrial cancers. Exp Ther Med 2010; 1:351-356. [PMID: 22993548 DOI: 10.3892/etm_00000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2009] [Accepted: 10/15/2009] [Indexed: 11/05/2022] Open
Abstract
The inhibitor of DNA binding (ID)-1 protein, an inhibitor of basic helix-loop-helix transcription factors, has been found to be involved in multiple cellular functions. In the present study, ID-1 histoscores and mRNA levels were both significantly (p<0.05) increased in uterine endometrial cancers according to clinical stage, histological grade and depth of myometrial invasion. Furthermore, the 60-month survival rate of the 25 patients with high ID-1 was poor (52%), while that of the other 25 patients with low ID-1 was significantly higher (80%) (p<0.05). ID-1 histoscores and mRNA levels significantly (p<0.0001) correlated with microvessel counts in uterine endometrial cancers. Therefore, ID-1 acts on tumor advancement via angiogenic activity and can be considered a candidate prognostic indicator in uterine endometrial cancers.
Collapse
Affiliation(s)
- Min Khine Maw
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gifu University School of Medicine, Gifu 501-1194, Japan
| | | | | |
Collapse
|
46
|
Dong Z, Liu S, Zhou C, sumida T, Hamakawa H, Chen Z, Liu P, Wei F. Overexpression of Id-1 is associated with tumor angiogenesis and poor clinical outcome in oral squamous cell carcinoma. Oral Oncol 2010; 46:154-7. [DOI: 10.1016/j.oraloncology.2009.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2009] [Revised: 11/14/2009] [Accepted: 11/16/2009] [Indexed: 11/30/2022]
|
47
|
Isenmann S, Arthur A, Zannettino ACW, Turner JL, Shi S, Glackin CA, Gronthos S. TWIST family of basic helix-loop-helix transcription factors mediate human mesenchymal stem cell growth and commitment. Stem Cells 2010; 27:2457-68. [PMID: 19609939 DOI: 10.1002/stem.181] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/07/2023]
Abstract
The TWIST family of basic helix-loop-helix transcription factors, Twist-1 and Dermo-1 are known mediators of mesodermal tissue development and contribute to correct patterning of the skeleton. In this study, we demonstrate that freshly purified human bone marrow-derived mesenchymal stromal/stem cells (MSC) express high levels of Twist-1 and Dermo-1 which are downregulated following ex vivo expansion. Enforced expression of Twist-1 or Dermo-1 in human MSC cultures increased expression of the MSC marker, STRO-1, and the early osteogenic transcription factors, Runx2 and Msx2. Conversely, overexpression of Twist-1 and Dermo-1 was associated with a decrease in the gene expression of osteoblast-associated markers, bone morphogenic protein-2, bone sialoprotein, osteopontin, alkaline phosphatase and osteocalcin. High expressing Twist-1 or Dermo-1 MSC lines exhibited an enhanced proliferative potential of approximately 2.5-fold compared with control MSC populations that were associated with elevated levels of Id-1 and Id-2 gene expression. Functional studies demonstrated that high expressing Twist-1 and Dermo-1 MSC displayed a decreased capacity for osteo/chondrogenic differentiation and an enhanced capacity to undergo adipogenesis. These findings implicate the TWIST gene family members as potential mediators of MSC self-renewal and lineage commitment in postnatal skeletal tissues by exerting their effects on genes involved in the early stages of bone development.
Collapse
Affiliation(s)
- Sandra Isenmann
- Mesenchymal Stem Cell Group, Division of Haematology, Institute of Medical and Veterinary Science/Hanson Institute/ CSCR, University of Adelaide, SA, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Lin J, Guan Z, Wang C, Feng L, Zheng Y, Caicedo E, Bearth E, Peng JR, Gaffney P, Ondrey FG. Inhibitor of differentiation 1 contributes to head and neck squamous cell carcinoma survival via the NF-kappaB/survivin and phosphoinositide 3-kinase/Akt signaling pathways. Clin Cancer Res 2010; 16:77-87. [PMID: 20028744 PMCID: PMC3321741 DOI: 10.1158/1078-0432.ccr-08-2362] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
PURPOSE A key issue in cancer is apoptosis resistance. However, little is known about the transcription factors that contribute to cellular survival of head and neck squamous cell carcinoma (HNSCC). EXPERIMENTAL DESIGN Three batches (54, 64, and 38) of HNSCC specimens were used for cellular and molecular analyses to determine the major molecular signaling pathways for cellular survival in HNSCC. Animal models (cell culture and xenografts) were used to verify the importance of apoptosis resistance in HNSCC. RESULTS Inhibitor of differentiation (Id) family member, Id1, was significantly upregulated in clinical HNSCC specimens and acted to protect keratinocytes from apoptosis. Transfection of HNSCC cells with Id1 in vitro induced the phosphorylation of Akt (p-Akt) via phosphoinositide 3-kinase and increased the expression of survivin via NF-kappaB. Blockage of both pathways by specific inhibitors (LY294002 and IkappaBalphaM, respectively) abrogated Id1-induced cell survival of keratinocytes. In vivo studies showed that increased expression of Id1 allowed nontumorigenic keratinocytes (Rhek-1A) to become tumorigenic in nude mice by increased expression of survival genes such as p-Akt and survivin. More importantly, short interfering RNA for Id1 significantly reduced HNSCC tumor volume of HNSCC in xenograft studies. Analysis of clinical data verified the importance of the Id1 downstream molecule, survivin, in the prognosis of HNSCC patients. CONCLUSIONS The above data, taken together, suggest that Id1 and its downstream effectors are potential targets for treatment of HNSCC because of their contribution to apoptosis resistance.
Collapse
Affiliation(s)
- Jizhen Lin
- Department of Otolaryngology, Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Background: Id-1 is overexpressed in and correlated with metastatic potential of prostate cancer. The role of Id-1 in this metastatic process was further analysed. Methods: Conditioned media from prostate cancer cells, expressing various levels of Id-1, were used to stimulate pre-osteoclast differentiation and osteoblast mineralisation. Downstream effectors of Id-1 were identified. Expressions of Id-1 and its downstream effectors in prostate cancers were studied using immunohistochemistry in a prostate cancer patient cohort (N=110). Results: We found that conditioned media from LNCaP prostate cancer cells overexpressing Id-1 had a higher ability to drive osteoclast differentiation and a lower ability to stimulate osteoblast mineralisation than control, whereas conditioned media from PC3 prostate cancer cells with Id-1 knockdown were less able to stimulate osteoclast differentiation. Id-1 was found to negatively regulate TNF-β and this correlation was confirmed in human prostate cancer specimens (P=0.03). Furthermore, addition of recombinant TNF-β to LNCaP Id-1 cell-derived media blocked the effect of Id-1 overexpression on osteoblast mineralisation. Conclusion: In prostate cancer cells, the ability of Id-1 to modulate bone cell differentiation favouring metastatic bone disease is partially mediated by TNF-β, and Id-1 could be a potential therapeutic target for prostate cancer to bone metastasis.
Collapse
|
50
|
Maw MK, Fujimoto J, Tamaya T. Overexpression of inhibitor of DNA-binding (ID)-1 protein related to angiogenesis in tumor advancement of ovarian cancers. BMC Cancer 2009; 9:430. [PMID: 20003244 PMCID: PMC2796680 DOI: 10.1186/1471-2407-9-430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/24/2009] [Accepted: 12/10/2009] [Indexed: 08/30/2023] Open
Abstract
Background The inhibitor of DNA-binding (ID) has been involved in cell cycle regulation, apoptosis and angiogenesis. This prompted us to study ID functions in tumor advancement of ovarian cancers. Methods Sixty patients underwent surgery for ovarian cancers. In ovarian cancers, the levels of ID-1, ID-2 and ID-3 mRNAs were determined by real-time reverse transcription-polymerase chain reaction. The histoscore with the localization of ID-1 was determined by immunohistochemistry. Patient prognosis was analyzed with a 36-month survival rate. Microvessel counts were determined by immunohistochemistry for CD34 and factor VIII-related antigen. Results ID-1 histoscores and mRNA levels both significantly (p < 0.001) increased in ovarian cancers according to clinical stage, regardless of histopathological type. Furthermore, 30 patients with high ID-1 expression had a lower survival rate (53%) compared to patients with low ID-1 expression (80%). ID-1 histoscores and mRNA levels significantly (p < 0.0001) correlated with microvessel counts in ovarian cancers. Conclusion ID-1 increased in ovarian cancer cells during tumor progression. Moreover, ID-1 expression levels correlated with microvessel counts. Therefore, ID-1 might work on tumor advancement via angiogenesis and is considered to be a candidate for a prognostic indicator in ovarian cancers.
Collapse
Affiliation(s)
- Min Khine Maw
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan.
| | | | | |
Collapse
|