1
|
Matur E, Akyol S, Toplan S, Ozdemir S, Akyazı I, Darıyerli N. Impact of Lithium on the Immune System: An Investigation of T-Cell Subpopulations and Cytokine Responses in Rats. Biol Trace Elem Res 2025; 203:944-952. [PMID: 38700635 PMCID: PMC11750928 DOI: 10.1007/s12011-024-04202-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/23/2024] [Indexed: 01/22/2025]
Abstract
The aim of this study was to investigate the dose-dependent adverse effects of long-term dietary lithium administration on specific aspects of the defense system in rats. Additionally, the study aimed to explore the inflammatory activities of lithium beyond its recognized anti-inflammatory properties. Forty Wistar Albino rats were involved, which were randomly allocated into the control and four treatment groups. The control group received standard rat feed, and the experimental groups' diet was added 1 g/kg, 1.4 g/kg, 1.8 g/kg, and 2.2 g/kg lithium bicarbonate, respectively. CD4+, CD8+, and CD161 + cells were assessed by flow cytometry. TNF-α, IFN-γ, IL-1β, and IL-2 and IL-4, IL-6, and IL-10 levels were measured. The proportion of CD4 + cells and the CD4+/CD8 + ratio (P = 0.005 and P = 0.038, respectively) were reduced with the highest dose of lithium compared to the control group. The data regarding pro-inflammatory cytokines showed a dose-dependent increase in serum TNF-α and IFN-γ levels (P = 0.023 and P = 0.001, respectively). On the other hand, serum IL-1β and IL-2 levels were decreased in a dose-dependent manner (P = 0. 001 and P = 0. 001, respectively). As for anti-inflammatory cytokines, a dose-dependent decrease was determined in serum IL-4 level (P = 0.002), while no significant changes were noted in IL-6 and IL-10 levels (P = 0.507 and P = 0.732, respectively). In conclusion, lithium adversely impacted the cellular defense system. Furthermore, apart from its anti-inflammatory properties, lithium exhibited cytokine-mediated inflammatory activities. Therefore, lithium's potential adverse effects on the immune system should be considered in immunodeficient patients and those with an inflammatory status treated with high doses of lithium.
Collapse
Affiliation(s)
- Erdal Matur
- Department of Physiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Sibel Akyol
- Department of Physiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34099, Turkey
| | - Selmin Toplan
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34099, Turkey
| | - Semra Ozdemir
- Department of Biophysics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34099, Turkey
| | - Ibrahim Akyazı
- Department of Physiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nuran Darıyerli
- Department of Physiology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, 34099, Turkey
| |
Collapse
|
2
|
Schurman CA, Bons J, Woo JJ, Yee C, Tao N, Alliston T, Angel P, Schilling B. Tissue and Extracellular Matrix Remodeling of the Subchondral Bone during Osteoarthritis of Knee Joints as revealed by Spatial Mass Spectrometry Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.03.606482. [PMID: 39211075 PMCID: PMC11361078 DOI: 10.1101/2024.08.03.606482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Osteoarthritis (OA) is a degenerative condition of the skeletal extracellular matrix (ECM) marked by the loss of articular cartilage and changes to subchondral bone homeostasis. Treatments for OA beyond full joint replacement are lacking primarily due to gaps in molecular knowledge of the biological drivers of disease. Mass Spectrometry Imaging (MSI) enables molecular spatial mapping of the proteomic landscape of tissues. Histologic sections of human tibial plateaus from knees of human OA patients and cadaveric controls were treated with collagenase III to target ECM proteins prior to MS Imaging of bone and cartilage proteins using a timsTOF fleX mass spectrometer. Spatial MSI data of the knee were processed and automatically segmented identifying distinct areas of knee joint damage. ECM peptide markers were compared between i) the medial halves of OA patient joints and the medial side of non-OA (cadaveric) joints, and ii) between the same medial OA tissues and their corresponding, less OA impacted, lateral joint halves. Distinct peptide signatures distinguished OA medial tissues from the cadaveric medial and OA lateral tissues (AUROC >0.85). Overall, 31 peptide candidates from ECM proteins, including Collagen alpha-1(I), Collagen alpha-1(III), and surprisingly, Collagen alpha-1(VI) and Collagen alpha-3(VI), exhibited significantly elevated abundance in diseased tissues. Highly specific hydroxyproline-containing collagen peptides, mainly from collagen type I, dominated OA subchondral bone directly under regions of lost cartilage. The identification of specific protein markers for subchondral bone remodeling in OA advances our molecular understanding of disease progression in OA and provides potential new biomarkers for OA detection and disease grading.
Collapse
|
3
|
Lefèvre A, Parra-Guillen ZP, Trocóniz IF, Boetsch C, Frances N. Mechanistic PKPD modeling to describe cytokine release associated with CD3 T-cell engager therapies. Front Immunol 2025; 15:1463915. [PMID: 39896804 PMCID: PMC11782561 DOI: 10.3389/fimmu.2024.1463915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/19/2024] [Indexed: 02/04/2025] Open
Abstract
Introduction T-cell engagers (TCE), a therapeutic class of cancer immunotherapy (CIT), offer a novel approach to cancer treatment by harnessing and reactivating the patient's immune system to eradicate tumor cells. However, the use of TCE in the clinic can lead to severe side effects, including cytokine release syndrome (CRS). Therefore, innovative dosing strategies need to be implemented to mitigate the risk of developing CRS. Method In the presented work, a mechanistic pharmacokinetics/pharmacodynamics (PKPD) model describing cytokine release following TCE therapy has been developed combining literature knowledge and preclinical data. The model was developed to explore and test hypotheses regarding the mechanisms behind the decrease of cytokine release following two repeated TCE administrations. Results The model is able to successfully reproduce the observed dynamics of cytokine levels associated with the initial and subsequent TCE doses, accounting for different dosing intervals. In addition, the model suggests a mechanism of action that uncouples cytokine release from tumor cell killing. Discussion This model provides an initial mechanistic framework to support the design of experiments and paves the way for the application of mathematical modeling to support clinical dosing regimen selection of any TCE.
Collapse
Affiliation(s)
- Apolline Lefèvre
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Zinnia P. Parra-Guillen
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Iñaki F. Trocóniz
- Pharmacometrics & Systems Pharmacology, Department of Pharmaceutical Science, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Institute of Data Science and Artificial Intelligence (DATAI), University of Navarra, Pamplona, Spain
| | - Christophe Boetsch
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
| | - Nicolas Frances
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences PS, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
4
|
Gupta N, Yadav AK, Verma PK, Srivastava M, Sahasrabuddhe AA, Dube A. Differential Immune Responses of Th1 Stimulatory Chimeric Antigens of Leishmania donovani in BALB/c Mice. ACS Infect Dis 2024; 10:4246-4257. [PMID: 39575598 DOI: 10.1021/acsinfecdis.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Visceral leishmaniasis (VL) is the third most severe infectious parasitic disease and is caused by the protozoan parasite Leishmania. To control the spread of the disease in endemic areas where the asymptomatic patients act as reservoirs as well as in nonendemic areas, an effective vaccine is indispensable. In this direction, we have developed three chimeric proteins by the combination of three already known Th1 stimulatory leishmanial antigens, i.e., enolase, aldolase, and triose phosphate isomerase (TPI). The newly developed chimeric proteins, i.e., enolase-aldolase, TPI-enolase, and aldolase-TPI along with BCG as an adjuvant were assessed and compared, examining humoral and cellular adaptive immune responses elicited in BALB/c mice. The three chimeric antigens exhibited differential immune responses shown by differences in Th1 and Th2 cytokine production in ex vivo stimulated splenocytes of immunized mice. It was observed that all three chimeric proteins are more immunogenic than their component proteins. However, while comparing the immune response of the three chimeric proteins, aldolase-TPI exhibited a better immunogenic (Th1-type) response, as evidenced by the highest IFN-γ production, a high IgG2a antibody isotype switching, a high % population of CD8+ and CD4+ T-cells, and a significantly high expression of iNOS2. Thus, the results suggest the potential of these chimeric antigens as strong immunogens that can be harnessed in vaccine development against VL.
Collapse
Affiliation(s)
- Niharika Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Alok Kumar Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Pramod Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Mrigank Srivastava
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Amogh Anant Sahasrabuddhe
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| | - Anuradha Dube
- Molecular Immunology and Parasitology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Sector 10, Lucknow 226031, India
| |
Collapse
|
5
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. A novel immunomodulating peptide with potential to complement oligodeoxynucleotide-mediated adjuvanticity in vaccination strategies. Sci Rep 2024; 14:26737. [PMID: 39501043 PMCID: PMC11538426 DOI: 10.1038/s41598-024-78150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
The identification of adjuvants to improve vaccination efficacy is a major unmet need. One approach is to augment the functionality of dendritic cells (DCs) by using Toll-like receptor-9 (TLR9) agonists such as cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) as adjuvants. Another approach is adjuvant selection based on production of bioactive interleukin-12 (IL-12). We report a D-peptide isomer, designated D-15800, that induces monocyte differentiation to the DC phenotype in vitro and more effectively stimulates IL-12p70 production upon T cell receptor (TCR) activation than the L-isomer. In the absence of TCR activation and either IL-12p70 or interleukin-2 production, only D-15800 activates CD4+ T and natural killer cells. In the presence of CpG ODN, D-15800 synergistically enhances production of interferon-alpha (IFN-α). Taken together with its biostability in human serum and depot retention upon injection, co-delivery of D-15800 with TLR9 agonists could serve to improve vaccine efficacy.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Lane Cove West, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
6
|
Bhattacharya P, Linnenbach A, South AP, Martinez-Outschoorn U, Curry JM, Johnson JM, Harshyne LA, Mahoney MG, Luginbuhl AJ, Vadigepalli R. Tumor microenvironment governs the prognostic landscape of immunotherapy for head and neck squamous cell carcinoma: A computational model-guided analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615149. [PMID: 39386511 PMCID: PMC11463398 DOI: 10.1101/2024.09.26.615149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Immune checkpoint inhibition (ICI) has emerged as a critical treatment strategy for squamous cell carcinoma of the head and neck (HNSCC) that halts the immune escape of the tumor cells. Increasing evidence suggests that the onset, progression, and lack of/no response of HNSCC to ICI are emergent properties arising from the interactions within the tumor microenvironment (TME). Deciphering how the diversity of cellular and molecular interactions leads to distinct HNSCC TME subtypes subsequently governing the ICI response remains largely unexplored. We developed a cellular-molecular model of the HNSCC TME that incorporates multiple cell types, cellular states, and transitions, and molecularly mediated paracrine interactions. An exhaustive simulation of the HNSCC TME network shows that distinct mechanistic balances within the TME give rise to the five clinically observed TME subtypes such as immune/non-fibrotic, immune/fibrotic, fibrotic only and immune/fibrotic desert. We predict that the cancer-associated fibroblast, beyond a critical proliferation rate, drastically worsens the ICI response by hampering the accessibility of the CD8+ killer T cells to the tumor cells. Our analysis reveals that while an Interleukin-2 (IL-2) + ICI combination therapy may improve response in the immune desert scenario, Osteopontin (OPN) and Leukemia Inhibition Factor (LIF) knockout with ICI yields the best response in a fibro-dominated scenario. Further, we predict Interleukin-8 (IL-8), and lactate can serve as crucial biomarkers for ICI-resistant HNSCC phenotypes. Overall, we provide an integrated quantitative framework that explains a wide range of TME-mediated resistance mechanisms for HNSCC and predicts TME subtype-specific targets that can lead to an improved ICI outcome.
Collapse
Affiliation(s)
- Priyan Bhattacharya
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Alban Linnenbach
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Andrew P. South
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Ubaldo Martinez-Outschoorn
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Joseph M. Curry
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Jennifer M. Johnson
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
- Department of Medical Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Larry A. Harshyne
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Mỹ G. Mahoney
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Adam J. Luginbuhl
- Department of Otolaryngology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA19107, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA19107, USA
| |
Collapse
|
7
|
Wang D, Wu Y, Ma J, Xu Z, Tao H, Guan Y, Wang J, Chen K, Chen B, Xie J, Jiang H, Guan M. Logistic regression modeling of cytokines for cerebrospinal fluid evaluation in primary central nervous system lymphoma. Clin Chim Acta 2024; 562:119879. [PMID: 39029646 DOI: 10.1016/j.cca.2024.119879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND The diagnostic utility of cerebrospinal fluid (CSF) cytology encounters impediments stemming from variability in cell collection techniques and pathologists' morphological acumen, resulting in wide-ranging CSF positivity rates for primary central nervous system lymphomas (PCNSL). Such disparity impacts patient evaluation, treatment stratagem, and prognostication. Thus, this study endeavors to explore liquid biomarkers complementary to CSF cytology or immunophenotype analysis in the diagnosis of CSF involvement. METHODS 398 newly diagnosed PCNSL patients were categorized into CSF involvement and non-involvement groups based on CSF cytology and immunophenotype analysis. Binary logistic regression analysis was performed on 338 patients to investigate factors predicting CSF involvement and to develop a joint prediction model. An additional cohort of 60 PCNSL patients was recruited for model validation. Statistical analyses included the Mann-Whitney U test for comparing various CSF parameters between two groups. ROC curve analyses were performed for each biomarker to identify PCNSL CSF involvement. RESULTS The cytokine IL-10 level in CSF has emerged as the most promising biomarker for CSF evaluation, boasting an ROC AUC of 0.922. C-TNFα and soluble C-IL2R demonstrate efficacy in quantifying tumor burden within the CSF. Logistic regression identified C-IL10lg (OR = 30.103, P < 0.001), C-TNC (OR = 1.126, P < 0.001), C-IL2Rlg (OR = 3.743, P = 0.029) as independent predictors for CSF involvement, contributing to a joint predictive model with an AUC of 0.935, sensitivity of 74.1 %, and specificity of 93.0 %. Validation of the model in an independent cohort confirmed its effectiveness, achieving an AUC of 0.9713. CONCLUSIONS The identification of these feasible biomarkers and the development of an accurate prediction model may facilitate the precise evaluation of CSF status in PCNSL, offering significant advancements in patient management.
Collapse
Affiliation(s)
- Di Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yejia Wu
- Department of Endoscopy and Interventional Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201801, China; Department of Nursing, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 201801, China
| | - Jingjing Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 201907, China
| | - Zhiyu Xu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Huicong Tao
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yongjie Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaxin Wang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kun Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai 201907, China
| | - Jun Xie
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
8
|
Szymura SJ, Wang L, Zhang T, Cha SC, Song J, Dong Z, Anderson A, Oh E, Lee V, Wang Z, Parshottam S, Rao S, Olsem JB, Crumpton BN, Lee HC, Manasanch EE, Neelapu S, Kwak LW, Thomas SK. Personalized neoantigen vaccines as early intervention in untreated patients with lymphoplasmacytic lymphoma: a non-randomized phase 1 trial. Nat Commun 2024; 15:6874. [PMID: 39128904 PMCID: PMC11317512 DOI: 10.1038/s41467-024-50880-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Lymphoplasmacytic lymphoma (LPL) is an incurable low-grade lymphoma with no standard therapy. Nine asymptomatic patients treated with a first-in-human, neoantigen DNA vaccine experienced no dose limiting toxicities (primary endpoint, NCT01209871). All patients achieve stable disease or better, with one minor response, and median time to progression of 72+ months. Post-vaccine single-cell transcriptomics reveal dichotomous antitumor responses, with reduced tumor B-cells (tracked by unique B cell receptor) and their survival pathways, but no change in clonal plasma cells. Downregulation of human leukocyte antigen (HLA) class II molecules and paradoxical upregulation of insulin-like growth factor (IGF) by the latter suggest resistance mechanisms. Vaccine therapy activates and expands bone marrow T-cell clonotypes, and functional neoantigen-specific responses (secondary endpoint), but not co-inhibitory pathways or Treg, and reduces protumoral signaling by myeloid cells, suggesting favorable perturbation of the tumor immune microenvironment. Future strategies may require combinations of vaccines with agents targeting plasma cell subpopulations, or blockade of IGF-1 signaling or myeloid cell checkpoints.
Collapse
Affiliation(s)
- Szymon J Szymura
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Lin Wang
- Department of Computational and Quantitative Medicine, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Tiantian Zhang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Soung-Chul Cha
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Joo Song
- Division of Hematopathology, Department of Pathology, City of Hope, Duarte, CA, USA
| | - Zhenyuan Dong
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Aaron Anderson
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Elizabeth Oh
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Vincent Lee
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Zhe Wang
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA
| | - Sapna Parshottam
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sheetal Rao
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jasper B Olsem
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Brandon N Crumpton
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Hans C Lee
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Elisabet E Manasanch
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Larry W Kwak
- Stephenson Lymphoma Center, Beckman Research Institute and Hematologic Malignancies Research Institute, City of Hope, Duarte, CA, USA.
| | - Sheeba K Thomas
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Costa GL, Sautto GA. Exploring T-Cell Immunity to Hepatitis C Virus: Insights from Different Vaccine and Antigen Presentation Strategies. Vaccines (Basel) 2024; 12:890. [PMID: 39204016 PMCID: PMC11359689 DOI: 10.3390/vaccines12080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
The hepatitis C virus (HCV) is responsible for approximately 50 million infections worldwide. Effective drug treatments while available face access barriers, and vaccine development is hampered by viral hypervariability and immune evasion mechanisms. The CD4+ and CD8+ T-cell responses targeting HCV non-structural (NS) proteins have shown a role in the viral clearance. In this paper, we reviewed the studies exploring the relationship between HCV structural and NS proteins and their effects in contributing to the elicitation of an effective T-cell immune response. The use of different vaccine platforms, such as viral vectors and virus-like particles, underscores their versability and efficacy for vaccine development. Diverse HCV antigens demonstrated immunogenicity, eliciting a robust immune response, positioning them as promising vaccine candidates for protein/peptide-, DNA-, or RNA-based vaccines. Moreover, adjuvant selection plays a pivotal role in modulating the immune response. This review emphasizes the importance of HCV proteins and vaccination strategies in vaccine development. In particular, the NS proteins are the main focus, given their pivotal role in T-cell-mediated immunity and their sequence conservation, making them valuable vaccine targets.
Collapse
Affiliation(s)
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA;
| |
Collapse
|
10
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Mátis G, Tráj P, Hanyecz V, Mackei M, Márton RA, Vörösházi J, Kemény Á, Neogrády Z, Sebők C. Immunomodulatory properties of chicken cathelicidin-2 investigated on an ileal explant culture. Vet Res Commun 2024; 48:2527-2535. [PMID: 38871866 PMCID: PMC11315780 DOI: 10.1007/s11259-024-10428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
As the threat posed by antimicrobial resistance grows more crucial, the development of compounds that can replace antibiotics becomes increasingly vital. Chicken cathelicidin-2 (Cath-2) belongs to the group of Host Defense Peptides (HDPs), which could provide a feasible solution for the treatment of gastrointestinal infections in poultry. It is a small peptide produced by the heterophil granulocytes of chickens as part of the innate immune response, and its immunomodulatory activity has already been demonstrated in several cell types. In this study, the effects of Cath-2 on the intestinal immune response were examined using ileal explant cultures isolated from chicken. Regarding our results, Cath-2 displayed a potent anti-inflammatory effect as it alleviated the LTA-caused elevation of interleukin (IL)-6 and IL-2 concentrations, and that of the IFN-γ/IL-10 ratio, furthermore, it increased the concentration of IL-10, alleviating the LTA-evoked decreased level of the anti-inflammatory cytokine. Moreover, when applied alone, it elevated the concentrations of IL-6, CXCLi2, and IL-2, providing evidence of its complex immunomodulatory mechanisms. In summary, Cath-2 was able to modulate the immune response of the intestinal wall not only by reducing pro-inflammatory cytokine release, but also through immune stimulation, demonstrating that it has the ability to improve innate immunity via a complex mechanism that may make it a suitable candidate for the control of intestinal infections.
Collapse
Affiliation(s)
- Gábor Mátis
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Patrik Tráj
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Viktória Hanyecz
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Máté Mackei
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Rege Anna Márton
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Júlia Vörösházi
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
- Department of Medical Biology, Faculty of Medicine, University of Pécs, Szigeti u. 12., H-7624, Pécs, Hungary
| | - Zsuzsanna Neogrády
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary
| | - Csilla Sebők
- Division of Biochemistry, Department of Physiology and Biochemistry, University of Veterinary Medicine, István utca 2., H-1078, Budapest, Hungary.
| |
Collapse
|
12
|
Boersma B, Poinot H, Pommier A. Stimulating the Antitumor Immune Response Using Immunocytokines: A Preclinical and Clinical Overview. Pharmaceutics 2024; 16:974. [PMID: 39204319 PMCID: PMC11357675 DOI: 10.3390/pharmaceutics16080974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cytokines are immune modulators which can enhance the immune response and have been proven to be an effective class of immunotherapy. Nevertheless, the clinical use of cytokines in cancer treatment has faced several challenges associated with poor pharmacokinetic properties and the occurrence of adverse effects. Immunocytokines (ICKs) have emerged as a promising approach to overcome the pharmacological limitations observed with cytokines. ICKs are fusion proteins designed to deliver cytokines in the tumor microenvironment by taking advantage of the stability and specificity of immunoglobulin-based scaffolds. Several technological approaches have been developed. This review focuses on ICKs designed with the most impactful cytokines in the cancer field: IL-2, TNFα, IL-10, IL-12, IL-15, IL-21, IFNγ, GM-CSF, and IFNα. An overview of the pharmacological effects of the naked cytokines and ICKs tested for cancer therapy is detailed. A particular emphasis is given on the immunomodulatory effects of ICKs associated with their technological design. In conclusion, this review highlights active ways of development of ICKs. Their already promising results observed in clinical trials are likely to be improved with the advances in targeting technologies such as cytokine/linker engineering and the design of multispecific antibodies with tumor targeting and immunostimulatory functional properties.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland;
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Hélène Poinot
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland;
- Translational Research Centre in Oncohaematology, University of Geneva, 1211 Geneva, Switzerland
| | - Aurélien Pommier
- UMR1240 Imagerie Moléculaire et Stratégies Théranostiques INSERM, Université Clermont Auvergne, BP 184, F-63005 Clermont-Ferrand, France
| |
Collapse
|
13
|
Fazel F, Matsuyama-Kato A, Alizadeh M, Zheng J, Fletcher C, Gupta B, St-Denis M, Boodhoo N, Sharif S. A Marek's Disease Virus Messenger RNA-Based Vaccine Modulates Local and Systemic Immune Responses in Chickens. Viruses 2024; 16:1156. [PMID: 39066318 PMCID: PMC11281610 DOI: 10.3390/v16071156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease (MD), caused by the Marek's disease virus, is a lymphoproliferative disease in chickens that can be controlled by vaccination. However, the current vaccines can limit tumor growth and death but not virus replication and transmission. The present study aimed to evaluate host responses following intramuscular injection of an mRNA vaccine encoding gB and pp38 proteins of the MDV within the first 36 h. The vaccine was injected in low and high doses using prime and prime-boost strategies. The expression of type I and II interferons (IFNs), a panel of interferon-stimulated genes, and two key antiviral cytokines, IL-1β and IL-2, were measured in spleen and lungs after vaccination. The transcriptional analysis of the above genes showed significant increases in the expression of MDA5, Myd88, IFN-α, IFN-β, IFN-γ, IRF7, OAS, Mx1, and IL-2 in both the spleen and lungs within the first 36 h of immunization. Secondary immunization increased expression of all the above genes in the lungs. In contrast, only IFN-γ, MDA5, MyD88, Mx1, and OAS showed significant upregulation in the spleen after the secondary immunization. This study shows that two doses of the MDV mRNA vaccine encoding gB and pp38 antigens activate innate and adaptive responses and induce an antiviral state in chickens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
14
|
Low M, Suresh H, Zhou X, Bhuyan DJ, Alsherbiny MA, Khoo C, Münch G, Li CG. The wide spectrum anti-inflammatory activity of andrographolide in comparison to NSAIDs: A promising therapeutic compound against the cytokine storm. PLoS One 2024; 19:e0299965. [PMID: 39018291 PMCID: PMC11253928 DOI: 10.1371/journal.pone.0299965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
The challenges of the COVID-19 pandemic have highlighted an increasing clinical demand for safe and effective treatment options against an overzealous immune defence response, also known as the "cytokine storm". Andrographolide is a naturally derived bioactive compound with promising anti-inflammatory activity in many clinical studies. However, its cytokine-inhibiting activity, in direct comparison to commonly used nonsteroidal anti-inflammatory drugs (NSAIDs), has not been extensively investigated in existing literature. The anti-inflammatory activities of andrographolide and common NSAIDs, such as diclofenac, aspirin, paracetamol and ibuprofen were measured on lipopolysaccharide (LPS) and interferon-γ induced RAW264.7 cells. The levels of PGE2, nitric oxide (NO), TNF-α & LPS-induced release of pro-inflammatory cytokines on differentiated human macrophage THP-1 cells were measured against increasing concentrations of andrographolide and aforementioned NSAIDs. The associated mechanistic pathway was examined on NFκB using flow cytometry on the human endothelial-leukocyte adhesion molecule (ELAM9) (E-selectin) transfected RAW264.7 cells with green fluorescent protein (GFP). Andrographolide exhibited broad and potent anti-inflammatory and cytokine-inhibiting activity in both cell lines by inhibiting the release of IL-6, TNF-α and IFN-γ, which are known to play a key role in the etiology of cytokine storm and the pathogenesis of inflammation. In comparison, the tested NSAIDs demonstrated weak or no activity against proinflammatory mediators except for PGE2, where the activity of andrographolide (IC50 = 8.8 μM, 95% CI = 7.4 to 10.4 μM) was comparable to that of paracetamol (IC50 = 7.73 μM, 95% CI = 6.14 to 9.73 μM). The anti-inflammatory action of andrographolide was associated with its potent downregulation of NFκB. The wide-spectrum anti-inflammatory activity of andrographolide demonstrates its therapeutic potential against cytokine storms as an alternative to NSAIDs.
Collapse
Affiliation(s)
- Mitchell Low
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Harsha Suresh
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| | | | - Cheang Khoo
- Wentworth Institute of Higher Education, Surry Hills, Sydney, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Campbelltown, Australia
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, Australia
| |
Collapse
|
15
|
Fleming SA, Reyes SM, Donovan SM, Hernell O, Jiang R, Lönnerdal B, Neu J, Steinman L, Sørensen ES, West CE, Kleinman R, Wallingford JC. An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy. Front Nutr 2024; 11:1404303. [PMID: 38919388 PMCID: PMC11197938 DOI: 10.3389/fnut.2024.1404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
Collapse
Affiliation(s)
| | | | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Olle Hernell
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, United States
| | - Lawrence Steinman
- Departments of Pediatrics and of Neurology and Neurological Sciences, Interdepartmental Program in Immunology, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina E. West
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Ronald Kleinman
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
16
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
17
|
Tripathi A, Dasgupta D, Pant A, Bugbee A, Yellapu NK, Choi BHY, Giri S, Pyaram K. Nrf2 regulates the activation-driven expansion of CD4 + T-cells by differentially modulating glucose and glutamine metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590146. [PMID: 38712097 PMCID: PMC11071319 DOI: 10.1101/2024.04.18.590146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Upon antigenic stimulation, CD4 + T-cells undergo clonal expansion, elevating their bioenergetic demands and utilization of nutrients like glucose and glutamine. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known regulator of oxidative stress, but its involvement in modulating the metabolism of CD4 + T-cells remains unexplored. Here, we elucidate the role of Nrf2 beyond the traditional antioxidation, in modulating activation-driven expansion of CD4 + T-cells by influencing their nutrient metabolism. T-cell-specific activation of Nrf2 enhances early activation and IL-2 secretion, upregulates TCR-signaling, and increases activation-driven proliferation of CD4 + T-cells. Mechanistically, high Nrf2 inhibits glucose metabolism through glycolysis but promotes glutamine metabolism via glutaminolysis to support increased T-cell proliferation. Further, Nrf2 expression is temporally regulated in activated CD4 + T-cells with elevated expression during the early activation, but decreased expression thereafter. Overall, our findings uncover a novel role of Nrf2 as a metabolic modulator of CD4 + T-cells, thus providing a framework for improving Nrf2-targeting therapies and T-cell immunotherapies.
Collapse
|
18
|
Jin D, Wei X, He Y, Zhong L, Lu H, Lan J, Wei Y, Liu Z, Liu H. The nutritional roles of zinc for immune system and COVID-19 patients. Front Nutr 2024; 11:1385591. [PMID: 38706559 PMCID: PMC11066294 DOI: 10.3389/fnut.2024.1385591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/09/2024] [Indexed: 05/07/2024] Open
Abstract
Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an imbalance in the immune system. This imbalance is particularly evident in severe deficiency cases, where there is a high susceptibility to various viral infections, including COVID-19 caused by SARS-CoV-2. This review article examines the nutritional roles of Zn in human health, the maintenance of Zn concentration, and Zn uptake. As Zn is an essential trace element that plays a critical role in the immune system and is necessary for immune cell function and cell signaling, the roles of Zn in the human immune system, immune cells, interleukins, and its role in SARS-CoV-2 infection are further discussed. In summary, this review paper encapsulates the nutritional role of Zn in the human immune system, with the hope of providing specific insights into Zn research.
Collapse
Affiliation(s)
- Di Jin
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Xinran Wei
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yunyi He
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Luying Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Huijie Lu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Jiaxin Lan
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Yuting Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| | - Hongbo Liu
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, Department of Laboratory Medicine, Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
- College of Medical Laboratory Science, Guilin Medical University, Guilin, China
| |
Collapse
|
19
|
Shakinah S, Aini MH, Sekartini R, Soedjatmiko, Medise BE, Gunardi H, Yuniar I, Indawati W, Koesnoe S, Harimurti K, Maria S, Wirahmadi A, Sari RM, Setyaningsih L, Surachman F. Immunogenicity Assessment of the SARS-CoV-2 Protein Subunit Recombinant Vaccine (CoV2-IB 0322) in a Substudy of a Phase 3 Trial in Indonesia. Vaccines (Basel) 2024; 12:371. [PMID: 38675753 PMCID: PMC11053672 DOI: 10.3390/vaccines12040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND COVID-19 is one of the most devastating pandemics of the 21st century. Vaccination is one of the most effective prevention methods in combating COVID-19, and one type of vaccine being developed was the protein subunit recombinant vaccine. We evaluated the efficacy of the CoV2-IB 0322 vaccine in Depok, Indonesia. METHODS This study aimed to assess the humoral and cellular immune response of the CoV2-IB 0322 vaccine compared to an active control vaccine (COVOVAX™ Vaccine). A total of 120 subjects were enrolled and randomized into two groups, with 60 subjects in each group. Participants received either two doses of the CoV2-IB 0322 vaccine or two doses of the control vaccine with a 28-day interval between doses. Safety assessments were conducted through onsite monitoring and participant-reported adverse events. Immunogenicity was evaluated by measuring IgG anti-RBD SARS-CoV-2 and IgG-neutralizing antibodies. Cellular immunity was assessed by specific T-cell responses. Whole blood samples were collected at baseline, 14 days, 6 months, and 12 months after the second dose for cellular immunity evaluation. RESULTS Both vaccines showed high seropositive rates, with neutralizing antibody and IgG titers peaking 14 days after the second dose and declining by 12 months. The seroconversion rate of anti-S IgG was 100% in both groups, but the rate of neutralizing antibody seroconversion was lower in the CoV2-IB 0322 vaccine group at 14 days after the second dose (p = 0.004). The CoV2-IB 0322 vaccine showed higher IgG GMT levels 6 and 12 months after the second dose (p < 0.001 and p = 0.01). T-cell responses, evaluated by IFN-γ, IL-2, and IL-4 production by CD4+ and CD8+ T-cells, showed similar results without significant differences between both groups, except for %IL-2/CD4+ cells 6 months after the second dose (p = 0.038). CONCLUSION Both vaccines showed comparable B- and T-cell immunological response that diminish over time.
Collapse
Affiliation(s)
- Sharifah Shakinah
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Muhammad Hafiz Aini
- Department of Internal Medicine, Universitas Indonesia Hospital, Jl. Prof. DR. Bahder Djohan, Depok 16424, Indonesia
| | - Rini Sekartini
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Soedjatmiko
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Bernie Endyarni Medise
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Hartono Gunardi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Irene Yuniar
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Wahyuni Indawati
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Sukamto Koesnoe
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Kuntjoro Harimurti
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Suzy Maria
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (S.S.); (S.M.)
| | - Angga Wirahmadi
- Department of Child Health, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General National Hospital, Jalan Diponegoro No 71, Jakarta 10340, Indonesia; (R.S.); (S.); (W.I.)
| | - Rini Mulia Sari
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | - Lilis Setyaningsih
- PT Bio Farma, Jalan Pasteur No. 28, Bandung 40161, Indonesia (L.S.); (F.S.)
| | | |
Collapse
|
20
|
Hou F, Guo Z, Ho MT, Hui Y, Zhao CX. Particle-Based Artificial Antigen-Presenting Cell Systems for T Cell Activation in Adoptive T Cell Therapy. ACS NANO 2024; 18:8571-8599. [PMID: 38483840 DOI: 10.1021/acsnano.3c10180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
T cell-based adoptive cell therapy (ACT) has emerged as a promising treatment for various diseases, particularly cancers. Unlike other immunotherapy modalities, ACT involves directly transferring engineered T cells into patients to eradicate diseased cells; hence, it necessitates methods for effectively activating and expanding T cells in vitro. Artificial antigen-presenting cells (aAPCs) have been widely developed based on biomaterials, particularly micro- and nanoparticles, and functionalized with T cell stimulatory antibodies to closely mimic the natural T cell-APC interactions. Due to their vast clinical utility, aAPCs have been employed as an off-the-shelf technology for T cell activation in FDA-approved ACTs, and the development of aAPCs is constantly advancing with the emergence of aAPCs with more sophisticated designs and additional functionalities. Here, we review the recent advancements in particle-based aAPCs for T cell activation in ACTs. Following a brief introduction, we first describe the manufacturing processes of ACT products. Next, the design and synthetic strategies for micro- and nanoparticle-based aAPCs are discussed separately to emphasize their features, advantages, and limitations. Then, the impact of design parameters of aAPCs, such as size, shape, ligand density/mobility, and stiffness, on their functionality and biomedical performance is explored to provide deeper insights into the design concepts and principles for more efficient and safer aAPCs. The review concludes by discussing current challenges and proposing future perspectives for the development of more advanced aAPCs.
Collapse
Affiliation(s)
- Fei Hou
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zichao Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Minh Trang Ho
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Yue Hui
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
21
|
Kufera JT, Armstrong C, Wu F, Singhal A, Zhang H, Lai J, Wilkins HN, Simonetti FR, Siliciano JD, Siliciano RF. CD4+ T cells with latent HIV-1 have reduced proliferative responses to T cell receptor stimulation. J Exp Med 2024; 221:e20231511. [PMID: 38270554 PMCID: PMC10818065 DOI: 10.1084/jem.20231511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.
Collapse
Affiliation(s)
- Joshua T. Kufera
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ciara Armstrong
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Singhal
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hannah N. Wilkins
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Janet D. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F. Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Baltimore, MD, USA
| |
Collapse
|
22
|
Brasil CL, Gonçalves VS, Santos FDS, Rodrigues PRC, Leite FPL, Pereira DIB. Immunomodulatory effect of Lacticaseibacillus casei CB054 supplementation in calves vaccinated against infectious bovine rhinotracheitis. Vet Immunol Immunopathol 2024; 269:110726. [PMID: 38341929 DOI: 10.1016/j.vetimm.2024.110726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Probiotics are live microorganisms that, confer health benefits to the host when supplemented in adequate amounts. They can promote immunomodulation by inducing phagocyte activity, leukocyte proliferation, antibody production, and cytokine expression. Lactic acid bacteria (BAL) are important probiotic specimens with properties that can improves ruminant nutrition, productivity and immunity. The aim of the present study was to evaluate the immunomodulatory effect of the supplementation with Lacticaseibacillus casei CB054 in calve vaccinated against bovine infectious rhinotracheitis (IBR). Calve were vaccinated with a commercial IBR vaccine, on day 0 and received a booster dose on day 21. L. casei CB054 was orally administered (4 ×109 UFC) for 35 days, while a non-supplemented control group received Phosphate Buffer Saline (PBS). Stimulation of bovine splenocytes with L. casei CB054 markedly enhanced mRNA transcription levels of cytokines IL2, IL4, IL10 and IL17 genes. Calves supplemented with L. casei CB054 showed significantly higher (p < 0.05) specific anti-BoHV-1 IgG levels, higher serum neutralization, as well as higher mRNA transcription for IL2, IL4, IL10 and IL17 genes in Peripheral Blood Mononuclear Cells (PBMCs) comparing with control calves. Supplemented calve had an average weight gain of ∼14 kg more than non-supplemented during the experimental period. These results suggest that L. casei CB054 supplementation increase immunogenicity of a commercial IBR vaccine in cattle and improve weight gain.
Collapse
Affiliation(s)
- Carolina Litchina Brasil
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Vitória Sequeira Gonçalves
- Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Francisco Denis Souza Santos
- Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Paulo Ricardo Centeno Rodrigues
- Laboratório de Virologia e Imunologia Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil; Biotecnologia - Centro de Desenvolvimento Tecnológico - Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| | - Daniela Isabel Brayer Pereira
- Instituto de Biologia, Programa de Pós-Graduação em Microbiologia e Parasitologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
| |
Collapse
|
23
|
Harshitha P, Bose K, Dsouza HS. Influence of lead-induced toxicity on the inflammatory cytokines. Toxicology 2024; 503:153771. [PMID: 38452865 DOI: 10.1016/j.tox.2024.153771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Lead (Pb2+) is a hazardous heavy metal that is pervasive in the human environment as a result of anthropogenic activity, and poses serious health risks, particularly in children. Due to its innumerable unique physical and chemical properties, it has various applications; therefore, it has become a common environmental pollutant. Lead may cause oxidative stress, and accumulating evidence indicates that oxidative stress influences the pathophysiology of lead poisoning, also called plumbism. The immune system is continually exposed to various environmental pathogens and xenobiotics, including heavy metals such as lead, and appears to be one of the most vulnerable targets. After being exposed to lead, cells are subjected to oxidative stress as a result of reactive oxygen species (ROS) production. When the generation and consumption of ROS are out of equilibrium, various cell structures, particularly phospholipids are disrupted leading to lipid peroxidation. Various inflammatory signalling pathways are activated as a consequence, along with reduced disease resistance, inflammation, autoimmunity, sensitization and disruption of the cell-mediated and humoral immune systems. Lead negatively affects the metabolism of cytokines, including the interleukins IL-2, IL-1b, IL-6, IL-4, IL-8, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN), as well as the expression and functioning of inflammatory enzymes such as cyclooxygenases. However, the cause of toxicity depends on the kind of lead, dosage, route of entry, exposure period, age, host and genetic predisposition.
Collapse
Affiliation(s)
- P Harshitha
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kalpita Bose
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
24
|
Hernández-Silva CD, Ramírez de Arellano A, Pereira-Suárez AL, Ramírez-López IG. HPV and Cervical Cancer: Molecular and Immunological Aspects, Epidemiology and Effect of Vaccination in Latin American Women. Viruses 2024; 16:327. [PMID: 38543693 PMCID: PMC10974876 DOI: 10.3390/v16030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 05/23/2024] Open
Abstract
Cervical cancer is primarily caused by Human Papillomavirus (HPV) infection and remains a significant public health concern, particularly in Latin American regions. This comprehensive narrative review addresses the relationship between Human Papillomavirus (HPV) and cervical cancer, focusing on Latin American women. It explores molecular and immunological aspects of HPV infection, its role in cervical cancer development, and the epidemiology in this region, highlighting the prevalence and diversity of HPV genotypes. The impact of vaccination initiatives on cervical cancer rates in Latin America is critically evaluated. The advent of HPV vaccines has presented a significant tool in combating the burden of this malignancy, with notable successes observed in various countries, the latter due to their impact on immune responses. The review synthesizes current knowledge, emphasizes the importance of continued research and strategies for cervical cancer prevention, and underscores the need for ongoing efforts in this field.
Collapse
Affiliation(s)
- Christian David Hernández-Silva
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
| | - Adrián Ramírez de Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Laura Pereira-Suárez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (C.D.H.-S.); (A.L.P.-S.)
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Inocencia Guadalupe Ramírez-López
- Departamento de Ciencias de La Salud, CUValles, Universidad de Guadalajara, Guadalajara-Ameca Rd Km. 45.5, Ameca 46600, Jalisco, Mexico
| |
Collapse
|
25
|
Eggenhuizen PJ, Cheong RMY, Lo C, Chang J, Ng BH, Ting YT, Monk JA, Loh KL, Broury A, Tay ESV, Shen C, Zhong Y, Lim S, Chung JX, Kandane-Rathnayake R, Koelmeyer R, Hoi A, Chaudhry A, Manzanillo P, Snelgrove SL, Morand EF, Ooi JD. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat Commun 2024; 15:899. [PMID: 38321013 PMCID: PMC10847119 DOI: 10.1038/s41467-024-45056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.
Collapse
Affiliation(s)
- Peter J Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel M Y Cheong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Cecilia Lo
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Janet Chang
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Boaz H Ng
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Yi Tian Ting
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Julie A Monk
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Khai L Loh
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Ashraf Broury
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Elean S V Tay
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Chanjuan Shen
- Department of Hematology, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, China
| | - Yong Zhong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Steven Lim
- Alfred Research Alliance Flow Cytometry Core Facility, Melbourne, VIC, Australia
| | - Jia Xi Chung
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rangi Kandane-Rathnayake
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rachel Koelmeyer
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Alberta Hoi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | | | | | - Sarah L Snelgrove
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Eric F Morand
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Rheumatology, Monash Health, Clayton, VIC, Australia
| | - Joshua D Ooi
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
26
|
Sprent J, Boyman O. Optimising IL-2 for Cancer Immunotherapy. Immune Netw 2024; 24:e5. [PMID: 38455463 PMCID: PMC10917570 DOI: 10.4110/in.2024.24.e5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.
Collapse
Affiliation(s)
- Jonathan Sprent
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst 2010, Australia
- St. Vincent’s Clinical School, University of New South Wales, Sydney 1466, Australia
- Menzies Institute of Medical Research, Hobart 7000, Australia
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich 8091, Switzerland
- Faculty of Medicine and Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
27
|
Safont G, Villar-Hernández R, Smalchuk D, Stojanovic Z, Marín A, Lacoma A, Pérez-Cano C, López-Martínez A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Romero I, Casas I, Strecker K, Preyer R, Rosell A, Latorre I, Domínguez J. Measurement of IFN-γ and IL-2 for the assessment of the cellular immunity against SARS-CoV-2. Sci Rep 2024; 14:1137. [PMID: 38212416 PMCID: PMC10784529 DOI: 10.1038/s41598-024-51505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The study of specific T-cell responses against SARS-CoV-2 is important for understanding long-term immunity and infection management. The aim of this study was to assess the dual IFN-γ and IL-2 detection, using a SARS-CoV-2 specific fluorescence ELISPOT, in patients undergoing acute disease, during convalescence, and after vaccination. We also evaluated humoral response and compared with T-cells with the aim of correlating both types of responses, and increase the number of specific response detection. Blood samples were drawn from acute COVID-19 patients and convalescent individuals classified according to disease severity; and from unvaccinated and vaccinated uninfected individuals. IgGs against Spike and nucleocapsid, IgMs against nucleocapsid, and neutralizing antibodies were also analyzed. Our results show that IFN-γ in combination with IL-2 increases response detection in acute and convalescent individuals (p = 0.023). In addition, IFN-γ detection can be a useful biomarker for monitoring severe acute patients, as our results indicate that those individuals with a poor outcome have lower levels of this cytokine. In some cases, the lack of cellular immunity is compensated by antibodies, confirming the role of both types of immune responses in infection, and confirming that their dual detection can increase the number of specific response detections. In summary, IFN-γ/IL-2 dual detection is promising for characterizing and assessing the immunization status, and helping in the patient management.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Daria Smalchuk
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Anabel López-Martínez
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Romero
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irma Casas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Kevin Strecker
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Rosemarie Preyer
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
28
|
Jacques C, Marchand F, Chatelais M, Brulefert A, Floris I. Understanding the Mode of Action of a Micro-Immunotherapy Formulation: Pre-Clinical Evidence from the Study of 2LEBV ® Active Ingredients. Life (Basel) 2024; 14:102. [PMID: 38255717 PMCID: PMC10821216 DOI: 10.3390/life14010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is often kept silent and asymptomatic; however, its reactivation induces a chronic and/or recurrent infection that is associated with numerous diseases, including cancer and inflammation-related disorders. As no specific treatment is currently available, the immune factors-based micro-immunotherapy (MI) medicine 2LEBV® could be considered a valuable therapeutic option to sustain the immune system in EBV reactivation. METHODS The present work aimed to investigate, for the first time, the effect of 2LEBV® in several in vitro models of uninfected immune-related cells. RESULTS 2LEBV® displayed phagocytosis-enhancing capabilities in granulocytes. In human peripheral blood mononuclear cells (PBMCs), it increased the intra- and extra-cellular expression of interleukin (IL)-2. Moreover, it modulated the secretion of other cytokines, increasing IL-4, IL-6, and tumor necrosis factor-α levels or lowering other cytokines levels such as IL-9. Finally, 2LEBV® reduced the expression of human leukocyte antigen (HLA)-II in endothelial cells and macrophages. CONCLUSIONS Although these data are still preliminary and the chosen models do not consider the underlying EBV-reactivation mechanisms, they still provide a better understanding of the mechanisms of action of 2LEBV®, both at functional and molecular levels. Furthermore, they open perspectives regarding the potential targets of 2LEBV® in its employment as a therapeutic intervention for EBV-associated diseases.
Collapse
Affiliation(s)
- Camille Jacques
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Adrien Brulefert
- QIMA Life Sciences, 1 bis rue des Plantes—CS 50011, 86160 Gençay, France;
| | - Ilaria Floris
- Pre-Clinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
29
|
Puopolo T, Chen Y, Ma H, Liu C, Seeram NP. Exploring immunoregulatory properties of a phenolic-enriched maple syrup extract through integrated proteomics and in vitro assays. Food Funct 2024; 15:172-182. [PMID: 38019191 PMCID: PMC11017828 DOI: 10.1039/d3fo04026g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Our laboratory has established a comprehensive program to investigate the phytochemical composition and nutritional/medicinal properties of phenolic-enriched maple syrup extract (MSX). Previous studies support MSX's therapeutic potential in diverse disease models, primarily through its anti-inflammatory effects. We recently demonstrated MSX's ability to regulate inflammatory signaling pathways and modulate inflammatory markers and proteins in a lipopolysaccharide (LPS)-induced peritonitis mouse model. However, MSX's immunoregulatory properties remain unknown. Herein, we investigated MSX's immunoregulatory properties for the first time using an integrated approach, combining data-dependent acquisition (DDA) and data-independent acquisition (DIA) strategies in a proteomic analysis of spleen tissue collected from the aforementioned peritonitis mouse model. Additionally, we conducted immune cell activation assays using macrophages and T lymphocytes. The DIA analysis unveiled a distinctive expression pattern involving three proteins-Krt83, Thoc2, and Vps16-which were present in both the control and MSX-treated groups but absent in the LPS-induced model group. Furthermore, proteins Ppih and Dpp9 exhibited significant reductions in the MSX-treated group. Ingenuity pathway analysis indicated that MSX may modulate several critical signaling pathways, exerting a suppressive effect on immune responses in various cell types involved in both innate and adaptive immunity. Our in vitro cell assays supported findings from the proteomics, revealing that MSX significantly reduced the levels of interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in LPS-stimulated human macrophage cells, as well as the levels of IL-2 in anti-CD3/anti-CD28-induced Jurkat T cells. Taken together, our investigations provide evidence that MSX exerts immune regulatory effects that impact both innate and adaptive immunity, which adds to the data supporting MSX's development as a functional food.
Collapse
Affiliation(s)
- Tess Puopolo
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Ying Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Chang Liu
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
30
|
Schardt JS, Walseng E, Le K, Yang C, Shah P, Fu Y, Alam K, Kelton CR, Gu Y, Huang F, Lin J, Liu W, Dippel A, Zhang H, Mulgrew K, Pryts S, Chennupati V, Chen HC, Denham J, Chen X, Pradhan P, Wu Y, Hardman C, Zhao C, Kierny M, Song Y, Dovedi SJ, Cemerski S, Mazor Y. IL-2-armored peptide-major histocompatibility class I bispecific antibodies redirect antiviral effector memory CD8+ T cells to induce potent anti-cancer cytotoxic activity with limited cytokine release. MAbs 2024; 16:2395499. [PMID: 39205483 PMCID: PMC11364066 DOI: 10.1080/19420862.2024.2395499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
T cell engagers (TCEs) are becoming an integral class of biological therapeutic owing to their highly potent ability to eradicate cancer cells. Nevertheless, the widespread utility of classical CD3-targeted TCEs has been limited by narrow therapeutic index (TI) linked to systemic CD4+ T cell activation and aberrant cytokine release. One attractive approach to circumvent the systemic activation of pan CD3+ T cells and reduce the risk of cytokine release syndrome is to redirect specific subsets of T cells. A promising strategy is the use of peptide-major histocompatibility class I bispecific antibodies (pMHC-IgGs), which have emerged as an intriguing modality of TCE, based on their ability to selectively redirect highly reactive viral-specific effector memory cytotoxic CD8+ T cells to eliminate cancer cells. However, the relatively low frequency of these effector memory cells in human peripheral blood mononuclear cells (PBMCs) may hamper their redirection as effector cells for clinical applications. To mitigate this potential limitation, we report here the generation of a pMHC-IgG derivative known as guided-pMHC-staging (GPS) carrying a covalent fusion of a monovalent interleukin-2 (IL-2) mutein (H16A, F42A). Using an anti-epidermal growth factor receptor (EGFR) arm as a proof-of-concept, tumor-associated antigen paired with a single-chain HLA-A *02:01/CMVpp65 pMHC fusion moiety, we demonstrate in vitro that the IL-2-armored GPS modality robustly expands CMVpp65-specific CD8+ effector memory T cells and induces potent cytotoxic activity against target cancer cells. Similar to GPS, IL-2-armored GPS molecules induce modulated T cell activation and reduced cytokine release profile compared to an analogous CD3-targeted TCE. In vivo we show that IL-2-armored GPS, but not the corresponding GPS, effectively expands grafted CMVpp65 CD8+ T cells from unstimulated human PBMCs in an NSG mouse model. Lastly, we demonstrate that the IL-2-armored GPS modality exhibits a favorable developability profile and monoclonal antibody-like pharmacokinetic properties in human neonatal Fc receptor transgenic mice. Overall, IL-2-armored GPS represents an attractive approach for treating cancer with the potential for inducing vaccine-like antiviral T cell expansion, immune cell redirection as a TCE, and significantly widened TI due to reduced cytokine release.
Collapse
Affiliation(s)
- John S. Schardt
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Even Walseng
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kim Le
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Chunning Yang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Pooja Shah
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Ying Fu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Kausar Alam
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yu Gu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Fengying Huang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Jia Lin
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Wenhai Liu
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Dippel
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Hanzhi Zhang
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | | | - Stacy Pryts
- Oncology ICC, AstraZeneca, Gaithersburg, MD, USA
| | | | - Hung-Chang Chen
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | | | | | - Yuling Wu
- Oncology ICC, AstraZeneca, Cambridge, UK
| | - Colin Hardman
- Discovery Bioanalysis, Clinical Pharmacology & Safety Sciences (CPSS), R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Chihao Zhao
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Michael Kierny
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Yang Song
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| | - Simon J. Dovedi
- Data Science and Advanced Analytics, AstraZeneca, Gaithersburg, MD, USA
| | | | - Yariv Mazor
- R&D Biologics Engineering, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
31
|
Djahanpour N, Ahsan N, Li B, Khan H, Connelly K, Leong-Poi H, Qadura M. A Systematic Review of Interleukins as Diagnostic and Prognostic Biomarkers for Peripheral Artery Disease. Biomolecules 2023; 13:1640. [PMID: 38002322 PMCID: PMC10669432 DOI: 10.3390/biom13111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Peripheral artery disease (PAD) involves atherosclerosis of the lower extremity arteries and is a major contributor to limb loss and death worldwide. Several studies have demonstrated that interleukins (ILs) play an important role in the development and progression of PAD; however, a comprehensive literature review has not been performed. Methods: A systematic review was conducted and reported according to PRISMA guidelines. MEDLINE was searched from inception to 5 December 2022, and all studies assessing the association between ILs and PAD were included. Results: We included 17 studies from a pool of 771 unique articles. Five pro-inflammatory ILs (IL-1β, IL-2, IL-5, IL-6, and IL-8) and one pro-atherogenic IL (IL-12) were positively correlated with PAD diagnosis and progression. In contrast, two anti-inflammatory ILs (IL-4 and IL-10) were protective against PAD diagnosis and adverse limb events. Specifically, IL-6 and IL-8 were the most strongly associated with PAD and can act as potential disease biomarkers to support the identification and treatment of PAD. Conclusions: Ongoing work to identify and validate diagnostic/prognostic inflammatory biomarkers for PAD has the potential to assist clinicians in identifying high-risk patients for further evaluation and management which could reduce the risk of adverse cardiovascular and limb events.
Collapse
Affiliation(s)
- Niousha Djahanpour
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Naiyara Ahsan
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Ben Li
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Kim Connelly
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
- Division of Cardiology, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Howard Leong-Poi
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
- Division of Cardiology, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
- Keenan Research Center for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
32
|
Pehlivan S, Aytac HM, Nursal AF, Tuncel FC, Pehlivan M. IL2RA rs2104286 and IL2 rs2069762 polymorphisms may be associated with bipolar disorder and its clinical findings. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2023; 43:441-452. [PMID: 37843874 DOI: 10.1080/15257770.2023.2266820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Study results supported that immuno-inflammatory pathways in the brain and environment contribute to the etiopathogenesis of bipolar disorder (BD), a chronic affective disease. Our study aimed to assess the relationship between BD risk and interleukin 2 (IL2) and interleukin 2 receptor subunit alpha (IL2RA) variants in a Turkish population. Genomic DNA from 86 diagnosed BD patients and 100 healthy blood donors was extracted. IL2RA rs2104286, IL2 rs2069762, and IL2 rs2069763 variants were genotyped using the polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) method. It was compared to the relationship between the genotype distributions of these variants and clinical characteristics. Results were evaluated statistically. A statistically significant difference in the genotype distribution of the IL2RA rs2104286 variant was found between patients and controls. There was no GG genotype in the patient group. The IL2RA rs2104286 AA genotype was more common in the patient group than the controls, and the AG genotype was higher in the controls compared to the patients (p = 0.001, p = 0.001, respectively). The IL2 rs2069762 and IL2 rs2069763 genotype distributions did not differ between the patient and control groups (p > 0.05). We found that the clinical global impression severity (CGI-S) score was higher in those with IL2 rs2069762 TG and GG genotypes. In this study, we showed for the first time that the genotype distribution of IL2RA rs2104286 and IL2 rs2069762 is associated with BD susceptibility and CGI-S score in a Turkish population.
Collapse
Affiliation(s)
- Sacide Pehlivan
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Hasan Mervan Aytac
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
- Department of Psychiatry, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ayse Feyda Nursal
- Department of Medical Genetics, Faculty of Medicine, Hitit University, Corum, Turkey
| | - Fatima Ceren Tuncel
- Department of Medical Biology, Istanbul Faculty of Medicine, Istanbul University, Turkey
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Mustafa Pehlivan
- Department of Hematology, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
33
|
Xiao D, Zeng T, Zhu W, Yu ZZ, Huang W, Yi H, Lu SS, Feng J, Feng XP, Wu D, Wen Q, Zhou JH, Yuan L, Zhuang W, Xiao ZQ. ANXA1 Promotes Tumor Immune Evasion by Binding PARP1 and Upregulating Stat3-Induced Expression of PD-L1 in Multiple Cancers. Cancer Immunol Res 2023; 11:1367-1383. [PMID: 37566399 DOI: 10.1158/2326-6066.cir-22-0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
The deregulation of Annexin A1 (ANXA1), a regulator of inflammation and immunity, leads to cancer growth and metastasis. However, whether ANXA1 is involved in cancer immunosuppression is still unclear. Here, we report that ANXA1 knockdown (i) dramatically downregulates programmed cell death-ligand 1 (PD-L1) expression in breast cancer, lung cancer, and melanoma cells; (ii) promotes T cell-mediated killing of cancer cells in vitro; and (iii) inhibits cancer immune escape in immune-competent mice via downregulating PD-L1 expression and increasing the number and killing activity of CD8+ T cells. Mechanistically, ANXA1 functioned as a sponge molecule for interaction of PARP1 and Stat3. Specifically, binding of ANXA1 to PARP1 decreased PARP1's binding to Stat3, which reduced poly(ADP-ribosyl)ation and dephosphorylation of Stat3 and thus, increased Stat3's transcriptional activity, leading to transcriptionally upregulated expression of PD-L1 in multiple cancer cells. In clinical samples, expression of ANXA1 and PD-L1 was significantly higher in breast cancer, non-small cell lung cancer, and skin cutaneous melanoma compared with corresponding normal tissues and positively correlated in cancer tissues. Moreover, using both ANXA1 and PD-L1 proteins for predicting efficacy of anti-PD-1 immunotherapy and patient prognosis was superior to using individual proteins. Our data suggest that ANXA1 promotes cancer immune escape via binding PARP1 and upregulating Stat3-induced expression of PD-L1, that ANXA1 is a potential new target for cancer immunotherapy, and combination of ANXA1 and PD-L1 expression is a potential marker for predicting efficacy of anti-PD-1 immunotherapy in multiple cancers.
Collapse
Affiliation(s)
- Ding Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng-Zheng Yu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhuang
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
34
|
Kim HA, Kim H, Nam MK, Park JK, Lee MY, Chung S, Lee KM, Kuh HJ. Suppression of the antitumoral activity of natural killer cells under indirect coculture with cancer-associated fibroblasts in a pancreatic TIME-on-chip model. Cancer Cell Int 2023; 23:219. [PMID: 37759302 PMCID: PMC10536815 DOI: 10.1186/s12935-023-03064-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Recently, natural killer (NK) cells emerged as a treatment option for various solid tumors. However, the immunosuppressive tumor immune microenvironment (TIME) can reduce the cytotoxic ability of NK cells in pancreatic ductal adenocarcinoma. Cancer-associated fibroblasts within the tumor stroma can suppress immune surveillance by dysregulating factors involved in the cellular activity of NK cells. Herein, the effect of activated pancreatic stellate cells (aPSCs) on NK cell-mediated anticancer efficacy under three-dimensional (3D) coculture conditions was investigated. METHODS 3D cocultures of PANC-1 tumor spheroids (TSs) with aPSCs and NK-92 cells in a collagen matrix were optimized to identify the occurring cellular interactions and differential cytokine profiles in conditioned media using microchannel chips. PANC-1 TSs and aPSCs were indirectly cocultured, whereas NK-92 cells were allowed to infiltrate the TS channel using convective medium flow. RESULTS Coculture with aPSCs promoted PANC-1 TSs growth and suppressed the antitumor cytotoxic effects of NK-92 cells. Mutual inhibition of cellular activity without compromising migration ability was observed between aPSCs and NK-92 cells. Moreover, the reduced killing activity of NK-92 cells was found to be related with reduced granzyme B expression in NK cells. CONCLUSIONS Herein, a novel TIME-on-chip model based on the coculture of PANC-1 TSs, aPSCs, and NK-92 cells was described. This model may be useful for studying the detailed mechanisms underlying NK cells dysregulation and for exploring future therapeutic interventions to restore NK cell activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Hyun-Ah Kim
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunsoo Kim
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Min-Kyung Nam
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chuncheon, 24252 Republic of Korea
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 3940 North Elm Street, Denton, TX 76207 USA
| | - Seok Chung
- School of Mechanical Engineering, College of Engineering, Korea University, Seoul, Republic of Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-ku, Seoul, 06591 Republic of Korea
| |
Collapse
|
35
|
Voicu V, Brehar FM, Toader C, Covache-Busuioc RA, Corlatescu AD, Bordeianu A, Costin HP, Bratu BG, Glavan LA, Ciurea AV. Cannabinoids in Medicine: A Multifaceted Exploration of Types, Therapeutic Applications, and Emerging Opportunities in Neurodegenerative Diseases and Cancer Therapy. Biomolecules 2023; 13:1388. [PMID: 37759788 PMCID: PMC10526757 DOI: 10.3390/biom13091388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In this review article, we embark on a thorough exploration of cannabinoids, compounds that have garnered considerable attention for their potential therapeutic applications. Initially, this article delves into the fundamental background of cannabinoids, emphasizing the role of endogenous cannabinoids in the human body and outlining their significance in studying neurodegenerative diseases and cancer. Building on this foundation, this article categorizes cannabinoids into three main types: phytocannabinoids (plant-derived cannabinoids), endocannabinoids (naturally occurring in the body), and synthetic cannabinoids (laboratory-produced cannabinoids). The intricate mechanisms through which these compounds interact with cannabinoid receptors and signaling pathways are elucidated. A comprehensive overview of cannabinoid pharmacology follows, highlighting their absorption, distribution, metabolism, and excretion, as well as their pharmacokinetic and pharmacodynamic properties. Special emphasis is placed on the role of cannabinoids in neurodegenerative diseases, showcasing their potential benefits in conditions such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. The potential antitumor properties of cannabinoids are also investigated, exploring their potential therapeutic applications in cancer treatment and the mechanisms underlying their anticancer effects. Clinical aspects are thoroughly discussed, from the viability of cannabinoids as therapeutic agents to current clinical trials, safety considerations, and the adverse effects observed. This review culminates in a discussion of promising future research avenues and the broader implications for cannabinoid-based therapies, concluding with a reflection on the immense potential of cannabinoids in modern medicine.
Collapse
Affiliation(s)
- Victor Voicu
- Pharmacology, Toxicology and Clinical Psychopharmacology, “Carol Davila” University of Medicine and Pharmacy in Bucharest, 020021 Bucharest, Romania;
- Medical Section within the Romanian Academy, 010071 Bucharest, Romania
| | - Felix-Mircea Brehar
- Neurosurgery Department, Emergency Clinical Hospital Bagdasar-Arseni, 041915 Bucharest, Romania
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Andrei Bordeianu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (R.-A.C.-B.); (A.D.C.); (A.B.); (H.P.C.); (B.-G.B.); (L.-A.G.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
36
|
Al-Hawary SIS, Saleh EAM, Mamajanov NA, S Gilmanova N, Alsaab HO, Alghamdi A, Ansari SA, Alawady AHR, Alsaalamy AH, Ibrahim AJ. Breast cancer vaccines; A comprehensive and updated review. Pathol Res Pract 2023; 249:154735. [PMID: 37611432 DOI: 10.1016/j.prp.2023.154735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
According to the International Agency for Research on Cancer, breast cancer is more common than lung cancer globally. By 2040, mortality from breast cancer will rise by 50% and 40%, respectively. Despite advances in chemotherapy, endocrine therapy, and HER2-targeted therapy, breast cancer metastases and recurrences remain challenging to treat. Cancer vaccines are an effective treatment option because they stimulate a long-lasting immune response that will eliminate tumor cells. In studies on the breast cancer vaccine, no appreciable advantages were discovered. A recent study claims that immune checkpoint inhibitors or anti-HER2 monoclonal antibodies may be used in vaccinations. This vaccination strengthens the immune system to fight off breast cancer cells. Clinical trials have been conducted on DNA, dendritic cells, and peptide-based breast cancer vaccines. Studies on the breast cancer vaccine have employed subcutaneous, intramuscular, and intradermal injections. Clinical studies have shown that these efforts have not been successful. Several factors might have slowed the development of a breast cancer vaccine. The complexity of the immune system makes it challenging to create cancer vaccines. Given the heterogeneity of breast cancer, there may be a need for different vaccination strategies. Despite these obstacles, research into breast cancer vaccines continues. Effective methods for creating vaccines include immune checkpoint inhibition and anti-HER2 monoclonal antibodies. Research is also being done on specialized tumor vaccinations.
Collapse
Affiliation(s)
| | - Ebraheem Abdu Musad Saleh
- Department of Chemistry, Prince Sattam Bin Abdulaziz University, College of Arts and Science, Wadi Al-Dawasir 11991, Saudi Arabia
| | - Nodirjon Akhmetovich Mamajanov
- Teaching Assistant, MD, Department of Public Health, Healthcare Management and Physical Culture, Tashkent State Dental Institute, Tashkent, Uzbekistan; Research scholar, Department of Scientific Affairs, Samarkand State Medical Institute, Samarkand, Uzbekistan
| | - Nataliya S Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif 21944, Saudi Arabia
| | - Adel Alghamdi
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Shakeel Ahmed Ansari
- Department of Biochemistry, General Medicine Practice Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| | - Ahmed Hussien Radie Alawady
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ali Hashiem Alsaalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | | |
Collapse
|
37
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
38
|
Agrez M, Rybchyn MS, De Silva WGM, Mason RS, Chandler C, Piva TJ, Thurecht K, Fletcher N, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall A, Gooding H, Gallagher L. An immunomodulating peptide to counteract solar radiation-induced immunosuppression and DNA damage. Sci Rep 2023; 13:11702. [PMID: 37474630 PMCID: PMC10359417 DOI: 10.1038/s41598-023-38890-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Ultraviolet radiation (UVR) induces immunosuppression and DNA damage, both of which contribute to the rising global incidence of skin cancer including melanoma. Nucleotide excision repair, which is activated upon UVR-induced DNA damage, is linked to expression of interleukin-12 (IL-12) which serves to limit immunosuppression and augment the DNA repair process. Herein, we report an immunomodulating peptide, designated IK14800, that not only elicits secretion of IL-12, interleukin-2 (IL-2) and interferon-gamma (IFN-γ) but also reduces DNA damage in the skin following exposure to UVR. Combined with re-invigoration of exhausted CD4+ T cells, inhibition of UVR-induced MMP-1 release and suppression of B16F10 melanoma metastases, IK14800 offers an opportunity to gain further insight into mechanisms underlying the development and progression of skin cancers.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | - Mark Stephen Rybchyn
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
| | | | - Rebecca Sara Mason
- School of Medical Sciences and Bosch Institute, University of Sydney, Sydney, Australia
- Charles Perkins Centre and School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | | | - Terrence J Piva
- Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Kristofer Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology at the University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, Sydney, NSW, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | - Andrew Hall
- Concept Life Sciences Limited, Edinburgh, Scotland
| | | | | |
Collapse
|
39
|
Long D, Alghoul Z, Sung J, Yang C, Merlin D. Oral administration of M13-loaded nanoliposomes is safe and effective to treat colitis-associated cancer in mice. Expert Opin Drug Deliv 2023; 20:1443-1462. [PMID: 37379034 PMCID: PMC10810011 DOI: 10.1080/17425247.2023.2231345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
OBJECTIVE Colitis-associated cancer (CAC) treatment lacks effective small-molecule drugs and efficient targeted delivery systems. Here, we loaded M13 (an anti-cancer drug candidate) to colon-targeting ginger-derived nanoliposomes (NL) and investigated if orally administered M13-NL could enhance the anticancer effects of M13 in CAC mouse models. METHODS The biopharmaceutical properties of M13 were assessed by physicochemical characterizations. The in vitro immunotoxicity of M13 was assessed against PBMCs using FACS and the mutagenic potential of M13 was evaluated by the Ames assay. The in vitro efficacy of M13 was tested in 2D- and 3D-cultured cancerous intestinal cells. AOM/DSS-induced CAC mice were used to evaluate the therapeutic effects of free M13 or M13-NL on CAC in vivo. RESULTS M13 has beneficial physiochemical properties, including high stability, and no apparent immunotoxicity or mutagenic potential in vitro. M13 is effective against the growth of 2D- and 3D-cultured cancerous intestinal cells in vitro. The in vivo safety and efficacy of M13 were significantly improved by using NL for drug delivery (p < 0.001). Oral administration of M13-NL exhibited excellent therapeutic effects in AOM/DSS-induced CAC mice. CONCLUSION M13-NL is a promising oral drug formulation for CAC treatment.
Collapse
Affiliation(s)
- Dingpei Long
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Zahra Alghoul
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Junsik Sung
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Digestive Disease Research Group, Georgia State University, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
40
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
41
|
Dhara S, Chakraborty K. Immunomodulatory effect of sulfated galactofucan from marine macroalga Turbinaria conoides. Int J Biol Macromol 2023; 238:124021. [PMID: 36921815 DOI: 10.1016/j.ijbiomac.2023.124021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Sulfated polysaccharides are effective immunostimulating agents by activating several intracellular signaling pathways. A sulfated (1 → 3)/(1 → 4)-linked galactofucan TCP-3 with promising immunomodulatory effects was purified from a marine macroalga Turbinaria conoides. The immune-enhancing potential of TCP-3 (100-400 mg/kg BW) was evaluated on cyclophosphamide-induced immunosuppressed animals by increasing bone marrow cellularity (10-13 cells/femur/mL x 106), α-esterase activity (1200-1700 number of positive cells/4000 BMC), interferon-γ (1.31-1.49 pg/mL), interleukin-2 (3.49-3.99 pg/mL) secretion, and WBC count (> 3000 cells/cu mm). The proliferation of lymphocytes for in vitro and in vivo conditions was enhanced by administering TCP-3 besides regulating the secretion of pro-inflammatory cytokines (interleukin-6/1β/12, tumor necrosis factor-α, transforming growth factor-β), and an inducible isoform of nitric oxide synthase. A promising reduction of viral copy formation was observed by administering TCP-3 (< 2 × 107 number) on SARS CoV-2 (delta variant) induced Vero cells in comparison with the infected group (> 5 × 107 number).
Collapse
Affiliation(s)
- Shubhajit Dhara
- Department of Chemistry, Mangalore University, Mangalagangothri 574199, Karnataka State, India
| | - Kajal Chakraborty
- Marine Biotechnology, Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| |
Collapse
|
42
|
Escobar-Guevara EE, de Quesada-Martínez ME, Roldán-Dávila YB, Alarcón de Noya B, Alfonzo-Díaz MA. Defects in immune response to Toxoplasma gondii are associated with enhanced HIV-1-related neurocognitive impairment in co-infected patients. PLoS One 2023; 18:e0285976. [PMID: 37224128 DOI: 10.1371/journal.pone.0285976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/07/2023] [Indexed: 05/26/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) and Toxoplasma gondii can invade the central nervous system and affect its functionality. Advanced HIV-1 infection has been associated with defects in immune response to T. gondii, leading to reactivation of latent infections and development of toxoplasmic encephalitis. This study evaluates relationship between changes in immune response to T. gondii and neurocognitive impairment in HIV-1/T. gondii co-infected patients, across different stages of HIV-1 infection. The study assessed the immune response to T. gondii by measuring cytokine production in response to parasite antigens, and also neurocognitive functions by performing auditory and visual P300 cognitive evoked potentials, short term memory (Sternberg) and executive function tasks (Wisconsin Card Sorting Test-WCST) in 4 groups of individuals: HIV-1/T. gondii co-infected (P2), HIV-1-infected/T. gondii-non-infected (P1), HIV-1-non-infected/T. gondii-infected (C2) and HIV-1-non-infected/T. gondii-non-infected (C1). Patients (P1 and P2) were grouped in early/asymptomatic (P1A and P2A) or late/symptomatic (P1B/C and P2B/C) according to peripheral blood CD4+ T lymphocyte counts (>350 or <350/μL, respectively). Groups were compared using T-student or U-Mann-Whitney tests as appropriate, p<0.05 was considered as significantly. For P300 waves, HIV-1-infected patients (P1) had significantly longer latencies and significantly smaller amplitudes than uninfected controls, but HIV-1/T. gondii co-infected patients (P2) had significantly longer latencies and smaller amplitude than P1. P1 patients had significantly poorer results than uninfected controls in Sternberg and WCST, but P2 had significantly worse results than P1. HIV-1 infection was associated with significantly lower production of IL-2, TNF-α and IFN-γ in response to T. gondii from early/asymptomatic stages, when comparing P2 patients to C2 controls. These findings may indicate impairment in anti-parasitic response in co-infected patients, facilitating early limited reactivation of the parasitic latent infection, therefore creating cumulative damage in the brain and affecting neurocognitive functions from asymptomatic stages of HIV-1 infection, as suggested by defects in co-infected patients in this study.
Collapse
Affiliation(s)
- Edwin Eliel Escobar-Guevara
- Laboratory of Cellular Immunophysiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Department of Immunology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Laboratory of Physiopathology, Venezuelan Institute for Scientific Research, Caracas, Venezuela
| | | | - Yhajaira Beatriz Roldán-Dávila
- Service of Infectology, José Ignacio Baldó Hospital, Caracas, Venezuela
- Department of Microbiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
| | | | - Miguel Antonio Alfonzo-Díaz
- Laboratory of Cellular Immunophysiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Department of Physiology, José Maria Vargas School of Medicine, Central University of Venezuela, Caracas, Venezuela
- Academic Department, Salvador Allende Latin-American School of Medicine, San Antonio de Los Altos, Miranda State, Venezuela
| |
Collapse
|
43
|
Yu ZZ, Liu YY, Zhu W, Xiao D, Huang W, Lu SS, Yi H, Zeng T, Feng XP, Yuan L, Qiu JY, Wu D, Wen Q, Zhou JH, Zhuang W, Xiao ZQ. ANXA1-derived peptide for targeting PD-L1 degradation inhibits tumor immune evasion in multiple cancers. J Immunother Cancer 2023; 11:jitc-2022-006345. [PMID: 37001908 PMCID: PMC10069584 DOI: 10.1136/jitc-2022-006345] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) therapy targeting programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) shows promising clinical benefits. However, the relatively low response rate highlights the need to develop an alternative strategy to target PD-1/PD-L1 immune checkpoint. Our study focuses on the role and mechanism of annexin A1 (ANXA1)-derived peptide A11 degrading PD-L1 and the effect of A11 on tumor immune evasion in multiple cancers.MethodsBinding of A11 to PD-L1 was identified by biotin pull-down coupled with mass spectrometry analysis. USP7 as PD-L1’s deubiquitinase was found by screening a human deubiquitinase cDNA library. The role and mechanism of A11 competing with USP7 to degrade PD-L1 were analyzed. The capability to enhance the T cell-mediated tumor cell killing activity and antitumor effect of A11 via suppressing tumor immune evasion were investigated. The synergistic antitumor effect of A11 and PD-L1 mAb (monoclonal antibody) via suppressing tumor immune evasion were also studied in mice. The expression and clinical significance of USP7 and PD-L1 in cancer tissues were evaluated by immunohistochemistry.ResultsA11 decreases PD-L1 protein stability and levels by ubiquitin proteasome pathway in breast cancer, lung cancer and melanoma cells. Mechanistically, A11 competes with PD-L1’s deubiquitinase USP7 for binding PD-L1, and then degrades PD-L1 by inhibiting USP7-mediated PD-L1 deubiquitination. Functionally, A11 promotes T cell ability of killing cancer cells in vitro, inhibits tumor immune evasion in mice via increasing the population and activation of CD8+T cells in tumor microenvironment, and A11 and PD-1 mAb possess synergistic antitumor effect in mice. Moreover, expression levels of both USP7 and PD-L1 are significantly higher in breast cancer, non-small cell lung cancer and skin melanoma tissues than those in their corresponding normal tissues and are positively correlated in cancer tissues, and both proteins for predicting efficacy of PD-1 mAb immunotherapy and patient prognosis are superior to individual protein.ConclusionOur results reveal that A11 competes with USP7 to bind and degrade PD-L1 in cancer cells, A11 exhibits obvious antitumor effects and synergistic antitumor activity with PD-1 mAb via inhibiting tumor immune evasion and A11 can serve as an alternative strategy for ICIs therapy in multiple cancers.
Collapse
Affiliation(s)
- Zheng-Zheng Yu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yun-Ya Liu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhu
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ding Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Huang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Zeng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xue-Ping Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Yuan
- Department of Nuclear Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jie-Ya Qiu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Wu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Wen
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian-Hua Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital of Central South University, Changsha, Hunan, China
- The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital of Central South University, Changsha, Hunan, China
- National Clinical Research Center of Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Melamed JR, Yerneni SS, Arral ML, LoPresti ST, Chaudhary N, Sehrawat A, Muramatsu H, Alameh MG, Pardi N, Weissman D, Gittes GK, Whitehead KA. Ionizable lipid nanoparticles deliver mRNA to pancreatic β cells via macrophage-mediated gene transfer. SCIENCE ADVANCES 2023; 9:eade1444. [PMID: 36706177 PMCID: PMC9882987 DOI: 10.1126/sciadv.ade1444] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/27/2022] [Indexed: 05/19/2023]
Abstract
Systemic messenger RNA (mRNA) delivery to organs outside the liver, spleen, and lungs remains challenging. To overcome this issue, we hypothesized that altering nanoparticle chemistry and administration routes may enable mRNA-induced protein expression outside of the reticuloendothelial system. Here, we describe a strategy for delivering mRNA potently and specifically to the pancreas using lipid nanoparticles. Our results show that delivering lipid nanoparticles containing cationic helper lipids by intraperitoneal administration produces robust and specific protein expression in the pancreas. Most resultant protein expression occurred within insulin-producing β cells. Last, we found that pancreatic mRNA delivery was dependent on horizontal gene transfer by peritoneal macrophage exosome secretion, an underappreciated mechanism that influences the delivery of mRNA lipid nanoparticles. We anticipate that this strategy will enable gene therapies for intractable pancreatic diseases such as diabetes and cancer.
Collapse
Affiliation(s)
- Jilian R. Melamed
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Mariah L. Arral
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samuel T. LoPresti
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Namit Chaudhary
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Anuradha Sehrawat
- Department of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George K. Gittes
- Department of Pediatric Surgery, Department of Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Kathryn A. Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
45
|
Additive Effects of Dietary Supplementation with Zeolite and Methyl-Sulfonyl-Methane on Growth Performance and Interleukin Levels of Broiler Chickens. J Poult Sci 2023; 60:2023003. [PMID: 36756049 PMCID: PMC9884634 DOI: 10.2141/jpsa.2023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
Silicate minerals are common additives in poultry feed. To assess their effects, we added zeolite (ZEO) and methyl-sulfonyl-methane (MSM) to broiler chicken diets. A total of 960 one-day-old Ross broiler chicks were randomly divided into four dietary groups with six replicates. Each broiler was maintained until it reached 35 days of age. A completely randomized 2 × 2 experimental design was used, with two ZEO (0 and 1.0%) and two MSM (0 and 0.10%) levels. We observed an additive effect (P<0.05) on interleukin-2 (IL-2) concentrations in broiler bursa and serum when both ZEO and MSM were present. Both ZEO or MSM produced significant (P<0.05) increases in body weight, weight gain, and feed intake. Both increased IL-2 and IL-6 levels in the bursa and serum. Neither affected the serum concentrations of albumin, AST, cholesterol, HDL cholesterol, glucose, total protein, or triglycerides. In summary, these results support supplementation with ZEO and MSM in broiler diets, both separately and in combination.
Collapse
|
46
|
Siewe N, Friedman A. Cancer therapy with immune checkpoint inhibitor and CSF-1 blockade: A mathematical model. J Theor Biol 2023; 556:111297. [PMID: 36228716 DOI: 10.1016/j.jtbi.2022.111297] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
Immune checkpoint inhibitors (ICIs) introduced in recent years have revolutionized the treatment of many metastatic cancers. However, data suggest that treatment has benefits only in a limited percentage of patients, and that this is due to immune suppression of the tumor microenvironment (TME). Anti-tumor inflammatory macrophages (M1), which are attracted to the TME, are converted by tumor secreted cytokines, such as CSF-1, to pro-tumor anti-inflammatory macrophages (M2), or tumor associated macrophages (TAMs), which block the anti-tumor T cells. In the present paper we develop a mathematical model that represents the interactions among the immune cells and cancer in terms of differential equations. The model can be used to assess treatments of combination therapy of anti-PD-1 with anti-CSF-1. Examples are given in comparing the efficacy among different strategies for anti-CSF-1 dosing in a setup of clinical trials.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY, USA.
| | - Avner Friedman
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
47
|
Ayala C, Fishman M, Noyelle M, Bassiri H, Young W. Species Differences in Blood Lymphocyte Responses After Spinal Cord Injury. J Neurotrauma 2023; 40:807-819. [PMID: 36367185 PMCID: PMC10150731 DOI: 10.1089/neu.2022.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
People with spinal cord injury (SCI) get recurrent infections, such as urinary tract infections (UTIs) and pneumonias, that cause mortality and worsen neurological recovery. Over the past decades, researchers have proposed that post-SCI lymphopenia and decreased lymphocyte function increase susceptibility to infections and worsen neurological outcome in humans, leading to a condition called SCI-induced immune depression syndrome (SCI-IDS). In this review, we explore how SCI affects blood lymphocyte homeostasis and function in humans and rodents. Understanding how SCI affects blood lymphocytes will help the management of recurrent infections in spinal cord injured people and shed light on the clinical translation of findings in animal models to humans.
Collapse
Affiliation(s)
- Carlos Ayala
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA.,New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, USA
| | - Morgan Fishman
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Margot Noyelle
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Hamid Bassiri
- Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Wise Young
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
48
|
Yildirim M, Degirmenci U, Akkapulu M, Gungor M, Oztornacı RO, Berkoz M, Comelekoglu U, Yalın AE, Yalın S. Anti-Inflammatory Effects of Usnic Acid in Breast Cancer. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162023010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Baker R, Hontecillas R, Tubau-Juni N, Leber AJ, Kale S, Bassaganya-Riera J. Computational modeling of complex bioenergetic mechanisms that modulate CD4+ T cell effector and regulatory functions. NPJ Syst Biol Appl 2022; 8:45. [DOI: 10.1038/s41540-022-00263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/11/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractWe built a computational model of complex mechanisms at the intersection of immunity and metabolism that regulate CD4+ T cell effector and regulatory functions by using coupled ordinary differential equations. The model provides an improved understanding of how CD4+ T cells are shaping the immune response during Clostridioides difficile infection (CDI), and how they may be targeted pharmacologically to produce a more robust regulatory (Treg) response, which is associated with improved disease outcomes during CDI and other diseases. LANCL2 activation during CDI decreased the effector response, increased regulatory response, and elicited metabolic changes that favored Treg. Interestingly, LANCL2 activation provided greater immune and metabolic modulation compared to the addition of exogenous IL-2. Additionally, we identified gluconeogenesis via PEPCK-M as potentially responsible for increased immunosuppressive behavior in Treg cells. The model can perturb immune signaling and metabolism within a CD4+ T cell and obtain clinically relevant outcomes that help identify novel drug targets for infectious, autoimmune, metabolic, and neurodegenerative diseases.
Collapse
|
50
|
Oronsky B, Gastman B, Conley AP, Reid C, Caroen S, Reid T. Oncolytic Adenoviruses: The Cold War against Cancer Finally Turns Hot. Cancers (Basel) 2022; 14:4701. [PMID: 36230621 PMCID: PMC9562194 DOI: 10.3390/cancers14194701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 11/27/2022] Open
Abstract
Oncolytic viruses, colloquially referred to as "living drugs", amplify themselves and the therapeutic transgenes that they carry to stimulate an immune response both locally and systemically. Remarkable exceptions aside, such as the recent 14-patient trial with the PD-1 inhibitor, dostarlimab, in mismatch repair (MMR) deficient rectal cancer, where the complete response rate was 100%, checkpoint inhibitors are not cure-alls, which suggests the need for a combination partner like oncolytic viruses to prime and augment their activity. This review focuses on adenoviruses, the most clinically investigated of all the oncolytic viruses. It covers specific design features of clinical adenoviral candidates and highlights their potential both alone and in combination with checkpoint inhibitors in clinical trials to turn immunologically "cold" and unresponsive tumors into "hotter" and more responsive ones through a domino effect. Finally, a "mix-and-match" combination of therapies based on the paradigm of the cancer-immunity cycle is proposed to augment the immune responses of oncolytic adenoviruses.
Collapse
Affiliation(s)
| | | | - Anthony P. Conley
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Scott Caroen
- EpicentRx, Torrey Pines, La Jolla, CA 92037, USA
| | - Tony Reid
- EpicentRx, Torrey Pines, La Jolla, CA 92037, USA
| |
Collapse
|