1
|
Magby JP, Richardson JR. Role of calcium and calpain in the downregulation of voltage-gated sodium channel expression by the pyrethroid pesticide deltamethrin. J Biochem Mol Toxicol 2014; 29:129-34. [PMID: 25358543 DOI: 10.1002/jbt.21676] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
Voltage-gated sodium channels (Na(v)) are essential for initiation and propagation of action potentials. Previous in vitro studies reported that exposure to the Na(v) toxins veratridine and α scorpion toxin cause persistent downregulation of Na(v) mRNA in vitro. However the mechanism of this downregulation is not well characterized. Here, we report that the type-II pyrethroid deltamethrin, which has a similar mechanism as these toxins, elicited an approximate 25% reduction in Na(v) 1.2 and Na(v) 1.3 mRNA in SK-N-AS cells. Deltamethrin-induced decreases of Na(v) mRNA were blocked with the Na(v) antagonist tetrodotoxin, demonstrating a primary role for interaction with Na(v). Pre-treatment with the intracellular calcium chelator BAPTA-AM and the calpain inhibitor PD-150606 also prevented these decreases, identifying a role for intracellular calcium and calpain activation. Because alterations in Na(v) expression and function can result in neurotoxicity, additional studies are warranted to determine whether or not such effects occur in vivo.
Collapse
Affiliation(s)
- Jason P Magby
- Environmental and Occupational Health Sciences Institute and Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA.
| | | |
Collapse
|
2
|
Lirk P, Poroli M, Rigaud M, Fuchs A, Fillip P, Huang CY, Ljubkovic M, Sapunar D, Hogan Q. Modulators of calcium influx regulate membrane excitability in rat dorsal root ganglion neurons. Anesth Analg 2008; 107:673-85. [PMID: 18633052 DOI: 10.1213/ane.0b013e31817b7a73] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Chronic neuropathic pain resulting from neuronal damage remains difficult to treat, in part, because of incomplete understanding of underlying cellular mechanisms. We have previously shown that inward Ca2+ flux (I(Ca)) across the sensory neuron plasmalemma is decreased in a rodent model of chronic neuropathic pain, but the direct consequence of this loss of I(Ca) on function of the sensory neuron has not been defined. We therefore examined the extent to which altered membrane properties after nerve injury, especially increased excitability that may contribute to chronic pain, are attributable to diminished Ca2+ entry. METHODS Intracellular microelectrode measurements were obtained from A-type neurons of dorsal root ganglia excised from uninjured rats. Recording conditions were varied to suppress or promote I(Ca) while biophysical variables and excitability were determined. RESULTS Both lowered external bath Ca2+ concentration and blockade of I(Ca) with bath cadmium diminished the duration and area of the after-hyperpolarization (AHP), accompanied by decreased current threshold for action potential (AP) initiation and increased repetitive firing during sustained depolarization. Reciprocally, elevated bath Ca2+ increased the AHP and suppressed repetitive firing. Voltage sag during neuronal hyperpolarization, indicative of the cation-nonselective H-current, diminished with decreased bath Ca2+, cadmium application, or chelation of intracellular Ca2+. Additional recordings with selective blockers of I(Ca) subtypes showed that N-, P/Q, L-, and R-type currents each contribute to generation of the AHP and that blockade of any of these, and the T-type current, slows the AP upstroke, prolongs the AP duration, and (except for L-type current) decreases the current threshold for AP initiation. CONCLUSIONS Taken together, our findings show that suppression of I(Ca) decreases the AHP, reduces the hyperpolarization-induced voltage sag, and increases excitability in sensory neurons, replicating changes that follow peripheral nerve trauma. This suggests that the loss of I(Ca) previously demonstrated in injured sensory neurons contributes to their dysfunction and hyperexcitability, and may lead to neuropathic pain.
Collapse
Affiliation(s)
- Philipp Lirk
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Regulation of Akt mRNA and protein levels by glycogen synthase kinase-3β in adrenal chromaffin cells: Effects of LiCl and SB216763. Eur J Pharmacol 2008; 586:82-9. [DOI: 10.1016/j.ejphar.2008.02.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 02/03/2008] [Accepted: 02/25/2008] [Indexed: 11/22/2022]
|
4
|
Wada A, Wanke E, Gullo F, Schiavon E. Voltage-dependent Na(v)1.7 sodium channels: multiple roles in adrenal chromaffin cells and peripheral nervous system. Acta Physiol (Oxf) 2008; 192:221-31. [PMID: 18021327 DOI: 10.1111/j.1748-1716.2007.01810.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Voltage-dependent Na+ channels consist of the principal alpha-subunit (approximately 260 kDa), without or with auxiliary beta-subunit (approximately 38 kDa). Nine alpha-subunit isoforms (Na(v)1.1-Na(v)1.9) are encoded in nine different genes (SCN1A-SCN5A and SCN8A-SCN11A). Besides initiating and propagating action potentials in established neuronal circuit, Na+ channels engrave, maintain and repair neuronal network in the brain throughout the life. Adrenal chromaffin cells express Na(v)1.7 encoded in SCN9A, which is widely distributed among peripheral autonomic and sensory ganglia, neuroendocrine cells, as well as prostate cancer cell lines. In chromaffin cells, Na(v)1.7-specific biophysical properties have been characterized; physiological stimulation by acetylcholine produces muscarinic receptor-mediated hyperpolarization followed by nicotinic receptor-mediated depolarization. In human patients with Na(v)1.7 channelopathies, gain-of-pathological function mutants (i.e. erythermalgia and paroxysmal extreme pain disorder) or loss-of-physiological function mutant (channelopathy-associated insensitivity to pain) proved the causal involvement of mutant Na(v)1.7 in generating intolerable pain syndrome, Na(v)1.7 being the first molecular target convincingly identified for pain treatment. Importantly, aberrant upregulation/hyperactivity of even the native Na(v)1.7 produces pain associated with inflammation, nerve injury and diabetic neuropathy in rodents. Various extra- and intracellular signals, as well as therapeutic drugs modulate the activity of Na(v)1.7, and also cause up- and downregulation of Na(v)1.7. Na(v)1.7 seems to play an increasing number of crucial roles in health, disease and therapeutics.
Collapse
Affiliation(s)
- A Wada
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| | | | | | | |
Collapse
|
5
|
Maruta T, Yanagita T, Matsuo K, Uezono Y, Satoh S, Nemoto T, Yoshikawa N, Kobayashi H, Takasaki M, Wada A. Lysophosphatidic acid-LPA1 receptor-Rho-Rho kinase-induced up-regulation of Nav1.7 sodium channel mRNA and protein in adrenal chromaffin cells: enhancement of 22Na+ influx, 45Ca2+ influx and catecholamine secretion. J Neurochem 2007; 105:401-12. [PMID: 18036192 DOI: 10.1111/j.1471-4159.2007.05143.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In cultured bovine adrenal chromaffin cells, chronic (> or = 24 h) treatment with lysophosphatidic acid (LPA) augmented veratridine-induced 22Na+ influx via Na(v)1.7 by approximately 22% (EC(50) = 1 nmol/L), without changing nicotine-induced 22Na+ influx via nicotinic receptor-associated channel. LPA enhanced veratridine (but not nicotine)-induced 45Ca2+ influx via voltage-dependent calcium channel and catecholamine secretion. LPA shifted concentration-response curve of veratridine for 22Na+ influx upward, without altering the EC(50) of veratridine. Ptychodiscus brevis toxin-3 allosterically enhanced veratridine-induced 22Na+ influx by twofold in non-treated and LPA-treated cells. Whole-cell patch-clamp analysis showed that peak Na+ current amplitude was greater by 39% in LPA (100 nmol/L for 36 h)-treated cells; however, I-V curve and steady-state inactivation/activation curves were comparable between non-treated and LPA-treated cells. LPA treatment (> or = 24 h) increased cell surface [3H]saxitoxin binding by approximately 28%, without altering the K(d) value; the increase was prevented by cycloheximide, actinomycin D, or Ki16425, dioctylglycerol pyrophosphate 8:0 (two inhibitors of LPA(1) and LPA3 receptors), or botulinum toxin C3 (Rho inhibitor), Y27632 (Rho kinase inhibitor), consistent with LPA(1) receptor expression in adrenal chromaffin cells. LPA raised Nav1.7 mRNA level by approximately 37%. Thus, LPA-LPA(1) receptor-Rho/Rho kinase pathway up-regulated cell surface Nav1.7 and Nav1.7 mRNA levels, enhancing veratridine-induced Ca2+ influx and catecholamine secretion.
Collapse
Affiliation(s)
- Toyoaki Maruta
- Departments of Pharmacology, and Anesthesiology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Wada A. Roles of Voltage-Dependent Sodium Channels in Neuronal Development, Pain, and Neurodegeneration. J Pharmacol Sci 2006; 102:253-68. [PMID: 17072104 DOI: 10.1254/jphs.crj06012x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Besides initiating and propagating action potentials in established neuronal circuits, voltage-dependent sodium channels sculpt and bolster the functional neuronal network from early in embryonic development through adulthood (e.g., differentiation of oligodendrocyte precursor cells into oligodendrocytes, myelinating axon; competition between neighboring equipotential neurites for development into a single axon; enhancing and opposing functional interactions with attractive and repulsive molecules for axon pathfinding; extending and retracting terminal arborization of axon for correct synapse formation; experience-driven cognition; neuronal survival; and remyelination of demyelinated axons). Surprisingly, different patterns of action potentials direct homeostasis-based epigenetic selection for neurotransmitter phenotype, thus excitability by sodium channels specifying expression of inhibitory neurotransmitters. Mechanisms for these pleiotropic effects of sodium channels include reciprocal interactions between neurons and glia via neurotransmitters, growth factors, and cytokines at synapses and axons. Sodium channelopathies causing pain (e.g., allodynia) and neurodegeneration (e.g., multiple sclerosis) derive from 1) electrophysiological disturbances by insults (e.g., ischemia/hypoxia, toxins, and antibodies); 2) loss-of-physiological function or gain-of-pathological function of mutant sodium channel proteins; 3) spatiotemporal inappropriate expression of normal sodium channel proteins; or 4) de-repressed expression of otherwise silent sodium channel genes. Na(v)1.7 proved to account for pain in human erythermalgia and inflammation, being the convincing molecular target of pain treatment.
Collapse
Affiliation(s)
- Akihiko Wada
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki, Japan.
| |
Collapse
|
7
|
Wada A, Yokoo H, Yanagita T, Kobayashi H. New twist on neuronal insulin receptor signaling in health, disease, and therapeutics. J Pharmacol Sci 2005; 99:128-43. [PMID: 16210778 DOI: 10.1254/jphs.crj05006x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Long after the pioneering studies documenting the existence of insulin (year 1967) and insulin receptor (year 1978) in brain, the last decade has witnessed extraordinary progress in the understanding of brain region-specific multiple roles of insulin receptor signalings in health and disease. In the hypothalamus, insulin regulates food intake, body weight, peripheral fat deposition, hepatic gluconeogenesis, reproductive endocrine axis, and compensatory secretion of counter-regulatory hormones to hypoglycemia. In the hippocampus, insulin promotes learning and memory, independent of the glucoregulatory effect of insulin. Defective insulin receptor signalings are associated with the dementia in normal aging and patients with age-related neurodegenerative diseases (e.g., Alzheimer's disease); the cognitive impairment can be reversed with systemic administration of insulin in the euglycemic condition. Intranasal administration of insulin enhances memory and mood and decreases body weight in healthy humans, without causing hypoglycemia. In the hypothalamus, insulin-induced activation of the phosphoinositide 3-kinase pathway followed by opening of ATP-sensitive K+ channel has been shown to be related to multiple effects of insulin. However, the precise molecular mechanisms of insulin's pleiotropic effects still remain obscure. More importantly, much remains unknown about the quality control mechanisms ensuring correct conformational maturation of the insulin receptor, and the cellular mechanisms regulating density of cell surface functional insulin receptors.
Collapse
Affiliation(s)
- Akihiko Wada
- Department of Pharmacology, Miyazaki Medical College, University of Miyazaki, Miyazaki 889-1692, Japan.
| | | | | | | |
Collapse
|
8
|
Carrillo E, Galindo JM, García MC, Sánchez JA. Regulation of muscle Cav1.1 channels by long-term depolarization involves proteolysis of the alpha1s subunit. J Membr Biol 2005; 199:155-61. [PMID: 15457372 DOI: 10.1007/s00232-004-0683-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2003] [Revised: 04/12/2004] [Indexed: 10/26/2022]
Abstract
The effects of long-term depolarization on frog skeletal muscle Cav1.1 channels were assessed. Voltage-clamp and Western-blot experiments revealed that long-term depolarization brings about a drastic reduction in the amplitude of currents flowing through Cav1.1 channels and in the levels of the alpha1s subunit, the main subunit of muscle L-type channels. The decline of both phenomena was prevented by the action of the protease inhibitors E64 (50 microM) and leupeptin (50 microM). In contrast, long-term depolarization had no effect on beta1, the auxiliary subunit of alpha1s. The levels of mRNAs coding the alpha1s and the beta1 subunits were measured by RNase protection assays. Neither the content of the alpha1s nor the beta1 subunit mRNAs were affected by long-term depolarization, indicating that the synthesis of Cav1.1 channels remained unaffected. Taken together, our experiments suggest that the reduction in the amplitude of membrane currents and in the alpha1s subunit levels is caused by increased degradation of this subunit by a Ca2+-dependent protease.
Collapse
Affiliation(s)
- E Carrillo
- Department of Pharmacology, Cinvestav, A.P.14-740, 07300, México, D.F
| | | | | | | |
Collapse
|
9
|
Hong M, Li M, Mao C, Lee AS. Endoplasmic reticulum stress triggers an acute proteasome-dependent degradation of ATF6. J Cell Biochem 2005; 92:723-32. [PMID: 15211570 DOI: 10.1002/jcb.20118] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ATF6, a 670 amino acid endoplasmic reticulum (ER) transmembrane glycoprotein with the electrophoretic mobility of a 90 kDa protein, is a key transcriptional activator of the unfolded protein response (UPR) that allows mammalian cells to maintain cellular homeostasis when the cells are subjected to a variety of environmental and physiological stress. Previous studies have established that ATF6 is a short-lived protein, the activation of which involves relocation from the ER to the Golgi where it is cleaved by the S1P/S2P protease system to generate a nuclear form that acts as a transcriptional activator for ER-stress inducible target genes such as Grp78/BiP. We report here that in addition to this process, ER-stress mediated by thapsigargin triggers an acute proteasomal degradation of the pre-existing pool of p90ATF6 independent of S1P/S2P cleavage. We showed that ATF6 is a direct target of proteasome-ubiquitin pathway, and this process can be suppressed by proteasome inhibitors, ALLN and MG115. We further observed that in non-stressed cells, p90ATF6 can be stabilized by MG115 but not ALLN and that treatment of cells with MG115 results in Grp78 induction in the absence of ER stress. These studies suggest that ER-stress induced acute, transit degradation of p90ATF6 could represent a novel cellular defense mechanism to prevent premature cell death resulting from p90ATF6 activation. Further, inhibition of proteasome activity can result in chaperone protein gene induction through stabilization of p90ATF6 as well as accumulation of malfolded proteins.
Collapse
Affiliation(s)
- Min Hong
- Department of Biochemistry and Molecular Biology and the USC/Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, California 90089-9176, USA
| | | | | | | |
Collapse
|
10
|
Zicha S, Maltsev VA, Nattel S, Sabbah HN, Undrovinas AI. Post-transcriptional alterations in the expression of cardiac Na+ channel subunits in chronic heart failure. J Mol Cell Cardiol 2005; 37:91-100. [PMID: 15242739 PMCID: PMC2408747 DOI: 10.1016/j.yjmcc.2004.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2003] [Revised: 03/22/2004] [Accepted: 04/02/2004] [Indexed: 11/15/2022]
Abstract
Clinical and experimental evidence has recently accumulated about the importance of alterations of Na(+) channel (NaCh) function and slow myocardial conduction for arrhythmias in infarcted and failing hearts (i.e., heart failure, HF). The present study evaluated the molecular mechanisms of local alterations in the expression of NaCh subunits which underlie Na(+) current (I(Na)) density decrease in HF. HF was induced in five dogs by sequential coronary microembolization and developed approximately 3 months after the last embolization (left ventricle (LV), ejection fraction = 27 +/- 7%). Five normal dogs served as a control group. Ventricular cardiomyocytes were isolated enzymatically from LV mid-myocardium and I(Na) was measured by whole-cell patch-clamp. The mRNA encoding the cardiac-specific NaCh alpha-subunit Na(v)1.5, and one of its auxiliary subunits beta 1 (NaCh beta 1), were analyzed by competitive reverse transcription-polymerase chain reaction. Protein levels of Na(v)1.5, NaCh beta 1 and NaCh beta 2 were evaluated by western blotting. The maximum density of I(Na)/C(m) was decreased in HF (n = 5) compared to control hearts (33.2 +/- 4.4 vs. 50.0 +/- 4.9 pA/pF, mean +/- S.E.M., n = 5, P < 0.05). The steady-state inactivation and activation of I(Na) remained unchanged in HF compared to control hearts. The levels of mRNA encoding Na(v)1.5, and NaCh beta 1 were unaltered in FH. However, Na(v)1.5 protein expression was reduced about 30% in HF, while NaCh beta 1 and NaCh beta 2 protein were unchanged. We conclude that experimental HF in dogs results in post-transcriptional changes in cardiac NaCh alpha-subunit expression.
Collapse
Affiliation(s)
- Stephen Zicha
- Department of Medicine and Research Center, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Victor A. Maltsev
- Gerontology Research Center, National Institutes of Health, Baltimore, Maryland, USA
| | - Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and University of Montreal, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hani N. Sabbah
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Heart and Vascular Institute, Detroit, Michigan, USA
| | - Albertas I. Undrovinas
- Division of Cardiovascular Medicine, Department of Medicine, Henry Ford Heart and Vascular Institute, Detroit, Michigan, USA
| |
Collapse
|
11
|
Yanagita T, Kobayashi H, Uezono Y, Yokoo H, Sugano T, Saitoh T, Minami SI, Shiraishi S, Wada A. Destabilization of Na(v)1.7 sodium channel alpha-subunit mRNA by constitutive phosphorylation of extracellular signal-regulated kinase: negative regulation of steady-state level of cell surface functional sodium channels in adrenal chromaffin cells. Mol Pharmacol 2003; 63:1125-36. [PMID: 12695541 DOI: 10.1124/mol.63.5.1125] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In cultured bovine adrenal chromaffin cells expressing Na(v)1.7 isoform of voltage-dependent Na(+) channels, treatment (> or = 6 h) with serum deprivation, PD98059, or U0126 increased cell surface [(3)H]saxitoxin ([(3)H]STX) binding by approximately 58% (t(1/2) = 12.5 h), with no change in the K(d) value. Immunoblot analysis showed that either treatment attenuated constitutive phosphorylation of extracellular signal-regulated kinase (ERK) 1 and ERK2 but not of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase (JNK) 1 and JNK2. The increase of [(3)H]STX binding and the attenuated phosphorylation of ERK1 and ERK2 returned to the control nontreated levels after the addition of serum or the washout of PD98059- or U0126-treated cells. Simultaneous treatment of serum deprivation with PD98059 or U0126 did not produce an additional increasing effect on [(3)H]STX binding, compared with either treatment alone. In cells subjected to either treatment, veratridine-induced maximum (22)Na(+) influx was augmented by approximately 47%, with no change in the EC(50) value; Ptychodiscus brevis toxin-3 enhanced veratridine-induced (22)Na(+) influx by 2-fold, as in nontreated cells. Serum deprivation, PD98059, or U0126 increased Na(+) channel alpha- but not beta(1)- subunit mRNA level by approximately 50% between 3 and 24 h; cycloheximide, an inhibitor of protein synthesis, increased alpha-subunit mRNA level and nullified additional increasing effect of either treatment on alpha-subunit mRNA level. Either treatment prolonged half-life of alpha-subunit mRNA from 17.5 to approximately 26.3 h without altering alpha-subunit gene transcription. Thus, constitutively phosphorylated/activated ERK destabilizes Na(+) channel alpha-subunit mRNA via translational event, which negatively regulates steady-state level of alpha-subunit mRNA and cell surface expression of functional Na(+) channels.
Collapse
|
12
|
Shiraishi S, Yokoo H, Yanagita T, Kobayashi H, Minami SI, Saitoh T, Takasaki M, Wada A. Differential effects of bupivacaine enantiomers, ropivacaine and lidocaine on up-regulation of cell surface voltage-dependent sodium channels in adrenal chromaffin cells. Brain Res 2003; 966:175-84. [PMID: 12618341 DOI: 10.1016/s0006-8993(02)04152-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In cultured bovine adrenal chromaffin cells, (+/-)-bupivacaine inhibited veratridine-induced 22Na(+) influx (IC(50) 6.8 microM). The IC(50) of (+)-bupivacaine (2.8 microM) was 6.2-, 7.4-, and 17.1-fold lower than those of (-)-bupivacaine (17.3 microM), (-)-ropivacaine (20.6 microM), and lidocaine (47.8 microM). Chronic (i.e. 3-h) treatment of cells with (+/-)-bupivacaine increased cell surface [3H]saxitoxin ([3H]STX) binding capacity by 48% (EC(50) of 233 microM; t(1/2)=7.4 h), without changing the K(d) value. Treatment for 24 h with either (+)- or (-)-bupivacaine, or (-)-ropivacaine elevated [3H]STX binding, whereas 24-h treatment with lidocaine had no effect. The rise of [3H]STX binding by (+/-)-bupivacaine was prevented by cycloheximide, an inhibitor of protein synthesis, or brefeldin A, an inhibitor of cell surface vesicular exit from the trans-Golgi network; however, (+/-)-bupivacaine did not increase Na(+) channel alpha- and beta(1)-subunit mRNA levels. In cells subjected to (+/-)-bupivacaine treatment (1 mM for 24 h) followed by 3-h washout, veratridine-induced 22Na(+) influx was enhanced, even when measured in the presence of ouabain, an inhibitor of Na(+),K(+)-ATPase. Ptychodiscus brevis toxin-3 potentiated veratridine-induced 22Na(+) influx by 2.3-fold in the (+/-)-bupivacaine-treated cells, as in non-treated cells. These results suggest that lipophilic bupivacaine enantiomers or (-)-ropivacaine acutely inhibit Na(+) channel gating, whereas its chronic treatment up-regulates cell surface expression of Na(+) channels via translational and externalization events.
Collapse
Affiliation(s)
- Seiji Shiraishi
- Department of Pharmacology, Miyazaki Medical College, Miyazaki 889-1692, Kiyotake, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gil-Parrado S, Assfalg-Machleidt I, Fiorino F, Deluca D, Pfeiler D, Schaschke N, Moroder L, Machleidt W. Calpastatin exon 1B-derived peptide, a selective inhibitor of calpain: enhancing cell permeability by conjugation with penetratin. Biol Chem 2003; 384:395-402. [PMID: 12715890 DOI: 10.1515/bc.2003.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ubiquitous calpains, mu- and m-calpain, have been implicated in essential physiological processes and various pathologies. Cell-permeable specific inhibitors are important tools to elucidate the roles of calpains in cultivated cells and animal models. The synthetic N-acetylated 27-mer peptide derived from exon B of the inhibitory domain 1 of human calpastatin (CP1B) is unique as a potent and highly selective reversible calpain inhibitor, but is poorly cell-permeant. By addition of N-terminal cysteine residues we have generated a disulfide-conjugated CP1B with the cell-penetrating 16-mer peptide penetratin derived from the third helix of the Antennapedia homeodomain protein. The inhibitory potency and selectivity of CP1B for calpain versus cathepsin B and L, caspase 3 and the proteasome was not affected by the conjugation with penetratin. The conjugate was shown to efficiently penetrate into living LCLC 103H cells, since it prevents ionomycin-induced calpain activation at 200-fold lower concentration than the non-conjugated inhibitor and is able to reduce calpain-triggered apoptosis of these cells. Penetratin-conjugated CP1B seems to be a promising alternative to the widely used cell-permeable peptide aldehydes (e.g. calpain inhibitor 1) which inhibit the lysosomal cathepsins and partially the proteasome as well or even better than the calpains.
Collapse
Affiliation(s)
- Shirley Gil-Parrado
- Abteilung für Klinische Chemie und Klinische Biochemie, Chirurgische Klinik Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Nussbaumstr. 20, D-80336 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kobayashi H, Shiraishi S, Yanagita T, Yokoo H, Yamamoto R, Minami SI, Saitoh T, Wada A. Regulation of voltage-dependent sodium channel expression in adrenal chromaffin cells: involvement of multiple calcium signaling pathways. Ann N Y Acad Sci 2002; 971:127-34. [PMID: 12438102 DOI: 10.1111/j.1749-6632.2002.tb04446.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The density and electrical activity of cell surface voltage-dependent Na(+) channels are key determinants regulating the neuronal plasticity including development, differentiation, and regeneration. Abnormalities of Na(+) channels are associated with various neurological diseases. In this paper, we review the regulatory mechanisms of cell surface Na(+) channel expression mediated by Ca(2+) signaling pathways in cultured bovine adrenal chromaffin cells. Sustained, but not transient, elevation of intracellular Ca(2+) concentration reduced the number of cell surface Na(+) channels. The reduction of Na(+) channels was suppressed by an inhibitor of calpain, a Ca(2+)-dependent protease, and by an inhibitor of protein kinase C (PKC). The activation of conventional PKC-alpha and novel PKC-epsilon reduced cell surface Na(+) channels by the acceleration of internalization of the channels and by the increased degradation of Na(+) channel alpha-subunit mRNA, respectively. On the contrary, the activation of PKC-epsilon increased Na(+) channel beta(1)-subunit mRNA level. The inhibition of calcineurin, a Ca(2+)/calmodulin-dependent protein phosphatase 2B, by immunosuppressants upregulated cell surface Na(+) channels by both stimulating externalization and inhibiting internalization of the channels without changing Na(+) channel alpha- and beta(1)-subunit mRNA levels. Thus, the signal transduction pathways mediated by intracellular Ca(2+) modulate cell surface Na(+) channel expression via multiple Ca(2+)-dependent events, and the changes in the intracellular vesicular trafficking are the important mechanisms in the regulation of Na(+) channel expression.
Collapse
Affiliation(s)
- Hideyuki Kobayashi
- Department of Pharmacology, Miyazaki Medical College, Miyazaki 889-1692, Japan.
| | | | | | | | | | | | | | | |
Collapse
|