1
|
Lundstrom K. Self-amplifying RNA virus vectors for drug delivery. Expert Opin Drug Deliv 2025; 22:181-195. [PMID: 39757959 DOI: 10.1080/17425247.2024.2445675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
INTRODUCTION Viral vectors have proven useful for delivering genetic information, such as drugs and vaccines, for therapeutic and prophylactic interventions. Self-amplifying RNA viruses possess the special feature of high-level RNA amplification in the host cell cytoplasm providing high antigen production against infectious pathogens and various types of cancers, and expression of anti-tumor genes, toxic genes, and immunostimulatory genes. AREAS COVERED Self-amplifying RNA viral vectors have been evaluated in animal models and clinical trials for immune responses and protection against challenges with pathogenic infectious agents and tumor cells. Likewise, immune responses, tumor regression, and tumor eradication have been monitored in preclinical and clinical settings. The literature search used in the review is based on PubMed and clinical trial/biotechnology company websites up until September 2024. EXPERT OPINION Self-amplifying RNA viruses have elicited strong immune responses and vaccine efficacy in animal models and humans leading to the approval of the vesicular stomatitis virus-based vaccine against Ebola virus disease in both the US and Europe. Moreover, therapeutic and prophylactic efficacy has been demonstrated in animal tumor models and cancer patients. Self-amplifying RNA viruses have also been evaluated in mouse models for neurological disorders.
Collapse
|
2
|
Al-Shammari AM, Salman MI. Antimetastatic and antitumor activities of oncolytic NDV AMHA1 in a 3D culture model of breast cancer. Front Mol Biosci 2024; 11:1331369. [PMID: 39281317 PMCID: PMC11392722 DOI: 10.3389/fmolb.2024.1331369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Newcastle disease virus (NDV) AMHA1 is capable of killing cancer cells by direct replication or induction of apoptosis alongside other pathways. In this study, we report the potent antimetastatic and anticancer activities of NDV AMHA1 in a 3D spheroid model of breast cancer metastasis. Methods we used two breast cancer cell lines AMJ13 and MCF7 in our metastasis model system. Results First, we showed that NDV AMHA1 can infect and kill breast cancer cells in proliferating adherent cells and tumor spheroids using different virus doses and studying virus replication kinetics. We showed that NDV can infect and spread within the spheroids that represent metastasis before and after reattachment. Furthermore, we evaluated the ability of NDV to induce apoptosis in cancer spheroids and by virus tracking showed that NDV infection is essential for the elimination of these metastasis spheroids. Discussion The mechanism by which NDV induces cell killing in the metastasis model is the induction of caspase-3 and P21 and inhibition of Ki67 in cancer cells, but not in normal cells. In conclusion, these results indicate that NDV AMHA1 has the ability to kill breast cancer metastases in suspension or attached, and this is a novel finding of NDV AMHA1 being a possibly efficient therapy against human metastatic breast cancer.
Collapse
Affiliation(s)
- Ahmed Majeed Al-Shammari
- Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research, Mustansiriyah University, Baghdad, Iraq
| | - Marwa Ibrahim Salman
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
3
|
Letafati A, Ardekani OS, Naderisemiromi M, Fazeli MM, Jemezghani NA, Yavarian J. Oncolytic viruses against cancer, promising or delusion? Med Oncol 2023; 40:246. [PMID: 37458862 DOI: 10.1007/s12032-023-02106-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Cancer treatment is one of the most challenging topics in medical sciences. Different methods such as chemotherapy, tumor surgery, and immune checkpoint inhibitors therapy (ICIs) are potential approaches to treating cancer and killing tumor cells, but clinical studies have shown that they have been successful for a limited group of patients. Using viruses as a treatment can be considered as an effective treatment in the field of medicine. This is considered as a potential treatment, especially in comparison to chemotherapy, which has severe side effects related to the immune system. Most oncolytic viruses (OVs) have the potential to multiply in cancer cells, which are more than normal cells in malignant tissue and can induce immune responses. Therefore, tons of efforts and research have been started on the utilization of OVs as a treatment for cancer and have shown promising in treating cancers with less side effects. In this article, we have gathered studies about oncolytic viruses and their effectiveness in cancer treatment.Please confirm if the author names are presented accurately and in the correct sequence (given name, middle name/initial, family name). Author 1 Given name: [Omid Salahi] Last name [Ardekani], Author 2 Given name: [Mohammad Mehdi] Last name [Fazeli], Author 3 Given name: [Nillofar Asadi] Last name [Jemezghani]. Also, kindly confirm the details in the metadata are correct.Confirmed.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mohammad Mehdi Fazeli
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Jila Yavarian
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ortega-Rivera OA, Gallegos-Alcalá P, Jiménez M, Quintanar JL, Torres-Juarez F, Rivas-Santiago B, del Toro-Arreola S, Salinas E. Inhibition of Tumor Growth and Metastasis by Newcastle Disease Virus Strain P05 in a Breast Cancer Mouse Model. J Breast Cancer 2023; 26:186-200. [PMID: 37051644 PMCID: PMC10139849 DOI: 10.4048/jbc.2023.26.e9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/16/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
PURPOSE Conventional therapies and surgery remain the standard treatment for breast cancer. However, combating the eventual development of metastasis is still a challenge. Newcastle disease virus (NDV) is one of the various species of viruses under clinical evaluation as a vector for oncolytic, gene-, and immune-stimulating therapies. The purpose of this study was to evaluate the antitumor activity of a recombinant NDV (rNDV-P05) in a breast cancer murine model. METHODS Tumors were induced by injecting the cellular suspension (4T1 cell line) subcutaneously. The virus strain P05 was applied three times at intervals of seven days, starting seven days after tumor induction, and was completed 21 days later. Determination of tumor weight, spleen index, and lung metastasis were done after sacrificing the mice. Serum levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α, and TNF-related apoptosis-inducing ligand (TRAIL) were quantified by enzyme-linked immunosorbent assay. CD8+ infiltrated cells were analyzed by immunofluorescence. RESULTS rNDV-P05 showed a route-of-administration-dependent effect, demonstrating that the systemic administration of the virus significantly reduces the tumor mass and volume, spleen index, and abundance of metastatic clonogenic colonies in lung tissue, and increases the inhibition rate of the tumor. The intratumoral administration of rNDV-P05 was ineffective for all the parameters evaluated. Antitumor and antimetastatic capability of rNDV-P05 is mediated, at least partially, through its immune-stimulatory effect on the upregulation of TNF-α, TRAIL, IFN-α, and IFN-γ, and its ability to recruit CD8+ T cells into tumor tissue. CONCLUSION Systemic treatment with rNDV-P05 decreases the tumoral parameters in the breast cancer murine model.
Collapse
Affiliation(s)
- Oscar Antonio Ortega-Rivera
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
- Department of NanoEngineering, University of California San Diego, La Jolla, USA
| | - Pamela Gallegos-Alcalá
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - J. Luis Quintanar
- Department of Physiology and Pharmacology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Flor Torres-Juarez
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security (IMSS), Zacatecas, Mexico
| | - Bruno Rivas-Santiago
- Medical Research Unit-Zacatecas, Mexican Institute for Social Security (IMSS), Zacatecas, Mexico
| | - Susana del Toro-Arreola
- Department of Physiology, CUCS, University of Guadalajara, Guadalajara, Mexico
- Institute of Research in Chronic Degenerative Diseases, Department of Molecular Biology and Genomic, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
5
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
6
|
Abstract
Self-replicating RNA viral vectors have been engineered for both prophylactic and therapeutic applications. Mainly the areas of infectious diseases and cancer have been targeted. Both positive and negative strand RNA viruses have been utilized including alphaviruses, flaviviruses, measles viruses and rhabdoviruses. The high-level of RNA amplification has provided efficient expression of viral surface proteins and tumor antigens. Immunization studies in animal models have elicit robust neutralizing antibody responses. In the context of infectious diseases, immunization with self-replicating RNA viral vectors has provided protection against challenges with lethal doses of pathogens in animal models. Similarly, immunization with vectors expressing tumor antigens has resulted in tumor regression and eradication and protection against tumor challenges in animal models. The transient nature and non-integration of viral RNA into the host genome are ideal features for vaccine development. Moreover, self-replicating RNA viral vectors show great flexibility as they can be applied as recombinant viral particles, RNA replicons or DNA replicon plasmids. Several clinical trials have been conducted especially in the area of cancer immunotherapy.
Collapse
|
7
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
8
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
9
|
Askari FS, Mohebbi A, Moradi A, Javid N. The Role of Vesicular Stomatitis Virus Matrix Protein in Autophagy in the Breast Cancer. Asian Pac J Cancer Prev 2021; 22:249-255. [PMID: 33507706 PMCID: PMC8184201 DOI: 10.31557/apjcp.2021.22.1.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Breast cancer is one of the most difficult malignancies to treat. Therapeutics is used to target and kill the cancer cells. Non-human oncolytic viruses have the ability to cause cell death directly to cancers. The objective here was to investigate the role of Vesicular Stomatitis Virus (VSV) Matrix (M) protein in autophagy in the breast cancer cell line. METHODS Two different VSV wild type and mutant (M51R) M protein constructs were produced. Breast cancer cell line BT-20 was transfected by either wild type or mutant vectors. Transfection efficiency was measured using a fluorescent microscopy. Expression of VSV M protein was investigated at protein level. Cell cytotoxicity was measured using an MTT assay. The autophagy pathway was studied by Beclin-1 immunoassay. Data were statistically analyzed between different transfected groups. RESULTS It has been shown that the VSV M protein induced higher levels of Beclin-1 than the M51R mutant in the BT-20 cell line. Increased levels of Beclin-1 were also associated with VSV M cell-induced cytotoxicity. CONCLUSION It has been shown here that VSV wild type or mutant M proteins can cause autophagy-induced cell death by increasing Beclin-1 expression. This includes the possible role of VSV to be used as an oncolytic virus in breast cancer treatment. <br />.
Collapse
Affiliation(s)
- Fatemeh Sana Askari
- Student Research Committee, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alireza Mohebbi
- Stem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naeme Javid
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
10
|
Howard F, Muthana M. Designer nanocarriers for navigating the systemic delivery of oncolytic viruses. Nanomedicine (Lond) 2020; 15:93-110. [PMID: 31868115 DOI: 10.2217/nnm-2019-0323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Nanotechnology is paving the way for new carrier systems designed to overcome the greatest challenges of oncolytic virotherapy; systemic administration and subsequent implications of immune responses and specific cell binding and entry. Systemic administration of oncolytic agents is vital for disseminated neoplasms, however transition of nanoparticles (NP) to virotherapy has yielded modest results. Their success relies on how they navigate the merry-go-round of often-contradictory phases of NP delivery: circulatory longevity, tissue permeation and cellular interaction, with many studies postulating design features optimal for each phase. This review discusses the optimal design of NPs for the transport of oncolytic viruses within these phases, to determine whether improved virotherapeutic efficacy lies in the pharmacokinetic/pharmacodynamics characteristics of the NP-oncolytic viruses complexes rather than manipulation of the virus and targeting ligands.
Collapse
|
11
|
Multidirectional Strategies for Targeted Delivery of Oncolytic Viruses by Tumor Infiltrating Immune Cells. Pharmacol Res 2020; 161:105094. [PMID: 32795509 DOI: 10.1016/j.phrs.2020.105094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Oncolytic virus (OV) immunotherapy has demonstrated to be a promising approach in cancer treatment due to tumor-specific oncolysis. However, their clinical use so far has been largely limited due to the lack of suitable delivery strategies with high efficacy. Direct 'intratumoral' injection is the way to cross the hurdles of systemic toxicity, while providing local effects. Progress in this field has enabled the development of alternative way using 'systemic' oncolytic virotherapy for producing better results. One major potential roadblock to systemic OV delivery is the low virus persistence in the face of hostile immune system. The delivery challenge is even greater when attempting to target the oncolytic viruses into the entire tumor mass, where not all tumor cells are equally exposed to exactly the same microenvironment. The microenvironment of many tumors is known to be massively infiltrated with various types of leucocytes in both primary and metastatic sites. Interestingly, this intratumoral immune cell heterogeneity exhibits a degree of organized distribution inside the tumor bed as evidenced, for example, by the hypoxic tumor microenviroment where predominantly recruits tumor-associated macrophages. Although in vivo OV delivery seems complicated and challenging, recent results are encouraging for decreasing the limitations of systemically administered oncolytic viruses and an improved efficiency of oncolytic viral therapy in targeting cancerous tissues in vitro. Here, we review the latest developments of carrier cell-based oncolytic virus delivery using tumor-infiltrating immune cells with a focus on the main features of each cellular vehicle.
Collapse
|
12
|
Experimental Evolution Generates Novel Oncolytic Vesicular Stomatitis Viruses with Improved Replication in Virus-Resistant Pancreatic Cancer Cells. J Virol 2020; 94:JVI.01643-19. [PMID: 31694943 PMCID: PMC7000975 DOI: 10.1128/jvi.01643-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022] Open
Abstract
Vesicular stomatitis virus (VSV)-based oncolytic viruses are promising agents against pancreatic ductal adenocarcinoma (PDAC). However, some PDAC cell lines are resistant to VSV. Here, using a directed viral evolution approach, we generated novel oncolytic VSVs with an improved ability to replicate in virus-resistant PDAC cell lines, while remaining highly attenuated in nonmalignant cells. Two independently evolved VSVs obtained 2 identical VSV glycoprotein mutations, K174E and E238K. Additional experiments indicated that these acquired G mutations improved VSV replication, at least in part due to improved virus attachment to SUIT-2 cells. Importantly, no deletions or mutations were found in the virus-carried transgenes in any of the passaged viruses. Our findings demonstrate long-term genomic stability of complex VSV recombinants carrying large transgenes and support further clinical development of oncolytic VSV recombinants as safe therapeutics for cancer. Vesicular stomatitis virus (VSV) based oncolytic viruses are promising agents against various cancers. We have shown that pancreatic ductal adenocarcinoma (PDAC) cell lines exhibit great diversity in susceptibility and permissibility to VSV. Here, using a directed evolution approach with our two previously described oncolytic VSV recombinants, VSV-p53wt and VSV-p53-CC, we generated novel oncolytic VSVs with an improved ability to replicate in virus-resistant PDAC cell lines. VSV-p53wt and VSV-p53-CC encode a VSV matrix protein (M) with a ΔM51 mutation (M-ΔM51) and one of two versions of a functional human tumor suppressor, p53, fused to a far-red fluorescent protein, eqFP650. Each virus was serially passaged 32 times (which accounts for more than 60 viral replication cycles) on either the SUIT-2 (moderately resistant to VSV) or MIA PaCa-2 (highly permissive to VSV) human PDAC cell lines. While no phenotypic changes were observed for MIA PaCa-2-passaged viruses, both SUIT-2-passaged VSV-p53wt and VSV-p53-CC showed improved replication in SUIT-2 and AsPC-1, another human PDAC cell line also moderately resistant to VSV, while remaining highly attenuated in nonmalignant cells. Surprisingly, two identical VSV glycoprotein (VSV-G) mutations, K174E and E238K, were identified in both SUIT-2-passaged viruses. Additional experiments indicated that the acquired G mutations improved VSV replication, at least in part due to improved virus attachment to SUIT-2 cells. Importantly, no mutations were found in the M-ΔM51 protein, and no deletions or mutations were found in the p53 or eqFP650 portions of virus-carried transgenes in any of the passaged viruses, demonstrating long-term genomic stability of complex VSV recombinants carrying large transgenes. IMPORTANCE Vesicular stomatitis virus (VSV)-based oncolytic viruses are promising agents against pancreatic ductal adenocarcinoma (PDAC). However, some PDAC cell lines are resistant to VSV. Here, using a directed viral evolution approach, we generated novel oncolytic VSVs with an improved ability to replicate in virus-resistant PDAC cell lines, while remaining highly attenuated in nonmalignant cells. Two independently evolved VSVs obtained 2 identical VSV glycoprotein mutations, K174E and E238K. Additional experiments indicated that these acquired G mutations improved VSV replication, at least in part due to improved virus attachment to SUIT-2 cells. Importantly, no deletions or mutations were found in the virus-carried transgenes in any of the passaged viruses. Our findings demonstrate long-term genomic stability of complex VSV recombinants carrying large transgenes and support further clinical development of oncolytic VSV recombinants as safe therapeutics for cancer.
Collapse
|
13
|
A Novel Chimeric Oncolytic Virus Vector for Improved Safety and Efficacy as a Platform for the Treatment of Hepatocellular Carcinoma. J Virol 2018; 92:JVI.01386-18. [PMID: 30232179 DOI: 10.1128/jvi.01386-18] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022] Open
Abstract
Oncolytic viruses represent an exciting new aspect of the evolving field of cancer immunotherapy. We have engineered a novel hybrid vector comprising vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV), named recombinant VSV-NDV (rVSV-NDV), wherein the VSV backbone is conserved but its glycoprotein has been replaced by the hemagglutinin-neuraminidase (HN) and the modified, hyperfusogenic fusion (F) envelope proteins of recombinant NDV. In comparison to wild-type VSV, which kills cells through a classical cytopathic effect, the recombinant virus is able to induce tumor-specific syncytium formation, allowing efficient cell-to-cell spread of the virus and a rapid onset of immunogenic cell death. Furthermore, the glycoprotein exchange substantially abrogates the off-target effects in brain and liver tissue associated with wild-type VSV, resulting in a markedly enhanced safety profile, even in immune-deficient NOD.CB17-prkdcscid/NCrCrl (NOD-SCID) mice, which are highly susceptible to wild-type VSV. Although NDV causes severe pathogenicity in its natural avian hosts, the incorporation of the envelope proteins in the chimeric rVSV-NDV vector is avirulent in embryonated chicken eggs. Finally, systemic administration of rVSV-NDV in orthotopic hepatocellular carcinoma (HCC)-bearing immune-competent mice resulted in significant survival prolongation. This strategy, therefore, combines the beneficial properties of the rapidly replicating VSV platform with the highly efficient spread and immunogenic cell death of a fusogenic virus without risking the safety and environmental threats associated with either parental vector. Taking the data together, rVSV-NDV represents an attractive vector platform for clinical translation as a safe and effective oncolytic virus.IMPORTANCE The therapeutic efficacy of oncolytic viral therapy often comes as a tradeoff with safety, such that potent vectors are often associated with toxicity, while safer viruses tend to have attenuated therapeutic effects. Despite promising preclinical data, the development of VSV as a clinical agent has been substantially hampered by the fact that severe neurotoxicity and hepatotoxicity have been observed in rodents and nonhuman primates in response to treatment with wild-type VSV. Although NDV has been shown to have an attractive safety profile in humans and to have promising oncolytic effects, its further development has been severely restricted due to the environmental risks that it poses. The hybrid rVSV-NDV vector, therefore, represents an extremely promising vector platform in that it has been rationally designed to be safe, with respect to both the recipient and the environment, while being simultaneously effective, both through its direct oncolytic actions and through induction of immunogenic cell death.
Collapse
|
14
|
Xiao X, Liang J, Huang C, Li K, Xing F, Zhu W, Lin Z, Xu W, Wu G, Zhang J, Lin X, Tan Y, Cai J, Hu J, Chen X, Huang Y, Qin Z, Qiu P, Su X, Chen L, Lin Y, Zhang H, Yan G. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun 2018; 9:4342. [PMID: 30337542 PMCID: PMC6194050 DOI: 10.1038/s41467-018-06771-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/17/2018] [Indexed: 02/05/2023] Open
Abstract
Oncolytic virotherapy is a promising therapeutic strategy that uses replication-competent viruses to selectively destroy malignancies. However, the therapeutic effect of certain oncolytic viruses (OVs) varies among cancer patients. Thus, it is necessary to overcome resistance to OVs through rationally designed combination strategies. Here, through an anticancer drug screening, we show that DNA-dependent protein kinase (DNA-PK) inhibition sensitizes cancer cells to OV M1 and improves therapeutic effects in refractory cancer models in vivo and in patient tumour samples. Infection of M1 virus triggers the transcription of interferons (IFNs) and the activation of the antiviral response, which can be abolished by pretreatment of DNA-PK inhibitor (DNA-PKI), resulting in selectively enhanced replication of OV M1 within malignancies. Furthermore, DNA-PK inhibition promotes the DNA damage response induced by M1 virus, leading to increased tumour cell apoptosis. Together, our study identifies the combination of DNA-PKI and OV M1 as a potential treatment for cancers.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Clinical Medicine, The First Affiliated Hospital, University of South China, Hengyang, 421001, China
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunlong Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Fan Xing
- School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziqing Lin
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Wencang Xu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Guangen Wu
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Jifu Zhang
- Guangzhou Virotech Pharmaceutical Co., Ltd, Guangzhou, 510663, China
| | - Xi Lin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xueqin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Youwei Huang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zixi Qin
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lijun Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Haipeng Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
15
|
Sahu SK, Kumar M. Application of Oncolytic Virus as a Therapy of Cancer. Microb Biotechnol 2018. [DOI: 10.1007/978-981-10-7140-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
16
|
Hummel J, Bienzle D, Morrison A, Cieplak M, Stephenson K, DeLay J, Woods JP, Lichty BD, Bridle BW. Maraba virus-vectored cancer vaccines represent a safe and novel therapeutic option for cats. Sci Rep 2017; 7:15738. [PMID: 29146945 PMCID: PMC5691073 DOI: 10.1038/s41598-017-15992-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
Direct killing of malignant cells combined with induction of tumour-specific immune responses makes oncolytic vaccines attractive for cancer therapy. We previously developed a heterologous cancer immunization strategy that utilized a replication-defective adenovirus-vectored primary vaccine encoding a tumour antigen followed by boosting with a replication-competent Maraba virus expressing the same antigen. To assess the safety of oncolytic Maraba virus-based booster vaccines and inform the design of clinical trials, we conducted translational studies in cats, which have immune systems that are similar to people and spontaneously develop cancers of comparable types and etiologies. A dose of Maraba virus up to 2.5 × 1011 pfu per cat was well-tolerated, with adverse effects limited to mild, transient pyrexia, weight loss, neutropenia, lymphopenia and thrombocytopenia. Maraba viral genomes were present in some urine, stool and most plasma samples up to one week post-infection, but no infectious viruses were recovered. Post-mortem analysis showed one heart, one lung and all spleen samples contained Maraba virus genomes. No replication-competent viruses were recovered from any tissues. Post-mortem histopathological analyses revealed hyperplasia of lymphoid tissues, but no abnormal lesions were attributed to vaccination. This study demonstrated that Maraba virus-vectored cancer vaccines were well-tolerated and supports their use in treating cats.
Collapse
Affiliation(s)
- Jeff Hummel
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- CANSWERS, Clinical Trial Division, Georgetown, Ontario, L7G 5L8, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Annette Morrison
- Central Animal Facility, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michelle Cieplak
- Central Animal Facility, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kyle Stephenson
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Josepha DeLay
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - J Paul Woods
- Department of Clinical Studies, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Brian D Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
17
|
Melzer MK, Lopez-Martinez A, Altomonte J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a "Hammer" and "Anvil". Biomedicines 2017; 5:E8. [PMID: 28536351 PMCID: PMC5423493 DOI: 10.3390/biomedicines5010008] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/17/2022] Open
Abstract
Oncolytic viruses have gained much attention in recent years, due, not only to their ability to selectively replicate in and lyse tumor cells, but to their potential to stimulate antitumor immune responses directed against the tumor. Vesicular stomatitis virus (VSV), a negative-strand RNA virus, is under intense development as an oncolytic virus due to a variety of favorable properties, including its rapid replication kinetics, inherent tumor specificity, and its potential to elicit a broad range of immunomodulatory responses to break immune tolerance in the tumor microenvironment. Based on this powerful platform, a multitude of strategies have been applied to further improve the immune-stimulating potential of VSV and synergize these responses with the direct oncolytic effect. These strategies include: 1. modification of endogenous virus genes to stimulate interferon induction; 2. virus-mediated expression of cytokines or immune-stimulatory molecules to enhance anti-tumor immune responses; 3. vaccination approaches to stimulate adaptive immune responses against a tumor antigen; 4. combination with adoptive immune cell therapy for potentially synergistic therapeutic responses. A summary of these approaches will be presented in this review.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Arturo Lopez-Martinez
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Jennifer Altomonte
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| |
Collapse
|
18
|
Falls T, Roy DG, Bell JC, Bourgeois-Daigneault MC. Murine Tumor Models for Oncolytic Rhabdo-Virotherapy. ILAR J 2017; 57:73-85. [PMID: 27034397 DOI: 10.1093/ilar/ilv048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The preclinical optimization and validation of novel treatments for cancer therapy requires the use of laboratory animals. Although in vitro experiments using tumor cell lines and ex vivo treatment of patient tumor samples provide a remarkable first-line tool for the initial study of tumoricidal potential, tumor-bearing animals remain the primary option to study delivery, efficacy, and safety of therapies in the context of a complete tumor microenvironment and functional immune system. In this review, we will describe the use of murine tumor models for oncolytic virotherapy using vesicular stomatitis virus. We will discuss studies using immunocompetent and immunodeficient models with respect to toxicity and therapeutic treatments, as well as the various techniques and tools available to study cancer therapy with Rhabdoviruses.
Collapse
Affiliation(s)
- Theresa Falls
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Dominic Guy Roy
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - John Cameron Bell
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| | - Marie-Claude Bourgeois-Daigneault
- Theresa Falls is a research technician at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada. Dominic Guy Roy is a Ph.D candidate at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a Ph.D candidate in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. John Cameron Bell is a senior researcher at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and professor in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada. Marie-Claude Bourgeois-Daigneault is a postdoctoral fellow at the Centre for Innovative Cancer Research at Ottawa Hospital Research Institute in Ottawa, Canada, and a postdoctoral fellow in the Biochemistry, Microbiology, and Immunology Department at the University of Ottawa in Ottawa, Canada
| |
Collapse
|
19
|
Fang X, Qi B, Ma Y, Zhou X, Zhang S, Sun T. Assessment of a novel recombinant vesicular stomatitis virus with triple mutations in its matrix protein as a vaccine for pigs. Vaccine 2015; 33:6268-76. [PMID: 26431989 DOI: 10.1016/j.vaccine.2015.09.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 11/29/2022]
Abstract
Vesicular stomatitis virus (VSV) causes a serious vesicular disease responsible for economic losses in the livestock industry. Currently, there are no suitable vaccines to prevent VSV infection. Although the structural matrix (M) protein of VSV has been shown to be a virulence factor in rodent models, its role in the pathogenicity of VSV infection in livestock species is unknown. We hypothesized that VSV with mutations in the M protein represents a novel live attenuated vaccine candidate. To test this, we introduced mutations into VSV M protein using reverse genetics and assessed their attenuation both in vitro and in pigs, an important natural host of VSV. A recombinant VSV with a triple amino acid mutation in M protein (VSVMT) demonstrated a significantly reduced ability to inhibit the type I interferon (IFN) signaling pathway and to shutoff host gene expression compared to WT-VSV and a mutant virus with a single amino acid deletion (VSVΔM51). Inoculation of pigs with VSVMT induced no apparent vesicular lesions but stimulated virus-neutralizing antibodies and animals were protected against virulent VSV challenge infection. These data demonstrate that the M protein is an important virulence factor for VSV in swine and VSVMT represents a novel vaccine candidate for VSV infections in pigs.
Collapse
Affiliation(s)
- Xinkui Fang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Municipal Veterinary Key laboratory, 800 Dongchuan Rd., Shanghai 200240, China
| | - Bing Qi
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Yufang Ma
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Municipal Veterinary Key laboratory, 800 Dongchuan Rd., Shanghai 200240, China
| | - Xinchu Zhou
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Shikuan Zhang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Municipal Veterinary Key laboratory, 800 Dongchuan Rd., Shanghai 200240, China
| | - Tao Sun
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Municipal Veterinary Key laboratory, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
20
|
Abstract
New therapies for metastatic breast cancer patients are urgently needed. The long-term survival rates remain unacceptably low for patients with recurrent disease or disseminated metastases. In addition, existing therapies often cause a variety of debilitating side effects that severely impact quality of life. Oncolytic viruses constitute a developing therapeutic modality in which interest continues to build due to their ability to spare normal tissue while selectively destroying tumor cells. A number of different viruses have been used to develop oncolytic agents for breast cancer, including herpes simplex virus, adenovirus, vaccinia virus, measles virus, reovirus, and others. In general, clinical trials for several cancers have demonstrated excellent safety records and evidence of efficacy. However, the impressive tumor responses often observed in preclinical studies have yet to be realized in the clinic. In order for the promise of oncolytic virotherapy to be fully realized for breast cancer patients, effectiveness must be demonstrated in metastatic disease. This review provides a summary of oncolytic virotherapy strategies being developed to target metastatic breast cancer.
Collapse
Affiliation(s)
| | - Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Hastie E, Cataldi M, Steuerwald N, Grdzelishvili VZ. An unexpected inhibition of antiviral signaling by virus-encoded tumor suppressor p53 in pancreatic cancer cells. Virology 2015; 483:126-40. [PMID: 25965802 DOI: 10.1016/j.virol.2015.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/08/2015] [Accepted: 04/21/2015] [Indexed: 11/17/2022]
Abstract
Virus-encoded tumor suppressor p53 transgene expression has been successfully used in vesicular stomatitis virus (VSV) and other oncolytic viruses (OVs) to enhance their anticancer activities. However, p53 is also known to inhibit virus replication via enhanced type I interferon (IFN) antiviral responses. To examine whether p53 transgenes enhance antiviral signaling in human pancreatic ductal adenocarcinoma (PDAC) cells, we engineered novel VSV recombinants encoding human p53 or the previously described chimeric p53-CC, which contains the coiled-coil (CC) domain from breakpoint cluster region (BCR) protein and evades the dominant-negative activities of endogenously expressed mutant p53. Contrary to an expected enhancement of antiviral signaling by p53, our global analysis of gene expression in PDAC cells showed that both p53 and p53-CC dramatically inhibited type I IFN responses. Our data suggest that this occurs through p53-mediated inhibition of the NF-κB pathway. Importantly, VSV-encoded p53 or p53-CC did not inhibit antiviral signaling in non-malignant human pancreatic ductal cells, which retained their resistance to all tested VSV recombinants. To the best of our knowledge, this is the first report of p53-mediated inhibition of antiviral signaling, and it suggests that OV-encoded p53 can simultaneously produce anticancer activities while assisting, rather than inhibiting, virus replication in cancer cells.
Collapse
Affiliation(s)
- Eric Hastie
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Marcela Cataldi
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nury Steuerwald
- Cannon Research Center, Carolinas Healthcare System, Charlotte, NC, USA
| | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| |
Collapse
|
22
|
STAT3 inhibition reduces toxicity of oncolytic VSV and provides a potentially synergistic combination therapy for hepatocellular carcinoma. Cancer Gene Ther 2015; 22:317-25. [PMID: 25930184 DOI: 10.1038/cgt.2015.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/27/2015] [Accepted: 03/28/2015] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a refractory malignancy with a high mortality and increasing worldwide incidence rates, including the United States and central Europe. In this study, we demonstrate that a specific inhibitor of signal transducer and activator of transcription 3 (STAT3), NSC74859, efficiently reduces HCC cell proliferation and can be successfully combined with oncolytic virotherapy using vesicular stomatitis virus (VSV). The potential benefits of this combination treatment are strengthened by the ability of NSC74859 to protect primary hepatocytes and nervous system cells against virus-induced cytotoxicity, with an elevation of the VSV maximum tolerated dose in mice. Hereby we propose a strategy for improving the current regimen for HCC treatment and seek to further explore the molecular mechanisms underlying selective oncolytic specificity of VSV.
Collapse
|
23
|
Changes in Susceptibility to Oncolytic Vesicular Stomatitis Virus during Progression of Prostate Cancer. J Virol 2015; 89:5250-63. [PMID: 25741004 DOI: 10.1128/jvi.00257-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED A major challenge to oncolytic virus therapy is that individual cancers vary in their sensitivity to oncolytic viruses, even when these cancers arise from the same tissue type. Variability in response may arise due to differences in the initial genetic lesions leading to cancer development. Alternatively, susceptibility to viral oncolysis may change during cancer progression. These hypotheses were tested using cells from a transgenic mouse model of prostate cancer infected with vesicular stomatitis virus (VSV). Primary cultures from murine cancers derived from prostate-specific Pten deletion contained a mixture of cells that were susceptible and resistant to VSV. Castration-resistant cancers contained a higher percentage of susceptible cells than cancers from noncastrated mice. These results indicate both susceptible and resistant cells can evolve within the same tumor. The role of Pten deletion was further investigated using clonal populations of murine prostate epithelial (MPE) progenitor cells and tumor-derived Pten(-/-) cells. Deletion of Pten in MPE progenitor cells using a lentivirus vector resulted in cells that responded poorly to interferon and were susceptible to VSV infection. In contrast, tumor-derived Pten(-/-) cells expressed higher levels of the antiviral transcription factor STAT1, activated STAT1 in response to VSV, and were resistant to VSV infection. These results suggest that early in tumor development following Pten deletion, cells are primarily sensitive to VSV, but subsequent evolution in tumors leads to development of cells that are resistant to VSV infection. Further evolution in castration-resistant tumors leads to tumors in which cells are primarily sensitive to VSV. IMPORTANCE There has been a great deal of progress in the development of replication-competent viruses that kill cancer cells (oncolytic viruses). However, a major problem is that individual cancers vary in their sensitivity to oncolytic viruses, even when these cancers arise from the same tissue type. The experiments presented here were to determine whether both sensitive and resistant cells are present in prostate cancers originating from a single genetic lesion in transgenic mice, prostate-specific deletion of the gene for the tumor suppressor Pten. The results indicate that murine prostate cancers are composed of both cells that are sensitive and cells that are resistant to oncolytic vesicular stomatitis virus (VSV). Furthermore, androgen deprivation led to castration-resistant prostate cancers that were composed primarily of cells that were sensitive to VSV. These results are encouraging for the use of VSV for the treatment of prostate cancers that are resistant to androgen deprivation therapy.
Collapse
|
24
|
Felt SA, Moerdyk-Schauwecker MJ, Grdzelishvili VZ. Induction of apoptosis in pancreatic cancer cells by vesicular stomatitis virus. Virology 2015; 474:163-73. [PMID: 25463614 PMCID: PMC4259820 DOI: 10.1016/j.virol.2014.10.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 02/07/2023]
Abstract
Effective oncolytic virus (OV) therapy is dependent on the ability of replication-competent viruses to kill infected cancer cells. We previously showed that human pancreatic ductal adenocarcinoma (PDAC) cell lines are highly heterogeneous in their permissiveness to vesicular stomatitis virus (VSV), in part due to differences in type I interferon (IFN) signaling. Here, using 10 human PDAC cell lines and three different VSV recombinants (expressing ΔM51 or wild type matrix protein), we examined cellular and viral factors affecting VSV-mediated apoptosis activation in PDACs. In most cell lines, VSVs activated both extrinsic and intrinsic apoptosis pathways, and VSV-ΔM51 primarily activated the type II extrinsic pathway. In cells with defective IFN signaling, all VSV recombinants induced robust apoptosis, whereas VSV-ΔM51 was a more effective apoptosis activator in PDACs with virus-inducible IFN signaling. Three cell lines constitutively expressing high levels of IFN-stimulated genes (ISGs) were resistant to apoptosis under most experimental conditions, even when VSV replication levels were dramatically increased by Jak inhibitor I treatment. Two of these cell lines also poorly activated apoptosis when treated with Fas activating antibody, suggesting a general defect in apoptosis.
Collapse
Affiliation(s)
- Sébastien A Felt
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | - Valery Z Grdzelishvili
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
25
|
Garijo R, Hernández-Alonso P, Rivas C, Diallo JS, Sanjuán R. Experimental evolution of an oncolytic vesicular stomatitis virus with increased selectivity for p53-deficient cells. PLoS One 2014; 9:e102365. [PMID: 25010337 PMCID: PMC4092128 DOI: 10.1371/journal.pone.0102365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 06/18/2014] [Indexed: 12/17/2022] Open
Abstract
Experimental evolution has been used for various biotechnological applications including protein and microbial cell engineering, but less commonly in the field of oncolytic virotherapy. Here, we sought to adapt a rapidly evolving RNA virus to cells deficient for the tumor suppressor gene p53, a hallmark of cancer cells. To achieve this goal, we established four independent evolution lines of the vesicular stomatitis virus (VSV) in p53-knockout mouse embryonic fibroblasts (p53-/- MEFs) under conditions favoring the action of natural selection. We found that some evolved viruses showed increased fitness and cytotoxicity in p53-/- cells but not in isogenic p53+/+ cells, indicating gene-specific adaptation. However, full-length sequencing revealed no obvious or previously described genetic changes associated with oncolytic activity. Half-maximal effective dose (EC50) assays in mouse p53-positive colon cancer (CT26) and p53-deficient breast cancer (4T1) cells indicated that the evolved viruses were more effective against 4T1 cells than the parental virus or a reference oncolytic VSV (MΔ51), but showed no increased efficacy against CT26 cells. In vivo assays using 4T1 syngeneic tumor models showed that one of the evolved lines significantly delayed tumor growth compared to mice treated with the parental virus or untreated controls, and was able to induce transient tumor suppression. Our results show that RNA viruses can be specifically adapted typical cancer features such as p53 inactivation, and illustrate the usefulness of experimental evolution for oncolytic virotherapy.
Collapse
Affiliation(s)
- Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Pablo Hernández-Alonso
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología, Madrid, Spain
- Centro de Investigación en Medicina Molecular (CIMUS) and Instituto de Investigaciones Sanitarias (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, Universidad de Valencia, Valencia, Spain
- Department of Genetics, Universidad de Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
26
|
Aptamer-facilitated Protection of Oncolytic Virus from Neutralizing Antibodies. MOLECULAR THERAPY. NUCLEIC ACIDS 2014; 3:e167. [PMID: 24892725 PMCID: PMC4078759 DOI: 10.1038/mtna.2014.19] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses promise to significantly improve current cancer treatments through their tumor-selective replication and multimodal attack against cancer cells. However, one of the biggest setbacks for oncolytic virus therapy is the intravenous delivery of the virus, as it can be cleared from the bloodstream by neutralizing antibodies before it reaches the tumor cells. We have selected DNA aptamers against an oncolytic virus, vesicular stomatitis virus, using a competitive binding approach, as well as against the antigen binding fragment (Fab) of antivesicular stomatitis virus polyclonal antibodies, in order to shield the virus from nAbs and enhance its in vivo survival. We used flow cytometry to identify these aptamers and evaluated their efficiency to shield vesicular stomatitis virus in a cell-based plaque forming assay. These oligonucleotides were then modified to obtain multivalent binders, which led to a decrease of viral aggregation, an increase in its infectivity and an increase in its stability in serum. The aptamers were also incubated in nondiluted serum, showing their effectiveness under conditions mimicking those in vivo. With this approach, we were able to increase viral infectivity by more than 70% in the presence of neutralizing antibodies. Thus, this method has the potential to enhance the delivery of vesicular stomatitis virus through the bloodstream without compromising the patient's immune system.
Collapse
|
27
|
Abstract
UNLABELLED Because of its very low human seroprevalence, vesicular stomatitis virus (VSV) has promise as a systemic oncolytic agent for human cancer therapy. However, as demonstrated in this report, the VSV infectious titer drops by 4 log units during the first hour of exposure to nonimmune human serum. This neutralization occurs relatively slowly and is mediated by the concerted actions of natural IgM and complement. Maraba virus, whose G protein is about 80% homologous to that of VSV, is relatively resistant to the neutralizing activity of nonimmune human serum. We therefore constructed and rescued a recombinant VSV whose G gene was replaced by the corresponding gene from Maraba virus. Comparison of the parental VSV and VSV with Maraba G substituted revealed nearly identical host range properties and replication kinetics on a panel of tumor cell lines. Moreover, in contrast to the parental VSV, the VSV with Maraba G substituted was resistant to nonimmune human serum. Overall, our data suggest that VSV with Maraba G substituted should be further investigated as a candidate for human systemic oncolytic virotherapy applications. IMPORTANCE Oncolytic virotherapy is a promising approach for the treatment of disseminated cancers, but antibody neutralization of circulating oncolytic virus particles remains a formidable barrier. In this work, we developed a pseudotyped vesicular stomatitis virus (VSV) with a glycoprotein of Maraba virus, a closely related but serologically distinct member of the family Rhabdoviridae, which demonstrated greatly diminished susceptibility to both nonimmune and VSV-immune serum neutralization. VSV with Maraba G substituted or lentiviral vectors should therefore be further investigated as candidates for human systemic oncolytic virotherapy and gene therapy applications.
Collapse
|
28
|
Yarde DN, Naik S, Nace RA, Peng KW, Federspiel MJ, Russell SJ. Meningeal myeloma deposits adversely impact the therapeutic index of an oncolytic VSV. Cancer Gene Ther 2013; 20:616-21. [PMID: 24176894 PMCID: PMC3855306 DOI: 10.1038/cgt.2013.63] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
Abstract
Vesicular stomatitis virus (VSV) is neuropathogenic in rodents but can be attenuated 50-fold by engineering the mouse interferon-beta (IFN-β) gene into its genome. Intravenously administered VSVs encoding IFN-β have potent activity against subcutaneous tumors in the 5TGM1 mouse myeloma model, without attendant neurotoxicity. However, when 5TGM1 tumor cells were seeded intravenously, virus-treated mice with advanced myeloma developed clinical signs suggestive of meningoencephalitis. Co-administration of a known active antimyeloma agent did not prolong survival, further suggesting that deaths were due to viral toxicity, not tumor burden. Histological analysis revealed that systemically administered 5TGM1 cells seed to the CNS, forming meningeal tumor deposits, and that VSV infects and destroys these tumors. Death is presumably a consequence of meningeal damage and/or direct transmission of virus to adjacent neural tissue. In light of these studies, extreme caution is warranted in clinical testing of attenuated VSVs, particularly in patients with CNS tumor deposits.
Collapse
Affiliation(s)
| | - Shruthi Naik
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rebecca A. Nace
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota
| | | | | |
Collapse
|
29
|
Antifibrotic properties of transarterial oncolytic VSV therapy for hepatocellular carcinoma in rats with thioacetamide-induced liver fibrosis. Mol Ther 2013; 21:2032-42. [PMID: 23939023 DOI: 10.1038/mt.2013.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 07/25/2013] [Indexed: 01/18/2023] Open
Abstract
Recombinant vesicular stomatitis virus (VSV) shows promise for the treatment of hepatocellular carcinoma (HCC), but its safety and efficacy when administered in a setting of hepatic fibrosis, which occurs in the majority of clinical cases, is unknown. We hypothesized that VSV could provide a novel benefit to the underlying fibrosis, due to its ability to replicate and cause cell death specifically in activated hepatic stellate cells. In addition to the ability of VSV to produce a significant oncolytic response in HCC-bearing rats in the background of thioacetamide-induced hepatic fibrosis without signs of hepatotoxicity, we observed a significant downgrading of fibrosis stage, a decrease in collagen content in the liver, and modulation of gene expression in favor of fibrotic regression. Together, this work suggests that VSV is not only safe and effective for the treatment of HCC with underlying fibrosis, but it could potentially be developed for clinical application as a novel antifibrotic agent.
Collapse
|
30
|
Batenchuk C, Le Boeuf F, Stubbert L, Falls T, Atkins HL, Bell JC, Conrad DP. Non-replicating rhabdovirus-derived particles (NRRPs) eradicate acute leukemia by direct cytolysis and induction of antitumor immunity. Blood Cancer J 2013; 3:e123. [PMID: 23852158 PMCID: PMC3730201 DOI: 10.1038/bcj.2013.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 02/06/2023] Open
Abstract
Rhabdoviruses (RVs) are currently being pursued as anticancer therapeutics for various tumor types, notably leukemia. However, modest virion production and limited spread between noncontiguous circulating leukemic cells requires high-dose administration of RVs, which exceeds the maximum tolerable dose of the live virus. Furthermore, in severely immunosuppressed leukemic patients, the potential for uncontrolled live virus spread may compromise the safety of a live virus approach. We hypothesized that the barriers to oncolytic virotherapy in liquid tumors may be overcome by administration of high-dose non-replicating RVs. We have developed a method to produce unique high-titer bioactive yet non-replicating rhabdovirus-derived particles (NRRPs). This novel biopharmaceutical is multimodal possessing direct cytolytic and immunomodulatory activity against acute leukemia. We demonstrate that NRRP resistance in normal cells is mediated by intact antiviral defences including interferon (IFN). This data was substantiated using murine models of blast crisis. The translational promise of NRRPs was demonstrated in clinical samples obtained from patients with high-burden multidrug-resistant acute myeloid leukemia. This is the first successful attempt to eradicate disseminated cancer using a non-replicating virus-derived agent, representing a paradigm shift in our understanding of oncolytic virus-based therapies and their application toward the treatment of acute leukemia.
Collapse
Affiliation(s)
- C Batenchuk
- 1] Center for Cancer Therapeutics, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada [2] Department of Biochemistry, Immunology and Microbiology, University of Ottawa, Ottawa, Ontario, Canada [3] Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Eisenstein S, Coakley BA, Briley-Saebo K, Ma G, Chen HM, Meseck M, Ward S, Divino C, Woo S, Chen SH, Pan PY. Myeloid-derived suppressor cells as a vehicle for tumor-specific oncolytic viral therapy. Cancer Res 2013; 73:5003-15. [PMID: 23536556 DOI: 10.1158/0008-5472.can-12-1597] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the several impediments to effective oncolytic virus therapy of cancer remains a lack of tumor-specific targeting. Myeloid-derived suppressor cells (MDSC) are immature myeloid cells induced by tumor factors in tumor-bearing hosts. The biodistribution kinetics of MDSC and other immune cell types in a murine hepatic colon cancer model was investigated through the use of tracking markers and MRI. MDSCs were superior to other immune cell types in preferential migration to tumors in comparison with other tissues. On the basis of this observation, we engineered a strain of vesicular stomatitis virus (VSV), an oncolytic rhabdovirus that bound MDSCs and used them as a delivery vehicle. Improving VSV-binding efficiency to MDSCs extended the long-term survival of mice bearing metastatic colon tumors compared with systemic administration of wild-type VSV alone. Survival was further extended by multiple injections of the engineered virus without significant toxicity. Notably, direct tumor killing was accentuated by promoting MDSC differentiation towards the classically activated M1-like phenotype. Our results offer a preclinical proof-of-concept for using MDSCs to facilitate and enhance the tumor-killing activity of tumor-targeted oncolytic therapeutics.
Collapse
Affiliation(s)
- Samuel Eisenstein
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Neuroattenuation of vesicular stomatitis virus through picornaviral internal ribosome entry sites. J Virol 2013; 87:3217-28. [PMID: 23283963 DOI: 10.1128/jvi.02984-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.
Collapse
|
33
|
Moerdyk-Schauwecker M, Shah NR, Murphy AM, Hastie E, Mukherjee P, Grdzelishvili VZ. Resistance of pancreatic cancer cells to oncolytic vesicular stomatitis virus: role of type I interferon signaling. Virology 2012; 436:221-34. [PMID: 23246628 DOI: 10.1016/j.virol.2012.11.014] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/08/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
Oncolytic virus (OV) therapy takes advantage of common cancer characteristics, such as defective type I interferon (IFN) signaling, to preferentially infect and kill cancer cells with viruses. Our recent study (Murphy et al., 2012. J. Virol. 86, 3073-87) found human pancreatic ductal adenocarcinoma (PDA) cells were highly heterogeneous in their permissiveness to vesicular stomatitis virus (VSV) and suggested at least some resistant cell lines retained functional type I IFN responses. Here we examine cellular responses to infection by the oncolytic VSV recombinant VSV-ΔM51-GFP by analyzing a panel of 11 human PDA cell lines for expression of 33 genes associated with type I IFN pathways. Although all cell lines sensed infection by VSV-ΔM51-GFP and most activated IFN-α and β expression, only resistant cell lines displayed constitutive high-level expression of the IFN-stimulated antiviral genes MxA and OAS. Inhibition of JAK/STAT signaling decreased levels of MxA and OAS and increased VSV infection, replication and oncolysis, further implicating IFN responses in resistance. Unlike VSV, vaccinia and herpes simplex virus infectivity and killing of PDA cells was independent of the type I IFN signaling profile, possibly because these two viruses are better equipped to evade type I IFN responses. Our study demonstrates heterogeneity in the type I IFN signaling status of PDA cells and suggests MxA and OAS as potential biomarkers for PDA resistance to VSV and other OVs sensitive to type I IFN responses.
Collapse
|
34
|
Vesicular stomatitis virus as an oncolytic agent against pancreatic ductal adenocarcinoma. J Virol 2012; 86:3073-87. [PMID: 22238308 DOI: 10.1128/jvi.05640-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is a promising oncolytic agent against a variety of cancers. However, it has never been tested in any pancreatic cancer model. Pancreatic ductal adenocarcinoma (PDA) is the most common and aggressive form of pancreatic cancer. In this study, the oncolytic potentials of several VSV variants were analyzed in a panel of 13 clinically relevant human PDA cell lines and compared to conditionally replicative adenoviruses (CRAds), Sendai virus and respiratory syncytial virus. VSV variants showed oncolytic abilities superior to those of other viruses, and some cell lines that exhibited resistance to other viruses were successfully killed by VSV. However, PDA cells were highly heterogeneous in their susceptibility to virus-induced oncolysis, and several cell lines were resistant to all tested viruses. Resistant cells showed low levels of very early VSV RNA synthesis, indicating possible defects at initial stages of infection. In addition, unlike permissive PDA cell lines, most of the resistant cell lines were able to both produce and respond to interferon, suggesting that intact type I interferon responses contributed to their resistance phenotype. Four cell lines that varied in their permissiveness to VSV-ΔM51 and CRAd dl1520 were tested in mice, and the in vivo results closely mimicked those in vitro. While our results demonstrate that VSV is a promising oncolytic agent against PDA, further studies are needed to better understand the molecular mechanisms of resistance of some PDAs to oncolytic virotherapy.
Collapse
|
35
|
Fang X, Zhang S, Sun X, Li J, Sun T. Evaluation of attenuated VSVs with mutated M or/and G proteins as vaccine vectors. Vaccine 2012; 30:1313-21. [PMID: 22222871 PMCID: PMC7126045 DOI: 10.1016/j.vaccine.2011.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/07/2011] [Accepted: 12/16/2011] [Indexed: 11/26/2022]
Abstract
Vesicular stomatitis virus (VSV) is a promising vector for vaccine and oncolysis, but it can also produce acute diseases in cattle, horses, and swine characterized by vesiculation and ulceration of the tongue, oral tissues, feet, and teats. In experimental animals (primates, rats, and mice), VSV has been shown to lead to neurotoxicities, such as hind limb paralysis. The virus matrix protein (M) and glycoprotein (G) are both major pathogenic determinants of wild-type VSV and have been the major targets for the production of attenuated strains. Existing strategies for attenuation included: (1) deletion or M51R substitution in the M protein (VSVΔM51 or VSVM51R, respectively); (2) truncation of the C-terminus of the G protein (GΔ28). Despite these mutations, recombinant VSV with mutated M protein is only moderately attenuated in animals, whereas there are no detailed reports to determine the pathogenicity of recombinant VSV with truncated G protein at high dose. Thus, a novel recombinant VSV (VSVΔM51-GΔ28) as well as other attenuated VSVs (VSVΔM51, VSV-GΔ28) were produced to determine their efficacy as vaccine vectors with low pathogenicity. In vitro studies indicated that truncated G protein (GΔ28) could play a more important role than deletion of M51 (ΔM51) for attenuation of recombinant VSV. VSVΔM51-GΔ28 was determined to be the most attenuated virus with low pathogenicity in mice, with VSV-GΔ28 also showing relatively reduced pathogenicity. Further, neutralizing antibodies stimulated by VSV-GΔ28 proved to be significantly higher than in mice treated with VSVΔM51-GΔ28. In conclusion, among different attenuated VSVs with mutated M and/or G proteins, recombinant VSV with only truncated G protein (VSV-GΔ28) demonstrated ideal balance between pathogenesis and stimulating a protective immune response. These properties make VSV-GΔ28 a promising vaccine vector and vaccine candidate for preventing vesicular stomatitis disease.
Collapse
Affiliation(s)
- Xinkui Fang
- School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Rd., Shanghai 200240, China
| | | | | | | | | |
Collapse
|
36
|
Expressing human interleukin-15 from oncolytic vesicular stomatitis virus improves survival in a murine metastatic colon adenocarcinoma model through the enhancement of anti-tumor immunity. Cancer Gene Ther 2011; 19:238-46. [PMID: 22158521 DOI: 10.1038/cgt.2011.81] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we sought to enhance the potency of an oncolytic virus, vesicular stomatitis virus (VSV), by inserting a transgene encoding a highly secreted version of human interleukin-15 (IL-15). IL-15 has shown promise as an immunotherapeutic cytokine, as it is able to enhance both natural killer (NK) and T-cell responses, but it has not yet been tested as a therapeutic transgene in the context of viral oncolysis. The transgene was modified to ensure enhanced secretion of IL-15 from infected cells, leading to strong localized expression from infected CT-26 tumors in vivo. This localized expression in the tumor microenvironment led to a clear enhancement to anti-tumoral T-cell responses and enhanced survival, while additional IL-15 administration systemically failed to further enhance the therapy. Overall, the transient localized expression of IL-15 in the tumour by an oncolytic virus was able to induce stronger anti-tumoral immunity in a murine model of colon carcinoma.
Collapse
|
37
|
VSV-MP gene therapy strategy inhibits tumor growth in nude mice model of human lung adenocarcinoma. Cancer Gene Ther 2011; 19:101-9. [DOI: 10.1038/cgt.2011.71] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Heiber JF, Xu XX, Barber GN. Potential of vesicular stomatitis virus as an oncolytic therapy for recurrent and drug-resistant ovarian cancer. CHINESE JOURNAL OF CANCER 2011; 30:805-14. [PMID: 22059911 PMCID: PMC4013328 DOI: 10.5732/cjc.011.10205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the last decade, we have gained significant understanding of the mechanism by which vesicular stomatitis virus (VSV) specifically kills cancer cells. Dysregulation of translation and defective innate immunity are both thought to contribute to VSV oncolysis. Safety and efficacy are important objectives to consider in evaluating VSV as a therapy for malignant disease. Ongoing efforts may enable VSV virotherapy to be considered in the near future to treat drug-resistant ovarian cancer when other options have been exhausted. In this article, we review the development of VSV as a potential therapeutic approach for recurrent or drug-resistant ovarian cancer.
Collapse
Affiliation(s)
- Joshua F Heiber
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
39
|
Hartkopf AD, Fehm T, Wallwiener D, Lauer UM. Oncolytic virotherapy of breast cancer. Gynecol Oncol 2011; 123:164-71. [PMID: 21764108 DOI: 10.1016/j.ygyno.2011.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 06/13/2011] [Accepted: 06/15/2011] [Indexed: 01/02/2023]
Abstract
The use of replication competent viruses that selectively target and destroy cancer cells has rapidly evolved over the past decade and numerous innovative oncolytic viruses have been created. Many of these promising anti-cancer agents have recently entered into clinical trials (including those on breast cancer) and demonstrated encouraging safety and efficacy. Virotherapeutic strategies are thus of considerable interest to combat breast cancer in both (i) the primary disease situation in which relapse should be avoided as good as possible and (ii) in the metastatic situation which remains incurable to date. Here, we summarize data from preclinical and clinical trials using oncolytic virotherapy to treat breast cancer. This includes strategies to specifically target breast cancer cells, to arm oncolytic viruses with additional therapeutic transgenes and an outlining of future challenges when translating these promising therapeutics "from bench to bedside".
Collapse
Affiliation(s)
- Andreas D Hartkopf
- Department of Obstetrics and Gynecology, University Clinic of Tuebingen, Tuebingen, Germany.
| | | | | | | |
Collapse
|
40
|
Samuel S, Tumilasci VF, Oliere S, Nguyên TLA, Shamy A, Bell J, Hiscott J. VSV oncolysis in combination with the BCL-2 inhibitor obatoclax overcomes apoptosis resistance in chronic lymphocytic leukemia. Mol Ther 2010; 18:2094-103. [PMID: 20842105 DOI: 10.1038/mt.2010.188] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In chronic lymphocytic leukemia (CLL), overexpression of antiapoptotic B-cell leukemia/lymphoma 2 (BCL-2) family members contributes to leukemogenesis by interfering with apoptosis; BCL-2 expression also impairs vesicular stomatitis virus (VSV)-mediated oncolysis of primary CLL cells. In the effort to reverse resistance to VSV-mediated oncolysis, we combined VSV with obatoclax (GX15-070)-a small-molecule BCL-2 inhibitor currently in phase 2 clinical trials-and examined the molecular mechanisms governing the in vitro and in vivo antitumor efficiency of combining the two agents. In combination with VSV, obatoclax synergistically induced cell death in primary CLL samples and reduced tumor growth in severe combined immunodeficient (SCID) mice-bearing A20 lymphoma tumors. Mechanistically, the combination stimulated the mitochondrial apoptotic pathway, as reflected by caspase-3 and -9 cleavage, cytochrome c release and BAX translocation. Combination treatment triggered the release of BAX from BCL-2 and myeloid cell leukemia-1 (MCL-1) from BAK, whereas VSV infection induced NOXA expression and increased the formation of a novel BAX-NOXA heterodimer. Finally, NOXA was identified as an important inducer of VSV-obatoclax driven apoptosis via knockdown and overexpression of NOXA. These studies offer insight into the synergy between small-molecule BCL-2 inhibitors such as obatoclax and VSV as a combination strategy to overcome apoptosis resistance in CLL.
Collapse
Affiliation(s)
- Sara Samuel
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Susceptibility of breast cancer cells to an oncolytic matrix (M) protein mutant of vesicular stomatitis virus. Cancer Gene Ther 2010; 17:883-92. [PMID: 20725101 DOI: 10.1038/cgt.2010.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix (M) protein mutants of vesicular stomatitis virus (VSV), such as rM51R-M virus, are attractive candidates as oncolytic viruses for tumor therapies because of their capacity to selectively target cancer cells. The effectiveness of rM51R-M virus as an antitumor agent for the treatment of breast cancer was assessed by determining the ability of rM51R-M virus to infect and kill breast cancer cells in vitro and in vivo. Several human- and mouse-derived breast cancer cell lines were susceptible to infection and killing by rM51R-M virus. Importantly, non-tumorigenic cell lines from normal mammary tissues were also sensitive to VSV infection suggesting that oncogenic transformation does not alter the susceptibility of breast cancer cells to oncolytic VSV. In contrast to results obtained in vitro, rM51R-M virus was only partially effective at inducing regression of primary breast tumors in vivo. Furthermore, we were unable to induce complete regression of the primary and metastatic tumors when tumor-bearing mice were treated with a vector expressing interleukin (IL)-12 or a combination of rM51R-M virus and IL-12. Our results indicate that although breast cancer cells may be susceptible to VSV in vitro, more aggressive treatment combinations are required to effectively treat both local and metastatic breast cancers in vivo.
Collapse
|
42
|
Galivo F, Diaz RM, Thanarajasingam U, Jevremovic D, Wongthida P, Thompson J, Kottke T, Barber GN, Melcher A, Vile RG. Interference of CD40L-mediated tumor immunotherapy by oncolytic vesicular stomatitis virus. Hum Gene Ther 2010; 21:439-50. [PMID: 19922169 DOI: 10.1089/hum.2009.143] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oncolytic virotherapy can be achieved in two ways: (1) by exploiting an innate ability of certain viruses to selectively replicate in tumor tissues, and (2) by using viruses to deliver toxic or immunostimulatory genes to tumors. Vesicular stomatitis virus (VSV) selectively replicates in tumors lacking adequate type I interferon response. The efficacy of oncolytic virotherapy using VSV against B16 melanomas in C57BL/6 mice is dependent on CD8(+) T and natural killer cells. Because immunotherapies that prime specific CD8(+) T cells against melanocyte/melanoma antigens can generate significant therapeutic responses, we hypothesized that engineering VSV to express the potent T cell costimulatory molecule CD40 ligand (VSV-CD40L) would enhance virotherapy with concomitant priming of melanoma-specific T cells. However, we observed no difference in antitumor efficacy between the parental VSV-GFP and VSV-CD40L. In contrast, intratumoral injection of a replication-defective adenovirus expressing CD40L (Ad-CD40L) consistently produced significantly greater therapy than either replication-competent VSV-GFP or VSV-CD40L. The Ad-CD40L-mediated tumor regressions were associated with specific T cell responses against tumor-associated antigens (TAAs), which took several days to develop, whereas VSV-CD40L rapidly induced high levels of T cell activation without specificity for TAAs. These data suggest that the high levels of VSV-associated immunogenicity distracted immune responses away from priming of tumor-specific T cells, even in the presence of potent costimulatory signals. In contrast, a replication-defective Ad-CD40L allowed significant priming of T cells directed against TAAs. These observations suggest that an efficiently primed antitumor T cell response can produce similar, if not better, therapy against an established melanoma compared with intratumoral injection of a replication-competent oncolytic virus.
Collapse
Affiliation(s)
- Feorillo Galivo
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Marozin S, De Toni EN, Rizzani A, Altomonte J, Junger A, Schneider G, Thasler WE, Kato N, Schmid RM, Ebert O. Cell cycle progression or translation control is not essential for vesicular stomatitis virus oncolysis of hepatocellular carcinoma. PLoS One 2010; 5:e10988. [PMID: 20539760 PMCID: PMC2881869 DOI: 10.1371/journal.pone.0010988] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 05/10/2010] [Indexed: 12/24/2022] Open
Abstract
The intrinsic oncolytic specificity of vesicular stomatitis virus (VSV) is currently being exploited to develop alternative therapeutic strategies for hepatocellular carcinoma (HCC). Identifying key regulators in diverse transduction pathways that define VSV oncolysis in cancer cells represents a fundamental prerequisite to engineering more effective oncolytic viral vectors and adjusting combination therapies. After having identified defects in the signalling cascade of type I interferon induction, responsible for attenuated antiviral responses in human HCC cell lines, we have now investigated the role of cell proliferation and translation initiation. Cell cycle progression and translation initiation factors eIF4E and eIF2Bε have been recently identified as key regulators of VSV permissiveness in T-lymphocytes and immortalized mouse embryonic fibroblasts, respectively. Here, we show that in HCC, decrease of cell proliferation by cell cycle inhibitors or siRNA-mediated reduction of G(1) cyclin-dependent kinase activities (CDK4) or cyclin D1 protein expression, do not significantly alter viral growth. Additionally, we demonstrate that translation initiation factors eIF4E and eIF2Bε are negligible in sustaining VSV replication in HCC. Taken together, these results indicate that cellular proliferation and the initiation phase of cellular protein synthesis are not essential for successful VSV oncolysis of HCC. Moreover, our observations indicate the importance of cell-type specificity for VSV oncolysis, an important aspect to be considered in virotherapy applications in the future.
Collapse
Affiliation(s)
- Sabrina Marozin
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Enrico N. De Toni
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Antonia Rizzani
- Medizinische Klinik und Poliklinik II, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Jennifer Altomonte
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alexandra Junger
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Günter Schneider
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Wolfgang E. Thasler
- Chirurgische Klinik und Poliklinik, Klinikum Großhadern, University of Munich, Munich, Germany
| | - Nobuyuki Kato
- Department of Molecular Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Roland M. Schmid
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Oliver Ebert
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
44
|
Miller JM, Bidula SM, Jensen TM, Reiss CS. Vesicular stomatitis virus modified with single chain IL-23 exhibits oncolytic activity against tumor cells in vitro and in vivo. ACTA ACUST UNITED AC 2010; 2010:63-72. [PMID: 20556219 DOI: 10.2147/ijicmr.s9528] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Viruses are potentially attractive agents for development as novel oncolytic agents. Reverse genetic approaches allow for the attenuation of candidate viruses and can enhance their ability to exploit inherent cellular and molecular properties of tumors, including deficiencies in interferon (IFN) signaling. Vesicular stomatitis virus (VSV) is a promising oncolytic agent for exactly these reasons. VSV infection of immunocompetent mice is usually rapidly cleared due to the virus' sensitivity to type I IFN responses. However, in tumors that are unable to activate the IFN response, VSV is able to replicate without inhibition, resulting in cell destruction. Unfortunately, when VSV is introduced into mice intranasally or systemically via therapeutic doses into tumor-bearing rodents, hosts may develop fatal encephalitis. We have previously found that a recombinant VSV expressing the pro-inflammatory cytokine interleukin-23 (IL-23) is significantly attenuated in the central nervous system (CNS). As a result of this, we hypothesized that attenuation in the CNS is partially a result of enhanced NO response as a result of IL-23 signaling. Infection of the CNS with this virus (designated VSV23) is characterized by decreased viral replication, morbidity, and mortality. We have now extended those studies which reveal that VSV23 maintains oncolytic capacity in vitro in multiple cell lines including NB41A3 neuroblastomas, L929 adipose-derived cells, immortalized BHK-21 cells, and the murine mammary derived JC cells. Additionally, in vivo VSV23 infection results in JC tumor destruction and induces enhanced memory responses against tumor cells.
Collapse
Affiliation(s)
- James M Miller
- Department of Biology, New York University, New York, NY, USA
| | | | | | | |
Collapse
|
45
|
Luo S, Chen P, Luo ZC, Zhang P, Sun P, Shi W, Li ZY, Zhang XL, Wang LQ, Chen X, Wei YQ, Wen YJ. Combination of vesicular stomatitis virus matrix protein gene therapy with low-dose cisplatin improves therapeutic efficacy against murine melonoma. Cancer Sci 2010; 101:1219-25. [PMID: 20331624 PMCID: PMC11159948 DOI: 10.1111/j.1349-7006.2010.01507.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vesicular stomatitis virus (VSV) matrix protein (MP) can directly induce apoptosis via the mitochondrial pathway due to the inhibition of host gene expression. Our previous studies have demonstrated that MP gene therapy efficiently suppressed the growth of malignant tumor in vitro and in vivo. The present study was designed to determine the possibility that the combination of MP gene therapy with low-dose cisplatin would improve therapeutic efficacy against murine melanoma. Immunocompetent C57BL/6 mice bearing B16-F10 melanoma were established. Mice were treated once every 5 days with i.v. administration of 10 microg pVAX-MP/30 microg liposome complex per mouse for 16 days and i.p. delivery of cisplatin at 4 mg/kg/mouse on days 6 and 12 after the initiation of MP treatment. We found that MP + cisplatin treatment resulted in significant inhibition of tumor growth and improved the survival time of melanoma-bearing mice. MP successfully inhibited angiogenesis as assessed by CD31. Histological examination revealed that the combination therapy led to significant increased induction of apoptosis, tumor necrosis, and elevated CD8(+) lymphocyte infiltration. Furthermore, the induction efficacy of the CTL response was dramatically enhanced by the combination therapy. Our findings may prove useful in further explorations of the application of these combinational approaches to the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Shan Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Saloura V, Wang LCS, Fridlender ZG, Sun J, Cheng G, Kapoor V, Sterman DH, Harty RN, Okumura A, Barber GN, Vile RG, Federspiel MJ, Russell SJ, Litzky L, Albelda SM. Evaluation of an attenuated vesicular stomatitis virus vector expressing interferon-beta for use in malignant pleural mesothelioma: heterogeneity in interferon responsiveness defines potential efficacy. Hum Gene Ther 2010; 21:51-64. [PMID: 19715403 DOI: 10.1089/hum.2009.088] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract Vesicular stomatitis virus (VSV) has shown promise as an oncolytic agent, although unmodified VSV can be neurotoxic. To avoid toxicity, a vector was created by introducing the interferon-beta (IFN-beta) gene (VSV.IFN-beta). We conducted this study to determine the ability of VSV.IFN-beta to lyse human cancer (mesothelioma) cells and to evaluate the potential of this recombinant virus for clinical translation. Four normal human mesothelial and 12 mesothelioma cell lines were tested for their susceptibility to VSV vectors in vitro. VSV.hIFN-beta did not cause cytotoxicity in any normal lines. Only 4 of 12 lines were effectively lysed by VSV.hIFN-beta. In the eight resistant lines, pretreatment with IFN-beta prevented lysis of cells by VSV.GFP, and VSV infection or addition of IFN-beta protein resulted in the upregulation of double-stranded RNA-dependent protein kinase (PKR), myxovirus resistance A (MxA), and 2',5'-oligo-adenylate-synthetase (2'5'-OAS) mRNA. In the susceptible lines, there was no protection by pretreatment with IFN-beta protein and no IFN- or VSV-induced changes in PKR, MxA, and 2'5'-OAS mRNA. This complete lack of IFN responsiveness could be explained by marked downregulation of interferon alpha receptors (IFNARs), p48, and PKR in both the mesothelioma cell lines and primary tumor biopsies screened. Presence of p48 in three tumor samples predicted responsiveness to IFN. Our data indicate that many mesothelioma tumors have partially intact IFN pathways that may affect the efficacy of oncolytic virotherapy. However, it may be feasible to prescreen individual susceptibility to VSV.IFN-beta by immunostaining for the presence of p48 protein.
Collapse
Affiliation(s)
- Vassiliki Saloura
- Thoracic Oncology Research Laboratory, University of Pennsylvania Medical Center , Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Enhanced oncolytic activity of vesicular stomatitis virus encoding SV5-F protein against prostate cancer. J Urol 2010; 183:1611-8. [PMID: 20172545 DOI: 10.1016/j.juro.2009.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Indexed: 11/21/2022]
Abstract
PURPOSE Vesicular stomatitis virus has been investigated as an oncolytic agent for cancer therapy because it preferentially replicates in tumor but not in normal cells due to the lack of a robust interferon antiviral system in transformed cells. However, wild-type vesicular stomatitis virus can induce a strong systemic immunological response and replicate in the central nervous system, potentially limiting its clinical usefulness. We report the construction of the recombinant, replication restricted vesicular stomatitis virus encoding SV5-F, which can induce syncytial formation with enhanced oncolytic properties against TRAMP-C2 tumors in an immunocompetent mouse model of prostate cancer. MATERIALS AND METHODS We constructed the SV5-F recombinant restricted virus vector by replacing the vesicular stomatitis virus G gene with that of the SV5-F transgene to generate rVSV-DeltaG-SV5-F. Morphological changes and DNA fragmentation induced by rVSV-DeltaG-GFP or rVSV-DeltaG-SV5-F were determined by phase contrast microscopy and gel electrophoresis. In vitro cytotoxicity by recombinant vesicular stomatitis virus was done by MTT assay. In vivo study of rVSV treatment was done in immunocompetent mice by subcutaneous administration of TRAMP-C2 cells. RESULTS In vitro characterization of the recombinant fusogenic VSV-DeltaG vector on TRAMP-C2 cells showed significantly enhanced apoptotic and cytotoxic effects relative to a similar virus encoding green fluorescent protein, that is rVSV-DeltaG-GFP. Regardless of initial tumor size intratumor rVSV-DeltaG-SV5-F administration in mice bearing subcutaneous TRAMP-C2 tumors resulted in a significantly reduced tumor load over that of the nonfusogenic green fluorescent control virus and of heat inactivated recombinant vesicular stomatitis virus in treated animals (p <0.01). CONCLUSIONS Results show that G complemented recombinant VSV-DeltaG vectors, especially rVSV-DeltaG-SV5-F, are an effective oncolytic agent against mouse prostate cancer cells in vitro and in an in vivo immunocompetent mouse model system.
Collapse
|
48
|
Single-cycle viral gene expression, rather than progressive replication and oncolysis, is required for VSV therapy of B16 melanoma. Gene Ther 2009; 17:158-70. [PMID: 20016540 PMCID: PMC3934361 DOI: 10.1038/gt.2009.161] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A fully intact immune system would be expected to hinder the efficacy of oncolytic virotherapy by inhibiting viral replication. Simultaneously, however, it may also enhance antitumor therapy through initiation of proinflammatory, antiviral cytokine responses at the tumor site. The aim of this study was to investigate the role of a fully intact immune system on the antitumor efficacy of an oncolytic virus. In this respect, injection of oncolytic vesicular stomatitis virus (VSV) into subcutaneous B16ova melanomas in C57Bl/6 mice leads to tumor regression, but it is not associated with viral replicative burst in the tumor. In contrast, intratumoral delivery of VSV induces an acute proinflammatory reaction, which quickly resolves concomitantly with virus clearance. Consistent with the hypothesis that therapy may not be dependent on the ability of VSV to undergo progressive rounds of replication, a single-cycle VSV is equally effective as a fully replication-competent VSV, whereas inactivated viruses do not generate therapy. Even though therapy is dependent on host CD8+ and natural killer cells, these effects are not associated with interferon-gamma-dependent responses against either the virus or tumor. There is, however, a strong correlation between viral gene expression, induction of proinflammatory reaction in the tumor and in vivo therapy. Overall, our results suggest that acute innate antiviral immune response, which rapidly clears VSV from B16ova tumors, is associated with the therapy observed in this model. Therefore, the antiviral immune response to an oncolytic virus mediates an intricate balance between safety, restriction of oncolysis and, potentially, significant immune-mediated antitumor therapy.
Collapse
|
49
|
Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther 2009; 9:1163-76. [PMID: 19637971 DOI: 10.1517/14712590903170653] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The use of oncolytic viruses for treatment of cancer marks a significant alteration in the battle between host and virus. Viruses are confronted by cellular innate immune responses and contain an armamentarium of immunomodulatory proteins that suppress innate immunity. Tumorigenesis can result in impairment of innate immune responses. Viruses engineered to be vulnerable to normal responses may mediate tumor-specific killing with minimal off-target toxicity. OBJECTIVE To examine the mechanisms by which mammalian cells respond to viral infections in normal versus cancer cells and how viruses overcome these responses and to illustrate how this knowledge is used to develop physiologically targeted oncolytic viruses. METHODS Literature describing studies investigating innate responses to virus infections, cancer-specific molecular defects, immunosuppressive viral products and design of oncolytic viruses is extensively reviewed, and pertinent concepts are distilled and developed. RESULTS/CONCLUSION Innate responses to viral infections are complex involving i) viral detection; ii) induction of interferon and other cytokines; and iii) establishment of an antiviral state. Oncolytic viruses are engineered to be susceptible to antiviral responses in normal cells. Cancers can be partially vulnerable to these viruses because they have defective antiviral responses but the antitumor potency of physiologically targeted viruses may be significantly diminished.
Collapse
Affiliation(s)
- Shruthi Naik
- Mayo Clinic, Department of molecular medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
50
|
Miller J, Bidula SM, Jensen TM, Reiss CS. Cytokine-modified VSV is attenuated for neural pathology, but is both highly immunogenic and oncolytic. INTERNATIONAL JOURNAL OF INTERFERON, CYTOKINE AND MEDIATOR RESEARCH 2009; 1:15-32. [PMID: 20607123 PMCID: PMC2895263 DOI: 10.2147/ijicmr.s6776] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vesicular stomatitis virus (VSV), an enveloped, nonsegmented, negative-stranded RNA virus, is being tested by several laboratories as an antitumor agent. Unfortunately, viral infection of the central nervous system (CNS) has been observed by many groups following administration to tumor-bearing animals. In rodents, VSV encephalitis is characterized by weight-loss, paralysis, and high mortality. In order to provide protection from VSV infection of the CNS after therapeutic administration, we have attenuated VSV by the introduction of the gene encoding the proinflammatory cytokine interleukin (IL)-23, and designated the new virus VSV23. We hypothesize that while VSV23 is replicating within tumors, resulting in tumor destruction, the expression of IL-23 will enhance host antitumor and antiviral immune responses. In the event that the virus escapes from the tumor, the host's immune system will be activated and the virus will be rapidly cleared from healthy tissue. Experimental VSV23 infection of the CNS is characterized by decreased viral replication, morbidity, and mortality. VSV23 is capable of stimulating the enhanced production of nitric oxide in the CNS, which is critical for elimination of VSV from infected neurons. Intraperitoneal administration of VSV23 stimulates both nonspecific natural killer cell, virus-specific cytolytic T lymphocyte and memory virus-specific proliferative T cell responses against wild-type VSV in splenocytes. Furthermore, VSV23 is able to replicate in, and induce apoptosis of tumor cells in vitro. These data indicate that VSV23 is immunogenic, attenuated and suitable for testing as an efficacious and safe oncolytic agent.
Collapse
Affiliation(s)
- James Miller
- Department of Biology, New York University, New York, NY, USA
| | - Sarah M Bidula
- Department of Biology, New York University, New York, NY, USA
| | - Troels M Jensen
- Department of Biology, New York University, New York, NY, USA
| | - Carol Shoshkes Reiss
- Department of Biology, New York University, New York, NY, USA
- Center for Neural Science, NYU Cancer Institute and Microbiology Department, School of Medicine, New York University, New York, NY, USA
| |
Collapse
|