1
|
Shirani Asl V, Rafieemehr H, Tamaddon G. The impact of Trifolium pratense extract on apoptosis and autophagy in NALM-6 cells: implications for B-ALL intervention. Med Oncol 2024; 41:257. [PMID: 39352436 DOI: 10.1007/s12032-024-02485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 11/14/2024]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a prevalent malignancy predominantly affecting children, poses challenges such as drug resistance and cytotoxicity despite available treatment methods. The persistence of these challenges underscores the necessity for innovative therapeutic approaches to enhance efficacy. Natural compounds derived from plants, recognized for their potential to inhibit cancer cell growth, have drawn attention. Trifolium pratense extract, known for its significant anticancer properties in previous studies, was the focus of this investigation. This experimental study aimed to explore the impact of T. pratense extract on apoptosis and autophagy in NALM-6 cells. The cells were exposed to varying concentrations of the extract at specific time intervals, with viability and metabolic activity assessed using Trypan blue exclusion and MTT assays. Flow cytometry was employed to evaluate apoptosis using Annexin V/PI staining and ROS production using DCFH-DA staining. Real-time PCR was used to quantify gene expression related to apoptosis, autophagy, and oxidative stress, with data analysis performed using GraphPad PRISM software. Trifolium pratense extract demonstrated the capacity to induce apoptosis, autophagy, and significantly increase ROS production in NALM-6 cells. These effects were facilitated by the upregulation of corresponding genes. The MTT assay revealed an IC50 of 231 μg/mL at 48 h, and Flow cytometry analysis showed a 51.8% increase in apoptosis in this cell line. Overall, this study emphasizes the effectiveness of T. pratense extract in inducing autophagy and apoptosis pathways in NALM-6 cells derived from B-cell acute lymphoblastic leukemia, suggesting its potential as a candidate for further investigation as a supplement in ALL treatment.
Collapse
Affiliation(s)
- Vida Shirani Asl
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamhossein Tamaddon
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Chen L, Hao L, Yanshuo C, FangFang W, Daqin C, Weidong X, Jian X, Shaodong C, Hongyu Z, Ke X. Grape seed proanthocyanidins regulate mitophagy of endothelial cells and promote wound healing in mice through p-JNK/FOXO3a/ROS signal pathway. Arch Biochem Biophys 2023; 749:109790. [PMID: 37858664 DOI: 10.1016/j.abb.2023.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/14/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Skin wound healing is a dynamic and complex process that involves multiple physiological and cellular events. Grape seed proanthocyanidins (GSP) have strong anti-oxidation and elimination of oxygen free radicals, and have been shown to significantly promote wound healing, but the underlying mechanism remains unclear. Studies have indicated that reactive oxygen species (ROS) acts as an upstream signal to induce mitophagy, suggesting that GSP can regulate mitophagy through the signal pathway. This study aimed to investigate whether GSP regulates mitophagy by down-regulating oxidative stress to promote wound healing. In vivo, GSP treatment accelerated wound healing, granulation tissue formation, collagen deposition, and angiogenesis in mice. Moreover, GSP down-regulated ROS levels and promoted the expression of antioxidant proteins by up-regulating the expression of p-JNK/FOXO3a protein, thereby regulating the expression of mitophagy-related proteins. In vitro, 4 μg/mL GSP showed no apparent toxic effects on cells and effectively reduce the oxidative stress damage of cells induced by H2O2. Western blot and superoxide anion fluorescence probe further confirmed that GSP effectively reduced Dihydroethidium content and up-regulated the expression of antioxidant proteins by activation of p-JNK/FOXO3a protein expression, thereby regulating mitophagy. Taken together, the findings from in vitro and in vivo experiments provide new insights into the promotion of wound healing by GSP.
Collapse
Affiliation(s)
- Liuqing Chen
- Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Li Hao
- Department of Orthopedics Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Chen Yanshuo
- Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Wu FangFang
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chen Daqin
- Department of Emergency, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xia Weidong
- Burn and Wound Healing Center, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiao Jian
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Chen Shaodong
- Department of Orthopedics Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China.
| | - Zhang Hongyu
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Xu Ke
- Institute of Life Sciences, Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China.
| |
Collapse
|
3
|
Maharati A, Moghbeli M. Forkhead box proteins as the critical regulators of cisplatin response in tumor cells. Eur J Pharmacol 2023; 956:175937. [PMID: 37541368 DOI: 10.1016/j.ejphar.2023.175937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Cisplatin (CDDP) is one of the most common chemotherapy drugs used in a wide range of cancer patients; however, there is a high rate of CDDP resistance among cancer patients. Considering the side effects of cisplatin in normal tissues, it is necessary to predict the CDDP response in cancer patients. Therefore, identifying the molecular mechanisms involved in CDDP resistance can help to introduce the prognostic markers. Several molecular mechanisms such as apoptosis inhibition, drug efflux, drug detoxification, and increased DNA repair are involved in CDDP resistance. Regarding the key role of transcription factors in regulation of many cellular processes related to drug resistance, in the present review, we discussed the role of Forkhead box (FOX) protein family in CDDP response. It has been reported that FOX proteins mainly promote CDDP resistance through the regulation of DNA repair, autophagy, epithelial-mesenchymal transition (EMT), and signaling pathways. Therefore, FOX proteins can be introduced as the prognostic markers to predict CDDP response in cancer patients. In addition, considering that oncogenic role of FOX proteins, the CDDP treatment along with FOX inhibition can be used as a therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Jerome MS, Kuthethur R, Kabekkodu SP, Chakrabarty S. Regulation of mitochondrial function by forkhead transcription factors. Biochimie 2022; 198:96-108. [PMID: 35367579 DOI: 10.1016/j.biochi.2022.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/09/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Mitochondria play a central role in several important cellular processes such as energy production, apoptosis, fatty acid catabolism, calcium regulation, and cellular stress response. Multiple nuclear transcription factors have been reported for their role in the regulation of mitochondrial gene expression. More recently, the role of the forkhead family of transcription factors in various mitochondrial pathways has been reported. Among them, FOXO1, FOXO3a, FOXG1, and FOXM1 have been reported to localize to the mitochondria, of which the first two have been observed to bind to the mitochondrial D-loop. This suggests an important role for forkhead transcription factors in the direct regulation of the mitochondrial genome and function. Forkheads such as FOXO3a, FOXO1, and FOXM1 are involved in the cellular response to oxidative stress, hypoxia, and nutrient limitation. Several members of the forkhead family of transcription factors are also involved in the regulation of nuclear-encoded genes associated with the mitochondrial pathway of apoptosis, respiration, mitochondrial dynamics, and homeostasis.
Collapse
Affiliation(s)
- Maria Sona Jerome
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
5
|
Kośmider K, Karska K, Kozakiewicz A, Lejman M, Zawitkowska J. Overcoming Steroid Resistance in Pediatric Acute Lymphoblastic Leukemia-The State-of-the-Art Knowledge and Future Prospects. Int J Mol Sci 2022; 23:ijms23073795. [PMID: 35409154 PMCID: PMC8999045 DOI: 10.3390/ijms23073795] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy among children. Despite the enormous progress in ALL therapy, resulting in achieving a 5-year survival rate of up to 90%, the ambitious goal of reaching a 100% survival rate is still being pursued. A typical ALL treatment includes three phases: remission induction and consolidation and maintenance, preceded by a prednisone prephase. Poor prednisone response (PPR) is defined as the presence of ≥1.0 × 109 blasts/L in the peripheral blood on day eight of therapy and results in significantly frequent relapses and worse outcomes. Hence, identifying risk factors of steroid resistance and finding methods of overcoming that resistance may significantly improve patients' outcomes. A mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK-ERK) pathway seems to be a particularly attractive target, as its activation leads to steroid resistance via a phosphorylating Bcl-2-interacting mediator of cell death (BIM), which is crucial in the steroid-induced cell death. Several mutations causing activation of MAPK-ERK were discovered, notably the interleukin-7 receptor (IL-7R) pathway mutations in T-cell ALL and rat sarcoma virus (Ras) pathway mutations in precursor B-cell ALL. MAPK-ERK pathway inhibitors were demonstrated to enhance the results of dexamethasone therapy in preclinical ALL studies. This report summarizes steroids' mechanism of action, resistance to treatment, and prospects of steroids therapy in pediatric ALL.
Collapse
Affiliation(s)
- Kamil Kośmider
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Katarzyna Karska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Agata Kozakiewicz
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland; (K.K.); (A.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Gębali 6, 20-093 Lublin, Poland;
- Correspondence:
| |
Collapse
|
6
|
Singh KB, Rai R, Khanka S, Singh D. Discontinuation of PTH therapy amplifies bone loss by increasing oxidative stress: An event ameliorated by sequential IL-17 neutralizing antibody therapy. Biomed Pharmacother 2021; 145:112390. [PMID: 34839260 DOI: 10.1016/j.biopha.2021.112390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis leads to excessive bone resorption which is not accompanied by equal amount of bone formation. PTH (1-34) forms the mainstay of bone anabolic therapy. Intermittent PTH (iPTH) has the ability to reconstruct skeleton, a property not shared by other anti-resorptives. In initial phases of PTH treatment, bone formation exceeds bone resorption. However, gradually this phase is replaced by increased bone resorption. Thus, a replacement post PTH discontinuation is much needed. Studies with bisphosphonates and Denosumab post PTH withdrawal have yielded promising but variable results. Thus, there is scope for trying new combinations. Our previous studies have shown the superior skeletal effects of neutralizing IL17 antibody (NIL17) over anti-RANKL antibody. Thus, here we investigated if sequential treatment of NIL17 after PTH withdrawal (SHIFT) could serve as a promising therapeutic approach for osteoporosis treatment. Our results show that PTH withdrawal (PTH-W) led to mitigation of its anabolic effects as evidenced by reduced BMD, bone trabecular and cortical microarchitectural parameters. In the continuous PTH (PTH-C) and the Shift group, all these parameters were preserved as par with the sham group. Shift therapy also significantly increased PINP levels. Most importantly, serum CTX-I levels and osteoclast numbers, which were elevated in PTH groups were significantly suppressed in NIL17 monotherapy and shift group. Also, expression of FOXO1 and ATF-4, the main regulators of redox balance and function in osteoblasts, were found to be enhanced maximally in the sequential therapy group. Our study thus advocates use of NIL17 as a replacement therapeutic option post PTH discontinuation.
Collapse
Affiliation(s)
- Krishna Bhan Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Reena Rai
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sonu Khanka
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
7
|
Habrowska-Górczyńska DE, Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. FOXO3a and Its Regulators in Prostate Cancer. Int J Mol Sci 2021; 22:ijms222212530. [PMID: 34830408 PMCID: PMC8625444 DOI: 10.3390/ijms222212530] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
Forkhead box O3 (FOXO3a) is a member of a subfamily of forkhead transcription factors involved in the basic processes within a cell, including proliferation, apoptosis, cell cycle regulation, and DNA damage. As a transcription factor, FOXO3a is involved in the response to cellular stress, UV radiation, or oxidative stress. Its regulation is based on the modification of proteins as well as regulation by other proteins, e.g., growth factors. FOXO3a is commonly deregulated in cancer cells, and its inactivation is associated with initiation and progression of tumorigenesis, suggesting its role as a tumor suppressor; however, its role is still disputed and seems to be dependent on upstream signaling. Nevertheless, FOXO3a serves as an interesting potential target in therapies as it is regulated during treatment with very common anti-cancer drugs such as paclitaxel, cisplatin, docetaxel, and doxorubicin. This review aims to update the reported role of FOXO3a in prostate cancer (PCa), with a focus on its regulators that might serve as potential therapeutic agents in PCa therapy.
Collapse
|
8
|
Zhang FL, Kong L, Zhao AH, Ge W, Yan ZH, Li L, De Felici M, Shen W. Inflammatory cytokines as key players of apoptosis induced by environmental estrogens in the ovary. ENVIRONMENTAL RESEARCH 2021; 198:111225. [PMID: 33971129 DOI: 10.1016/j.envres.2021.111225] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.
Collapse
Affiliation(s)
- Fa-Li Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ai-Hong Zhao
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Wei Ge
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lan Li
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China
| | - Massimo De Felici
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, 00133, Italy.
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
9
|
Choi S, Kim DY, Ahn Y, Lee EJ, Park JH. Suppression of Foxo3-Gatm by miR-132-3p Accelerates Cyst Formation by Up-Regulating ROS in Autosomal Dominant Polycystic Kidney Disease. Biomol Ther (Seoul) 2021; 29:311-320. [PMID: 33408288 PMCID: PMC8094068 DOI: 10.4062/biomolther.2020.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/11/2023] Open
Abstract
Accumulation of reactive oxygen species (ROS) is associated with the development of various diseases. However, the molecular mechanisms underlying oxidative stress that lead to such diseases like autosomal dominant polycystic kidney disease (ADPKD) remain unclear. Here, we observed that oxidative stress markers were increased in Pkd1f/f:HoxB7-Cre mice. Forkhead transcription factors of the O class (FOXOs) are known key regulators of the oxidative stress response, which have been observed with the expression of FoxO3a in an ADPKD mouse model in the present study. An integrated analysis of two datasets for differentially expressed miRNA, such as miRNA sequencing analysis of Pkd1 conditional knockout mice and microarray analysis of samples from ADPKD patients, showed that miR-132-3p was a key regulator of FOXO3a in ADPKD. miR-132-3p was significantly upregulated in ADPKD which directly targeted FOXO3 in both mouse and human cell lines. Interestingly, the mitochondrial gene Gatm was downregulated in ADPKD which led to a decreased inhibition of Foxo3. Overexpression of miR-132-3p coupled with knockdown of Foxo3 and Gatm increased ROS and accelerated cyst formation in 3D culture. This study reveals a novel mechanism involving miR-132-3p, Foxo3, and Gatm that is associated with the oxidative stress that occurs during cystogenesis in ADPKD.
Collapse
Affiliation(s)
- Seonju Choi
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Do Yeon Kim
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yejin Ahn
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Sciences and Research Institute of Women's Health, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
10
|
Thapa B, KC R, Bahniuk M, Schmitke J, Hitt M, Lavasanifar A, Kutsch O, Seol DW, Uludag H. Breathing New Life into TRAIL for Breast Cancer Therapy: Co-Delivery of pTRAIL and Complementary siRNAs Using Lipopolymers. Hum Gene Ther 2019; 30:1531-1546. [DOI: 10.1089/hum.2019.096] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Remant KC
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Markian Bahniuk
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Janine Schmitke
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mary Hitt
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Olaf Kutsch
- Department of Medicine, University of Alabama, Birmingham, Alabama
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Yang Y, Yin R, Wu R, Ramirez CN, Sargsyan D, Li S, Wang L, Cheng D, Wang C, Hudlikar R, Kuo HC, Lu Y, Kong AN. DNA methylome and transcriptome alterations and cancer prevention by triterpenoid ursolic acid in UVB-induced skin tumor in mice. Mol Carcinog 2019; 58:1738-1753. [PMID: 31237383 PMCID: PMC6722003 DOI: 10.1002/mc.23046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Nonmelanoma skin cancers (NMSCs) are the most common type of skin cancers. Major risk factors for NMSCs include exposure to ultraviolet (UV) irradiation. Ursolic acid (UA) is a natural triterpenoid enriched in blueberries and herbal medicinal products, and possess anticancer activities. This study focuses on the impact of UA on epigenomic, genomic mechanisms and prevention of UVB-mediated NMSC. CpG methylome and RNA transcriptome alterations of early, promotion and late stages of UA treated on UVB-induced NMSC in SKH-1 hairless mice were conducted using CpG methyl-seq and RNA-seq. Samples were collected at weeks 2, 15, and 25, and integrated bioinformatic analyses were performed to identify key pathways and genes modified by UA against UVB-induced NMSC. Morphologically, UA significantly reduced NMSC tumor volume and tumor number. DNA methylome showed inflammatory pathways IL-8, NF-κB, and Nrf2 pathways were highly involved. Antioxidative stress master regulator Nrf2, cyclin D1, DNA damage, and anti-inflammatory pathways were induced by UA. Nrf2, cyclin D1, TNFrsf1b, and Mybl1 at early (2 weeks) and late (25 weeks) stages were identified and validated by quantitative polymerase chain reaction. In summary, integration of CpG methylome and RNA transcriptome studies show UA alters antioxidative, anti-inflammatory, and anticancer pathways in UVB-induced NMSC carcinogenesis. Particularly, UA appears to drive Nrf2 and its upstream/downstream genes, anti-inflammatory (at early stages) and cell cycle regulatory (both early and late stages) genes, of which might contribute to the overall chemopreventive effects of UVB-induced MNSC. This study may provide potential biomarkers/targets for chemoprevention of early stage of UVB-induced NMSC in human.
Collapse
Affiliation(s)
- Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Christina N. Ramirez
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Cellular and Molecular Pharmacology Program, Rutgers Robert
Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Davit Sargsyan
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Lujing Wang
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - David Cheng
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Chao Wang
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Hsiao-Chen Kuo
- Graduate Program in Pharmaceutical Science, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Yaoping Lu
- Center for Phytochemicals Epigenome Studies, Ernest Mario
School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ
08854, USA
- Department of Chemical Biology, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of
Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854,
USA
| |
Collapse
|
12
|
Rong X, Rao J, Li D, Jing Q, Lu Y, Ji Y. TRIM69 inhibits cataractogenesis by negatively regulating p53. Redox Biol 2019; 22:101157. [PMID: 30844644 PMCID: PMC6402377 DOI: 10.1016/j.redox.2019.101157] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/19/2023] Open
Abstract
Ultraviolet B (UVB) irradiation can induce reactive oxygen species (ROS) production and apoptosis in human lens epithelial cells (HLECs), thus leading to the formation of cataracts. We studied the role of tripartite motif 69 (TRIM69) in cataract formation. The expression of TRIM69 protein was down-regulated in both human cataract capsule tissues and HLECs treated with UVB, whereas the expression of p53 protein exhibited an opposite trend. Ectopic expression of TRIM69 in HLECs significantly suppressed UVB-induced apoptosis and ROS production, whereas knockdown of TRIM69 promoted apoptosis and ROS production. TRIM69 can interact with p53 and induce its ubiquitination. The effects of TRIM69 overexpression in UVB-induced cell apoptosis and ROS production was clearly weakened by p53 overexpression, thus suggesting a role for p53 in TRIM69 functions. Furthermore, inhibition of ROS mitigated the effects of UVB irradiation on ROS production, cell apoptosis, forkhead box protein 3a (Foxo3a) phosphorylation, and TRIM69 expression. Additionally, Foxo3a overexpression significantly enhanced TRIM69 promoter activity, whereas Foxo3a knockdown had the opposite effect. In conclusion, we provide the first demonstration that Foxo3a is a potential transcription factor for TRIM69, and TRIM69 induces p53 ubiquitination. These results suggest that the Foxo3a/TRIM69/p53 regulatory network may be involved in cataract formation. TRIM69 significantly suppressed UVB-induced apoptosis and ROS production. TRIM69 can interact with p53 and induce its ubiquitination. Foxo3a overexpression significantly enhanced TRIM69 promoter activity. The Foxo3a/TRIM69/p53 regulatory network may be involved in cataract formation.
Collapse
Affiliation(s)
- Xianfang Rong
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Jun Rao
- Jiangxi Provincial Key Laboratory of Translational Medicine and Oncology, Jiangxi Cancer Hospital, Jiangxi Cancer Center, Nanchang, 330029, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Qinghe Jing
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Yi Lu
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China
| | - Yinghong Ji
- Department of Ophthalmology, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; Eye Institute, Eye & ENT Hospital of Fudan University, No. 83 Fenyang Road, Shanghai, 200031, China; National Health Commission (NHC) Key Laboratory of Myopia (Fudan University), No. 83 Fenyang Road, Shanghai, 200031, China; Laboratory of Myopia, Chinese Academy of Medical Sciences, No. 83 Fenyang Road, Shanghai, 200031, China; Key Laboratory of Visual Impairment and Restoration of Shanghai, No. 83 Fenyang Road, Shanghai, 200031, China.
| |
Collapse
|
13
|
Yao J, Zheng J, Cai J, Zeng K, Zhou C, Zhang J, Li S, Li H, Chen L, He L, Chen H, Fu H, Zhang Q, Chen G, Yang Y, Zhang Y. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response. FASEB J 2018; 33:1695-1710. [PMID: 30226809 DOI: 10.1096/fj.201800131rr] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have been reported to exert therapeutic effects on immunoregulation, tissue repair, and regeneration from the bench to the bedside. Increasing evidence demonstrates that extracellular vesicles (EVs) derived from MSCs could contribute to these effects and are considered as a potential replacement for stem cell-based therapies. However, the efficacy and underlying mechanisms of EV-based treatment in hepatic ischemia-reperfusion injury (IRI) remain unclear. Here, we demonstrated that human umbilical cord MSC-EVs (huc-MSC-EVs) could protect against IRI-induced hepatic apoptosis by reducing the infiltration of neutrophils and alleviating oxidative stress in hepatic tissue in vivo. Meanwhile, huc-MSC-EVs reduced the respiratory burst of neutrophils and prevented hepatocytes from oxidative stress-induced cell death in vitro. Interestingly, we found that the mitochondria-located antioxidant enzyme, manganese superoxide dismutase (MnSOD), was encapsulated in huc-MSC-EVs and reduced oxidative stress in the hepatic IRI model. Knockdown of MnSOD in huc-MSCs decreased the level of MnSOD in huc-MSC-EVs and attenuated the antiapoptotic and antioxidant capacities of huc-MSC-EVs, which could be partially rescued by MnSOD mimetic manganese (III) 5,10,15,20-tetrakis (4-benzoic acid) porphyrin (MnTBAP). In summary, these findings provide new clues to reveal the therapeutic effects of huc-MSC-EVs on hepatic IRI and evaluate their preclinical application.-Yao, J., Zheng, J., Cai, J., Zeng, K., Zhou, C., Zhang, J., Li, S., Li, H., Chen, L., He, L., Chen, H., Fu, H., Zhang, Q., Chen, G., Yang, Y., Zhang, Y. Extracellular vesicles derived from human umbilical cord mesenchymal stem cells alleviate rat hepatic ischemia-reperfusion injury by suppressing oxidative stress and neutrophil inflammatory response.
Collapse
Affiliation(s)
- Jia Yao
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianye Cai
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kaining Zeng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaorong Zhou
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiebin Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shihui Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liang Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Liying He
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huaxin Chen
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyuan Fu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- Cell-Gene Therapy Translational Medicine Research Center, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yingcai Zhang
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Organ Transplantation Research Center of Guangdong Province, Organ Transplantation Institute, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Liver Disease Research, Key Laboratory of Liver Disease Biotherapy and Translational Medicine, Guangdong Higher Education Institutes, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Maimaiti Y, Dong L, Aili A, Maimaitiaili M, Huang T, Abudureyimu K. Bim may be a poor prognostic biomarker in breast cancer patients especially in those with luminal A tumors. Cancer Biomark 2018; 19:411-418. [PMID: 28582840 DOI: 10.3233/cbm-160377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Bcl-2 interacting mediator of cell death (Bim) appears to have contradictory roles in cancer. It is uncertain whether Bim show prognostic significance in patients with breast cancer. OBJECTIVE To investigate the correlation between Bim expression and clinicopathological characteristics of breast cancer and to evaluate Bim's effect on overall survival (OS). METHODS We used immunohistochemistry (IHC) technique to detect the expression of Bim via tissue microarray in 275 breast cancer samples, Kaplan-Meier analysis to perform survival analysis, and Cox proportional hazards regression model to explore the risk factors of breast cancer. RESULTS The results revealed that Bim expression was significantly correlated with age, estrogen receptor (ER) and/or progesterone receptor (PR), human epidermal growth factor receptor (HER2) and Ki67 expression (P< 0.05). Bim expression was significantly different in the four molecular subtypes (P= 0.000). Survival analysis showed that Bim positive expression contributed to a shorter OS (P= 0.034), especially in patients with luminal A tumors (P= 0.039). Univariate and multivariate regression analysis showed that Bim was an independent prognostic factor for breast cancer (P< 0.05). CONCLUSION Bim may serve as an effective predictive factor for lower OS in breast cancer patients, especially in those with luminal A tumors.
Collapse
Affiliation(s)
- Yusufu Maimaiti
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China.,Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Lingling Dong
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Aikebaier Aili
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Maimaitiaili Maimaitiaili
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kelimu Abudureyimu
- Department of General Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
15
|
Mishra N, Lata S, Deshmukh P, Kamat K, Surolia A, Banerjee T. Insulin signaling pathway protects neuronal cell lines by Sirt3 mediated IRS2 activation. Biofactors 2018; 44:224-236. [PMID: 29411439 DOI: 10.1002/biof.1413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/28/2017] [Accepted: 01/05/2018] [Indexed: 01/15/2023]
Abstract
Cellular stress like ER and oxidative stress are the principle causative agents of various proteinopathies. Multifunctional protein PARK7/DJ-1 provides protection against cellular stress. Recently, insulin/IGF also has emerged as a neuro-protective molecule. However, it is not known whether DJ-1 and insulin/IGF complement each other for cellular protection in response to stress. In this study, we show for the first time, that in human and mouse neuronal cell lines, down regulation of DJ-1 for 48 h leads to compensatory upregulation of insulin/IGF signaling (IIS) pathway genes, namely, insulin receptor, insulin receptor substrate, and Akt under normal physiological conditions as well as in cellular stress conditions. Moreover, upon exogenous supply of insulin there is a marked increase in the IIS components both at gene and protein levels leading to down regulation and inactivation of GSK3β. By immunoprecipitation, it was observed that Sirt3 mediated deacetylation and activation of FoxO3a could not occur under DJ-1 downregulation. Transient DJ-1 downregulation also led to Akt mediated increased phosphorylation and nuclear exclusion of FoxO3a. When DJ-1 was downregulated increased interaction of Sirt3 with IRS2 was observed leading to its activation resulting in IIS upregulation. Thus, transient downregulation of DJ-1 leads to stimulation of IIS pathway by Sirt3 mediated IRS2 activation. Consequently, antiapoptotic program is triggered in neuronal cells via Akt-GSK3β-FoxO3a axis. © 2018 BioFactors, 44(3):224-236, 2018.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Biotechnology, Savitribai Phule Pune University (Former Pune University), Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sonam Lata
- Department of Biotechnology, Savitribai Phule Pune University (Former Pune University), Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Priyanka Deshmukh
- Department of Biotechnology, Savitribai Phule Pune University (Former Pune University), Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Kajal Kamat
- Department of Biotechnology, Savitribai Phule Pune University (Former Pune University), Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Avadhesha Surolia
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Tanushree Banerjee
- Department of Biotechnology, Savitribai Phule Pune University (Former Pune University), Ganeshkhind Road, Pune, Maharashtra 411007, India
| |
Collapse
|
16
|
van Doeselaar S, Burgering BMT. FOXOs Maintaining the Equilibrium for Better or for Worse. Curr Top Dev Biol 2018; 127:49-103. [PMID: 29433740 DOI: 10.1016/bs.ctdb.2017.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A paradigm shift is emerging within the FOXO field and accumulating evidence indicates that we need to reappreciate the role of FOXOs, at least in cancer development. Here, we discuss the possibility that FOXOs are both tumor suppressors as well as promoters of tumor progression. This is mostly dependent on the biological context. Critical to this dichotomous role is the notion that FOXOs are central in preserving cellular homeostasis in redox control, genomic stability, and protein turnover. From this perspective, a paradoxical role in both suppressing and enhancing tumor progression can be reconciled. As many small molecules targeting the PI3K pathway are developed by big pharmaceutical companies and/or are in clinical trial, we will discuss what the consequences may be for the context-dependent role of FOXOs in tumor development in treatment options based on active PI3K signaling in tumors.
Collapse
Affiliation(s)
- Sabina van Doeselaar
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Boudewijn M T Burgering
- Molecular Cancer Research, Center Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Feng YL, Jiang XT, Ma FF, Han J, Tang XL. Resveratrol prevents osteoporosis by upregulating FoxO1 transcriptional activity. Int J Mol Med 2017; 41:202-212. [PMID: 29115382 PMCID: PMC5746307 DOI: 10.3892/ijmm.2017.3208] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 10/12/2017] [Indexed: 11/11/2022] Open
Abstract
Resveratrol (3,5,4-trihydroxystilbene, RES), a natural antioxidant, prevents bone loss by attenuating damage caused by oxidative stress. Our previous research revealed that the forkhead box O1 (FoxO1)/β-catenin signaling pathway affected the proliferation and differentiation of osteoblasts through its regulation of redox balance, and RES regulated the expression of FoxO1 to control white adipose tissue and then ameliorate an overweight condition. Based on previous research, we hypothesized that RES regulates FoxO1 transcriptional activity through the phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway to achieve an antioxidative effect on osteoporosis and then we confirmed this hypothesis in the present study. An ovariectomized (OVX) rat model of osteoporosis and a H2O2-induced oxidative cell injury model in RAW 264.7 cells were established to explore the underlying molecular mechanisms of how RES confers an antioxidant effect and prevents bone loss. The obtained results demonstrated that RES strongly prevented bone loss induced by oxidative stress in vivo. More specifically, RES effectively decreased the receptor activator of nuclear factor-κB ligand (RANKL) together with the tartrate-resistant acid phosphatase-5b (TRAP-5b) level, but elevated the osteoproprotegrin (OPG) level and attenuated bone microarchitecture damage. Notably, RES, due to its antioxidant effect, suppressed RANKL production and then inhibited osteoclastogenesis in the OVX rats. In vitro, RES improved the oxidative stress status of cells and thus inhibited the mRNA expression of osteoclast-specific enzymes. These data indicate that RES has a significant bone protective effect by antagonizing oxidative stress to suppress osteoclast activity, function and formation both in vivo and in vitro. Moreover, at the molecular level, we confirmed, for the first time, that RES upregulated FoxO1 transcriptional activity by inhibiting the PI3K/AKT signaling pathway, and hence promoted resistance to oxidative damage and restrained osteoclastogenesis. Inhibition of the PI3K/AKT signaling pathway may be induced by RANKL. FoxO1 is a major action target of RES to confer anti-osteoporosis function, and whose effect stems from its power to improve redox balance.
Collapse
Affiliation(s)
- Yan-Ling Feng
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xiao-Tong Jiang
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fang-Fang Ma
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jie Han
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xu-Lei Tang
- The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
18
|
Thapa B, Bahadur KC R, Uludağ H. Novel targets for sensitizing breast cancer cells to TRAIL-induced apoptosis with siRNA delivery. Int J Cancer 2017; 142:597-606. [DOI: 10.1002/ijc.31079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Bindu Thapa
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
| | - Remant Bahadur KC
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences; University of Alberta; Edmonton AB Canada
- Department of Chemical and Material Engineering, Faculty of Engineering; University of Alberta; Edmonton AB Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry; University of Alberta; Edmonton AB Canada
| |
Collapse
|
19
|
Dixit M, Singh KB, Prakash R, Singh D. Functional block of IL-17 cytokine promotes bone healing by augmenting FOXO1 and ATF4 activity in cortical bone defect model. Osteoporos Int 2017; 28:2207-2220. [PMID: 28341898 DOI: 10.1007/s00198-017-4012-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/15/2017] [Indexed: 01/08/2023]
Abstract
UNLABELLED We determine the effect of interleukin (IL)-17 neutralizing antibody on new bone regeneration. Anti-IL-17 antibody promoted new bone regeneration in cortical bone defect model by augmenting FOXO1 and ATF4 activity thereby decreasing oxidative stress. Our study demonstrates the bone healing and regeneration potential of neutralizing IL-17antibody in osteoporotic fractures. INTRODUCTION The immune system plays important role in the fracture healing process. However, fracture healing is prolonged in disorders associated with systemic inflammation. Fracture healing is decelerated in osteoporosis, condition linked with systemic inflammation. Bone regeneration therapies like recombinant human BMP2 are associated with serious side effects. Studies have been carried out where agents like denosumab and infliximab enhance bone regeneration in osteoporotic conditions. Our previous studies show the osteoprotective and immunoprotective effects of neutralizing IL-17 antibody. Here, we determine the effect of IL-17 neutralizing antibody on new bone regeneration and compare its efficacy with known osteoporotic therapies. METHODS For the study, female BALB/c mice were ovariectomized or sham operated and left for a month followed by a 0.6-mm drill-hole injury in femur mid-diaphysis. The treatment was commenced next day onwards with anti-IL-17, anti-RANKL (Receptor activator of nuclear factor kappa-B ligand), parathyroid hormone (PTH), or alendronate for a period of 3, 10, or 21 days. Animals were then autopsied, and femur bones were dissected out for micro-CT scanning, confocal microscopy, and gene and protein expression studies. RESULTS Micro-CT analysis showed that anti-IL-17 antibody promoted bone healing at days 10 and 21, and the healing effect observed was significantly better than Ovx, anti-RANKL antibody, and ALN, and equal to PTH. Anti-IL-17 also enhanced new bone regeneration as assessed by calcein-labeling studies. Additionally, anti-IL-17 therapy enhanced expression of osteogenic markers and decreased oxidative stress at the injury site. CONCLUSION Overall, our study demonstrates bone healing and regeneration potential of neutralizing IL-17 antibody in osteoporotic fractures.
Collapse
Affiliation(s)
- M Dixit
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - K B Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - R Prakash
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India
| | - D Singh
- Division of Endocrinology and Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, B.S. 10/1, Sector-10, Jankipuram Extension, Lucknow, India.
| |
Collapse
|
20
|
Kanzaki H, Wada S, Narimiya T, Yamaguchi Y, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, Nakamura Y. Pathways that Regulate ROS Scavenging Enzymes, and Their Role in Defense Against Tissue Destruction in Periodontitis. Front Physiol 2017; 8:351. [PMID: 28611683 PMCID: PMC5447763 DOI: 10.3389/fphys.2017.00351] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/15/2017] [Indexed: 01/04/2023] Open
Abstract
Periodontitis, an inflammatory disease that affects the tissues surrounding the teeth, is a common disease worldwide. It is caused by a dysregulation of the host inflammatory response to bacterial infection, which leads to soft and hard tissue destruction. In particular, it is the excessive inflammation in response to bacterial plaque that leads to the release of reactive oxygen species (ROS) from neutrophils, which, then play a critical role in the destruction of periodontal tissue. Generally, ROS produced from immune cells exhibit an anti-bacterial effect and play a role in host defense and immune regulation. Excessive ROS, however, can exert cytotoxic effects, cause oxidative damage to proteins, and DNA, can interfere with cell growth and cell cycle progression, and induce apoptosis of gingival fibroblasts. Collectively, these effects enable ROS to directly induce periodontal tissue damage. Some ROS also act as intracellular signaling molecules during osteoclastogenesis, and can thus also play an indirect role in bone destruction. Cells have several protective mechanisms to manage such oxidative stress, most of which involve production of cytoprotective enzymes that scavenge ROS. These enzymes are transcriptionally regulated via NRF2, Sirtuin, and FOXO. Some reports indicate an association between periodontitis and these cytoprotective enzymes' regulatory axes, with superoxide dismutase (SOD) the most extensively investigated. In this review article, we discuss the role of oxidative stress in the tissue destruction manifest in periodontitis, and the mechanisms that protect against this oxidative stress.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Maxillo-Oral Disorders, Tohoku University HospitalSendai, Japan.,Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Yuuki Yamaguchi
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Yuta Katsumata
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Kanako Itohiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Sari Fukaya
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Yutaka Miyamoto
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi UniversityYokohama, Japan
| |
Collapse
|
21
|
Shibata S, Ishitobi H, Miyaki S, Kawaoka T, Kayashima T, Matsubara K. Carnosic acid protects starvation-induced SH-SY5Y cell death through Erk1/2 and Akt pathways, autophagy, and FoxO3a. Int J Food Sci Nutr 2016; 67:977-82. [PMID: 27435046 DOI: 10.1080/09637486.2016.1208734] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Carnosic acid (CA) is recognized as a unique neuroprotective compound in the herb rosemary, since it induces expression of antioxidant enzymes including heme oxygenase-1 (HO-1), γ-glutamylcysteine synthase (γ-GCS), and glutathione S-transferase (GST) via activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which is a nuclear transcription factor. In this study, we examined the cytoprotective effects of CA against starvation. We found that CA protected starvation-induced SH-SY5Y cell death by activating Akt and extracellular signal-regulated kinase 1/2 (Erk1/2). Interestingly, CA induced moderate autophagy and dephosphorylation of a transcriptional factor, the forkhead box protein O3a (FoxO3a). These effects of CA play an important role in cytoprotection.
Collapse
Affiliation(s)
- Sachi Shibata
- a Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Hiroshima , Japan
| | - Hiroyuki Ishitobi
- b Department of Regenerative Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| | - Shigeru Miyaki
- b Department of Regenerative Medicine , Medical Center for Translational and Clinical Research, Hiroshima University Hospital , Hiroshima , Japan
| | | | | | - Kiminori Matsubara
- a Department of Human Life Science Education, Graduate School of Education , Hiroshima University , Hiroshima , Japan
| |
Collapse
|
22
|
Dihydroartemisinin and its derivative induce apoptosis in acute myeloid leukemia through Noxa-mediated pathway requiring iron and endoperoxide moiety. Oncotarget 2016; 6:5582-96. [PMID: 25714024 PMCID: PMC4467388 DOI: 10.18632/oncotarget.3336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/04/2015] [Indexed: 12/29/2022] Open
Abstract
Anti-apoptotic protein Mcl-1 plays an important role in protecting cell from death in acute myeloid leukemia (AML). The apoptosis blocking activity of Mcl-1 is inhibited by BH3-only protein Noxa. We found that dihydroartemisinin (DHA) and its derivative X-11 are potent apoptosis inducers in AML cells and act through a Noxa-mediate pathway; X-11 is four-fold more active than DHA. DHA and X-11-induced apoptosis is associated with induction of Noxa; apoptosis is blocked by silencing Noxa. DHA and X-11 induce Noxa expression by upregulating the transcription factor FOXO3a in a reactive oxygen species-mediated pathway. Interfering with the integrity of the endoperoxide moiety of DHA and X-11, as well as chelating intracellular iron with deferoxamine, diminish apoptosis and Noxa induction. AML cells expressing Bcl-xL, or with overexpression of Bcl-2, have decreased sensitivity to DHA and X-11-induced apoptosis which could be overcome by addition of Bcl-2/Bcl-xL inhibitor ABT-737. DHA and X-11 represent a new group of AML cells-apoptosis inducing compounds which work through Noxa up-regulation utilizing the specific endoperoxide moiety and intracellular iron.
Collapse
|
23
|
Kanzaki H, Shinohara F, Kanako I, Yamaguchi Y, Fukaya S, Miyamoto Y, Wada S, Nakamura Y. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes. Redox Biol 2016; 8:186-91. [PMID: 26795736 PMCID: PMC4732015 DOI: 10.1016/j.redox.2016.01.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/30/2022] Open
Abstract
It has been reported that reactive oxygen species (ROS), such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Tohoku University Hospital, Maxillo-Oral Disorders, Japan; Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan.
| | - Fumiaki Shinohara
- Tohoku University Graduate School of Dentistry, Oral Microbiology, Japan
| | - Itohiya Kanako
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yuuki Yamaguchi
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Sari Fukaya
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yutaka Miyamoto
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Satoshi Wada
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| | - Yoshiki Nakamura
- Department of orthodontics, School of Dental Medicine, Tsurumi University, Japan
| |
Collapse
|
24
|
Abstract
Preclinical Research Idiopathic Pulmonary Fibrosis (IPF) is the most severe fibrotic lung disease and characterized by the accumulation of (myo)fibroblasts and collagen within the alveolar wall resulting in obliteration of the gas-exchange surface. Although the detailed pathogenesis is not understood, recent studies have found that several microRNAs (miRNAs) are associated with the progression of lung diseases including IPF. IPF is a fibrotic disease and, most frequently found in an aged population. In this review, the functional roles of miRNAs that are deregulated in IPF progression are discussed together with how aging affects the miRNA signature, altering the fibroblast phenotype and promoting lung fibrosis. Finally, the possibility of targeting miRNAs as a therapeutic approach for the treatment of IPF is discussed.
Collapse
|
25
|
Bhat TA, Kumar S, Chaudhary AK, Yadav N, Chandra D. Restoration of mitochondria function as a target for cancer therapy. Drug Discov Today 2015; 20:635-43. [PMID: 25766095 DOI: 10.1016/j.drudis.2015.03.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/16/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022]
Abstract
Defective oxidative phosphorylation has a crucial role in the attenuation of mitochondrial function, which confers therapy resistance in cancer. Various factors, including endogenous heat shock proteins (HSPs) and exogenous agents such as dichloroacetate, restore respiratory and other physiological functions of mitochondria in cancer cells. Functional mitochondria might ultimately lead to the restoration of apoptosis in cancer cells that are refractory to current anticancer agents. Here, we summarize the key reasons contributing to mitochondria dysfunction in cancer cells and how restoration of mitochondrial function could be exploited for cancer therapeutics.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Sandeep Kumar
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Ajay K Chaudhary
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Neelu Yadav
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Dhyan Chandra
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
26
|
Nho RS, Hergert P. FoxO3a and disease progression. World J Biol Chem 2014; 5:346-354. [PMID: 25225602 PMCID: PMC4160528 DOI: 10.4331/wjbc.v5.i3.346] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/11/2014] [Accepted: 05/16/2014] [Indexed: 02/05/2023] Open
Abstract
The Forkhead box O (FoxO) family has recently been highlighted as an important transcriptional regulator of crucial proteins associated with the many diverse functions of cells. So far, FoxO1, FoxO3a, FoxO4 and FoxO6 proteins have been identified in humans. Although each FoxO family member has its own role, unlike the other FoxO families, FoxO3a has been extensively studied because of its rather unique and pivotal regulation of cell proliferation, apoptosis, metabolism, stress management and longevity. FoxO3a alteration is closely linked to the progression of several types of cancers, fibrosis and other types of diseases. In this review, we will examine the function of FoxO3a in disease progression and also explore FoxO3a’s regulatory mechanisms. We will also discuss FoxO3a as a potential target for the treatment of several types of disease.
Collapse
|
27
|
The uric acid transporter SLC2A9 is a direct target gene of the tumor suppressor p53 contributing to antioxidant defense. Oncogene 2014; 34:1799-810. [DOI: 10.1038/onc.2014.119] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/04/2014] [Accepted: 03/13/2014] [Indexed: 12/11/2022]
|
28
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of p27kip1 and FoxO3a in female rat cerebral cortex and PC12 cells. Toxicol Lett 2014; 226:294-302. [DOI: 10.1016/j.toxlet.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/15/2014] [Accepted: 02/22/2014] [Indexed: 12/17/2022]
|
29
|
Yadav N, Chandra D. Mitochondrial and postmitochondrial survival signaling in cancer. Mitochondrion 2013; 16:18-25. [PMID: 24333692 DOI: 10.1016/j.mito.2013.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 11/23/2013] [Accepted: 11/26/2013] [Indexed: 12/11/2022]
Abstract
Cancer cells are resistant to conventional chemotherapy and radiotherapy, however, the molecular mechanisms of resistance to therapy remain unclear. Cellular survival machinery protects mitochondrial integrity against endogenous or exogenous stresses. Prodeath molecules orchestrate around mitochondria to initiate and execute cell death in cancer, and also play an underappreciated role in survival of cancer cells. Prosurvival mechanisms can operate at mitochondrial and postmitochondrial levels to attenuate core apoptotic death program. It is intriguing to explore how prosurvival and prodeath molecules crosstalk to regulate mitochondrial functions leading to increased cancer cell survival. This review describes some putative survival mechanisms at mitochondria, which may play a role in designing effective agents for cancer prevention and therapy. These survival pathways may also have significance in understanding other human pathophysiological conditions including diabetes, cardiovascular, autoimmune, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Neelu Yadav
- Department of Pharmacology Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, United States
| | - Dhyan Chandra
- Department of Pharmacology Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, United States.
| |
Collapse
|
30
|
Peng C, Ma J, Gao X, Tian P, Li W, Zhang L. High glucose induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FoxO3a. PLoS One 2013; 8:e79739. [PMID: 24260294 PMCID: PMC3832590 DOI: 10.1371/journal.pone.0079739] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022] Open
Abstract
Aim Cardiac microvascular endothelial cells (CMECs) dysfunction contributes to cardiovascular complications in diabetes, whereas, the underlying mechanism is not fully clarified. FoxO transcription factors are involved in apoptosis and reactive oxygen species (ROS) production. Therefore, the present study was designed to elucidate the potential role of FoxO3a on the CMECs injury induced by high glucose. Materials and Methods CMECs were isolated from hearts of adult rats and cultured in normal or high glucose medium for 6 h, 12 h and 24 h respectively. To down-regulate FoxO3a expression, CMECs were transfected with FoxO3a siRNA. ROS accumulation and apoptosis in CMECs were assessed by dihydroethidine (DHE) staining and TUNEL assay respectively. Moreover, the expressions of Akt, FoxO3a, Bim and BclxL in CMECs were assessed by Western blotting assay. Results ROS accumulation in CMECs was significantly increased after high glucose incubation for 6 to 24 h. Meanwhile, high glucose also increased apoptosis in CMECs, correlated with decreased the phosphorylation expressions of Akt and FoxO3a. Moreover, high glucose incubation increased the expression of Bim, whereas increased anti-apoptotic protein BclxL. Furthermore, siRNA target FoxO3a silencing enhanced the ROS accumulation, whereas suppressed apoptosis in CMECs. FoxO3a silencing also abolished the disturbance of Bcl-2 proteins induced by high glucose in CMECs. Conclusion Our data provide evidence that high glucose induced FoxO3a activation which suppressed ROS accumulation, and in parallel, resulted in apoptosis of CMECs.
Collapse
Affiliation(s)
- Chaoming Peng
- Department of General Internal Medicine, The First Affiliated Hospital of Chengdu Medicine College, Chengdu, China
| | - Junli Ma
- Department of Nephrology, The Third Military Hospital of PLA, Baoji, China
| | - Xue Gao
- Department of Ultrasonography, The Military General Hospital of Beijing PLA, Beijing, China
| | - Peng Tian
- Department of General Internal Medicine, The First Affiliated Hospital of Chengdu Medicine College, Chengdu, China
| | - Wenzhang Li
- Department of General Internal Medicine, The First Affiliated Hospital of Chengdu Medicine College, Chengdu, China
| | - Lei Zhang
- Department of General Internal Medicine, The First Affiliated Hospital of Chengdu Medicine College, Chengdu, China
- * E-mail:
| |
Collapse
|
31
|
Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 2013; 35:452-60. [PMID: 24067903 DOI: 10.1093/carcin/bgt316] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Forkhead box O (FoxO) transcription factors play an important role as tumor suppressor in several human malignancies. Disruption of FoxO activity due to loss of phosphatase and tensin homolog and activation of phosphatidylinositol-3 kinase (PI3K)/Akt are frequently observed in prostate cancer. Apigenin, a naturally occurring plant flavone, exhibits antiproliferative and anticarcinogenic activities through mechanisms, which are not fully defined. In the present study, we show that apigenin suppressed prostate tumorigenesis in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice through the PI3K/Akt/FoxO-signaling pathway. Apigenin-treated TRAMP mice (20 and 50 μg/mouse/day, 6 days/week for 20 weeks) exhibited significant decrease in tumor volumes of the prostate as well as completely abolished distant organ metastasis. Apigenin treatment resulted in significant decrease in the weight of genitourinary apparatus (P < 0.0001), dorsolateral (P < 0.0001) and ventral prostate (P < 0.028), compared with the control group. Apigenin-treated mice showed reduced phosphorylation of Akt (Ser473) and FoxO3a (Ser253), which correlated with its increased nuclear retention and decreased binding of FoxO3a with 14-3-3. These events lead to reduced proliferation as assessed by Ki-67 and cyclin D1, along with upregulation of FoxO-responsive proteins BIM and p27/Kip1. Complementing in vivo results, similar observations were noted in human prostate cancer LNCaP and PC-3 cells after apigenin treatment. Furthermore, binding of FoxO3a with p27/Kip1 was markedly increased after 10 and 20 μM apigenin treatment resulting in G0/G1-phase cell cycle arrest, which was consistent with the effects elicited by PI3K/Akt inhibitor, LY294002. These results provide convincing evidence that apigenin effectively suppressed prostate cancer progression, at least in part, by targeting the PI3K/Akt/FoxO-signaling pathway.
Collapse
Affiliation(s)
- Sanjeev Shukla
- Department of Urology, Case Western Reserve University and The Urology Institute, University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
32
|
Du K, Yu Y, Zhang D, Luo W, Huang H, Chen J, Gao J, Huang C. NFκB1 (p50) suppresses SOD2 expression by inhibiting FoxO3a transactivation in a miR190/PHLPP1/Akt-dependent axis. Mol Biol Cell 2013; 24:3577-83. [PMID: 24068327 PMCID: PMC3826995 DOI: 10.1091/mbc.e13-06-0343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study reports a novel function of p50 in its regulation of SOD2 transcription via an NFκB-independent pathway. p50-regulated FoxO3a phosphorylation and transactivation contributes to SOD2 transcription, and p50–down-regulated PHLPP1 translation via miR190 is responsible for activation of Akt and FoxO3a. The biological functions of nuclear factor κB1 (NFκB1; p50) have not been studied as often as those of other members of the NFκB family due to its lack of a transcriptional domain. Our recent studies showed that p50 functions as an apoptotic mediator via its inhibition of GADD45α protein degradation and increase in p53 protein translation. Here we report a novel function of p50 in its regulation of superoxide dismutase 2 (SOD2) transcription via an NFκB-independent pathway. We find that deletion of p50 in mouse embryonic fibroblasts (MEFs; p50−/−) up-regulates SOD2 expression at both protein and mRNA levels. SOD2 promoter–driven luciferase is also up-regulated in p50−/− cells compared with wild-type (WT) MEF (p50+/+) cells, suggesting p50 regulation of SOD2 at the transcriptional level. Our results also show that p50 deficiency specifically results in down-regulation of phosphorylation and increased transactivation of FoxO3a compared with WT cells. Further studies indicate that p50–down-regulated FoxO3a phosphorylation is mediated by activated Akt via up-regulation of microRNA 190 (miR190), in turn inhibiting PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) translation. Together our studies identify a novel p50 function in the regulation of SOD2 transcription by modulating the miR190/PHLPP1/Akt-FoxO3a pathway, which provides significant insight into the physiological function of p50.
Collapse
Affiliation(s)
- Kejun Du
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987 Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Shanxi 710032, China Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
FoxO3a (Forkhead Box O3a) deficiency protects Idiopathic Pulmonary Fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas. PLoS One 2013; 8:e61017. [PMID: 23580232 PMCID: PMC3620276 DOI: 10.1371/journal.pone.0061017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/05/2013] [Indexed: 12/02/2022] Open
Abstract
Idiopathic Pulmonary Fibrosis is a lethal fibrotic disease characterized by the unrelenting proliferation and persistence of fibroblasts in a type I collagen-rich matrix that result in an expanding reticular network of fibrotic tissue. However, the underlying mechanism responsible for the persistence of myofibroblasts in IPF remains unclear. During normal tissue repair, unwanted fibroblasts are eliminated during collagen-matrix contraction by a mechanism whereby high PTEN activity suppresses Akt. We have previously found that FoxO3a, a transcriptional activator of apoptosis-inducing proteins, is inactivated in IPF fibroblasts resulting from aberrantly high PI3K/Akt activity due to inappropriately low PTEN activity. Here we demonstrate that this low FoxO3a activity confers IPF fibroblasts with resistance to collagen-mediated apoptosis. We show that the mechanism by which low FoxO3a activity confers IPF fibroblasts with an apoptotic resistant phenotype involves suppression of Fas expression as a result of down regulation of cav-1 expression via a PTEN/Akt-dependent pathway. We demonstrate that PTEN over-expression or Akt inhibition increases FoxO3a expression in IPF fibroblasts, resulting in up-regulation of caveolin-1. We show that FoxO3a binds to the cav-1 promoter region and ectopic expression of FoxO3a transcriptionally increases cav-1 mRNA and protein expression. In turn, we show that overexpression of caveolin-1 increases Fas levels and caspase-3/7 activity and promotes IPF fibroblast apoptosis on polymerized type I collagen. We have found that the expression of caveolin-1, Fas and cleaved caspase-3 proteins in fibroblasts within the fibroblastic foci of IPF patient specimens is low. Our data indicate that the pathologically altered PTEN/Akt axis inactivates FoxO3a down-regulating cav-1 and Fas expression. This confers IPF fibroblasts with an apoptosis-resistant phenotype and may be responsible for IPF progression.
Collapse
|
34
|
Eldridge A, Fan M, Woloschak G, Grdina DJ, Chromy BA, Li JJ. Manganese superoxide dismutase interacts with a large scale of cellular and mitochondrial proteins in low-dose radiation-induced adaptive radioprotection. Free Radic Biol Med 2012; 53:1838-47. [PMID: 23000060 PMCID: PMC3494792 DOI: 10.1016/j.freeradbiomed.2012.08.589] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/24/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022]
Abstract
The cellular adaptive response to certain low-level genotoxic stresses, including exposure to low-dose ionizing radiation (LDIR), shows promise as a tool to enhance radioprotection in normal cells but not in tumor cells. Manganese superoxide dismutase (MnSOD), a fundamental mitochondrial antioxidant in mammalian cells, plays a key role in the LDIR-induced adaptive response. In this study, we aimed to elucidate the signaling network associated with MnSOD-induced radiation protection. A MnSOD-interacting protein profile was established in LDIR-treated human skin cells. Human skin keratinocytes (HK18) were irradiated with a single dose of LDIR (10 cGy X-ray) and the cell lysates were immunoprecipitated using α-MnSOD and applied to two different gel-based proteomic experiments followed by mass spectrometry for protein identification. Analysis of the profiles of MnSOD-interacting partners before and after LDIR detected various patterns of MnSOD protein-protein interactions in response to LDIR. Interestingly, many of the MnSOD-interacting proteins are known to have functions related to mitochondrial regulation of cell metabolism, apoptosis, and DNA repair. These results provide evidence indicating that in addition to the enzymatic action of detoxifying superoxide, the antioxidant MnSOD may function as a signaling regulator in stress-induced adaptive protection through cell survival pathways.
Collapse
Affiliation(s)
- Angela Eldridge
- Department of Radiation Oncology, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
35
|
Gogada R, Yadav N, Liu J, Tang S, Zhang D, Schneider A, Seshadri A, Sun L, Aldaz CM, Tang DG, Chandra D. Bim, a proapoptotic protein, up-regulated via transcription factor E2F1-dependent mechanism, functions as a prosurvival molecule in cancer. J Biol Chem 2012; 288:368-81. [PMID: 23152504 DOI: 10.1074/jbc.m112.386102] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proapoptotic Bcl-2 homology 3-only protein Bim plays an important role in Bax/Bak-mediated cytochrome c release and apoptosis. Here, we provide evidence for a novel prosurvival function of Bim in cancer cells. Bim was constitutively overexpressed in multiple prostate and breast cancer cells as well as in primary tumor cells. Quantitative real time PCR analysis showed that Bim was transcriptionally up-regulated. We have identified eight endogenous E2F1-binding sites on the Bim promoter using in silico analysis. Luciferase assay demonstrated that Bim expression was E2F1-dependent as mutation of the E2F1-binding sites on the Bim promoter inhibited luciferase activities. In support, E2F1 silencing led to the loss of Bim expression in cancer cells. Bim primarily localized to mitochondrial and cytoskeleton-associated fractions. Bim silencing or microinjection of anti-Bim antibodies into the cell cytoplasm resulted in cell rounding, detachment, and subsequent apoptosis. We observed up-regulation of prosurvival proteins Bcl-xL and Mcl-1, which sequester Bim in cancer cells. In addition, a phosphorylated form of Bim was also elevated in cancer cells. These findings suggest that the constitutively overexpressed Bim may function as a prosurvival molecule in epithelial cancer cells, and phosphorylation and association with Bcl-xL/Mcl-1 block its proapoptotic functions.
Collapse
Affiliation(s)
- Raghu Gogada
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wilk A, Urbanska K, Grabacka M, Mullinax J, Marcinkiewicz C, Impastato D, Estrada JJ, Reiss K. Fenofibrate-induced nuclear translocation of FoxO3A triggers Bim-mediated apoptosis in glioblastoma cells in vitro. Cell Cycle 2012; 11:2660-71. [PMID: 22732497 DOI: 10.4161/cc.21015] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Anti-neoplastic potential of calorie restriction or ligand-induced activation of peroxisome proliferator activated receptors (PPARs) has been demonstrated in multiple studies; however, mechanism(s) by which tumor cells respond to these stimuli remain to be elucidated. One of the potent agonists of PPARα, fenofibrate, is a commonly used lipid-lowering drug with low systemic toxicity. Fenofibrate-induced PPARα transcriptional activity is expected to shift energy metabolism from glycolysis to fatty acid β-oxidation, which in the long-term, could target weak metabolic points of glycolysis-dependent glioblastoma cells. The results of this study demonstrate that 25 μM fenofibrate can effectively repress malignant growth of primary glial tumor cells and glioblastoma cell lines. This cytostatic action involves G(1) arrest accompanied by only a marginal level of apoptotic cell death. Although the cells treated with 25 μM fenofibrate remain arrested, the cells treated with 50 μM fenofibrate undergo massive apoptosis, which starts after 72 h of the treatment. This delayed apoptotic event was preceded by FoxO3A nuclear accumulation, FoxO3A phosphorylation on serine residue 413, its elevated transcriptional activity and expression of FoxO-dependent apoptotic protein, Bim. siRNA-mediated inhibition of FoxO3A attenuated fenofibrate-induced apoptosis, indicating a direct involvement of this transcription factor in the fenofibrate action against glioblastoma. These properties of fenofibrate, coupled with its low systemic toxicity, make it a good candidate in support of conventional therapies against glial tumors.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer. Free Radic Biol Med 2012; 52:2209-22. [PMID: 22561706 DOI: 10.1016/j.freeradbiomed.2012.03.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 01/03/2023]
Abstract
Mitochondria are the power plants of the eukaryotic cell and the integrators of many metabolic activities and signaling pathways important for the life and death of a cell. Normal aerobic cells use oxidative phosphorylation to generate ATP, which supplies energy for metabolism. To drive ATP production, electrons are passed along the electron transport chain, with some leaking as superoxide during the process. It is estimated that, during normal respiration, intramitochondrial superoxide concentrations can reach 10⁻¹² M. This extremely high level of endogenous superoxide production dictates that mitochondria are equipped with antioxidant systems that prevent consequential oxidative injury to mitochondria and maintain normal mitochondrial functions. The major antioxidant enzyme that scavenges superoxide anion radical in mitochondria is manganese superoxide dismutase (MnSOD). Extensive studies on MnSOD have demonstrated that MnSOD plays a critical role in the development and progression of cancer. Many human cancer cells harbor low levels of MnSOD proteins and enzymatic activity, whereas some cancer cells possess high levels of MnSOD expression and activity. This apparent variation in MnSOD level among cancer cells suggests that differential regulation of MnSOD exists in cancer cells and that this regulation may be linked to the type and stage of cancer development. This review summarizes current knowledge of the relationship between MnSOD levels and cancer with a focus on the mechanisms regulating MnSOD expression.
Collapse
Affiliation(s)
- Sanjit Kumar Dhar
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
38
|
Ray P, Rialon-Guevara KL, Veras E, Sullenger BA, White RR. Comparing human pancreatic cell secretomes by in vitro aptamer selection identifies cyclophilin B as a candidate pancreatic cancer biomarker. J Clin Invest 2012; 122:1734-41. [PMID: 22484812 DOI: 10.1172/jci62385] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Most cases of pancreatic cancer are not diagnosed until they are no longer curable with surgery. Therefore, it is critical to develop a sensitive, preferably noninvasive, method for detecting the disease at an earlier stage. In order to identify biomarkers for pancreatic cancer, we devised an in vitro positive/negative selection strategy to identify RNA ligands (aptamers) that could detect structural differences between the secretomes of pancreatic cancer and non-cancerous cells. Using this molecular recognition approach, we identified an aptamer (M9-5) that differentially bound conditioned media from cancerous and non-cancerous human pancreatic cell lines. This aptamer further discriminated between the sera of pancreatic cancer patients and healthy volunteers with high sensitivity and specificity. We utilized biochemical purification methods and mass-spectrometric analysis to identify the M9-5 target as cyclophilin B (CypB). This molecular recognition-based strategy simultaneously identified CypB as a serum biomarker and generated a new reagent to recognize it in body fluids. Moreover, this approach should be generalizable to other diseases and complementary to traditional approaches that focus on differences in expression level between samples. Finally, we suggest that the aptamer we identified has the potential to serve as a tool for the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Partha Ray
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
39
|
Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ. FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci 2012; 125:1191-203. [PMID: 22349704 DOI: 10.1242/jcs.092098] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FOXO transcription factors induce apoptosis and regulate cellular production of reactive oxygen species (ROS). To identify the sequence of molecular events underlying FOXO3 (FKHRL1)-induced apoptosis, we studied the regulation and function of FOXO3 by expressing an ECFP-tagged FOXO3 or a 4OH-tamoxifen (4OHT)-inducible FOXO3-ERtm fusion protein in SH-EP and STA-NB15 neuronal cells. After knockdown of FOXO3 or expression of a dominant-negative FOXO3 mutant we observed that etoposide- and doxorubicin-induced elevation of cellular ROS depends on FOXO3 activation and induction of its transcriptional target BCL2L11 (Bim). Activation of FOXO3 on its own induced two sequential ROS waves as measured by reduced MitoTrackerRed in live cell microscopy. Induction of Bim by FOXO3 is essential for this phenomenon because Bim knockdown or ectopic expression of BCL2L1 (BclxL) prevented FOXO3-mediated overproduction of ROS and apoptosis. Tetracycline-controlled expression of Bim impaired mitochondrial respiration and caused ROS production, suggesting that FOXO3 induces uncoupling of mitochondrial respiration through Bim. FOXO3 also activated a ROS rescue pathway by inducing the peroxiredoxin SESN3 (Sestrin3), which is responsible for the biphasic ROS accumulation. Knockdown of SESN3 caused an increase of FOXO3-induced ROS and accelerated apoptosis. The combined data clearly demonstrate that FOXO3 activates overproduction of ROS as a consequence of Bim-dependent impairment of mitochondrial respiration in neuronal cells, which leads to apoptosis.
Collapse
|
40
|
Tezil T, Bodur C, Kutuk O, Basaga H. IKK-β mediates chemoresistance by sequestering FOXO3; a critical factor for cell survival and death. Cell Signal 2012; 24:1361-8. [PMID: 22313691 DOI: 10.1016/j.cellsig.2012.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
Abstract
Chemotherapeutic drugs proved only 50% successful in breast cancer because of cell type-dependent resistance mechanisms. FOXO3 is known to be involved in the regulation of several cell death-related genes; however, the extent of FOXO3 regulation in chemoresistance is still not fully understood. Here, we show that FOXO3 critically mediates cisplatin chemosensitivity of MCF-7 breast cancer cells which express higher levels of FOXO3 compared to resistant MDA-MB-231 cells. Administration of cisplatin induces apoptosis in MCF-7 cells in a FOXO3-dependent manner as indicated by RNA interference. On the other hand, IKK-β (IκB kinase) appears to inhibit FOXO3 action after cisplatin treatment and promotes chemoresistance in MDA-MB-231 cells. IKK-β directly interacts and sequesters FOXO3 in the cytosol preventing its nuclear localization. Moreover, cisplatin treatment induces autophagosome formation through LC-3 conversion while inhibiting the cleavage of caspase 9 and caspase 3 in MDA-MB-231 cells manipulated to overexpress FOXO3. In brief, our findings demonstrate that in addition to cellular level of active FOXO3, cisplatin chemoresistance is also regulated by IKK-β sequestration of FOXO3 in cytosol.
Collapse
Affiliation(s)
- Tugsan Tezil
- Sabanci University, Biological Sciences and Bioengineering Program, 34956, Tuzla, Istanbul, Turkey.
| | | | | | | |
Collapse
|
41
|
Laatikainen LE, Incoronato M, Castellone MD, Laurila JP, Santoro M, Laukkanen MO. SOD3 decreases ischemic injury derived apoptosis through phosphorylation of Erk1/2, Akt, and FoxO3a. PLoS One 2011; 6:e24456. [PMID: 21909393 PMCID: PMC3164207 DOI: 10.1371/journal.pone.0024456] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Background Extracellular superoxide dismutase (SOD3), which dismutates superoxide anion to hydrogen peroxide, has been shown to reduce the free radical stress derived apoptosis in tissue injuries. Since both superoxide anion and hydrogen peroxide have a marked impact on signal transduction pathways and could potentially explain a number of apoptosis and survival -related phenomena in different pathological conditions, we clarified the impact of SOD3 on Akt and Erk1/2 cell survival pathways in rat hind limb injury model. Methodology and Principal Findings Based on our data, the hind limb ischemic rats treated with virally delivered sod3 have milder injury and less apoptosis than control animals that could be due to parallel activation of pro-proliferative and anti-apoptotic Erk1/2 and Akt pathways. The common downstream factor of both signaling pathways, the apoptosis related forkhead box protein O3a (FoxO3a), was phosphorylated and translocated to the cytoplasm in sod3 treated tissues and cell line. Additionally, we obtained increased mRNA production of elk-1, ets-1, and microRNA 21 (miR-21), whereas synthesis of bim mRNA was decreased in sod3 overexpressing tissues. We further showed that overexpression of sod3 modulated redox related gene expression by downregulating nox2 and inos when compared to injured control animals. Conclusions and Significance The study shows the complexity of SOD3-derived effects on tissue injury recovery that are not limited to the reduction of superoxide anion caused cellular stress but highlights the impact of SOD3 related signal transduction on tissue functions and suggests an important role for SOD3 in attenuating cell stress effects in different pathological conditions.
Collapse
Affiliation(s)
| | | | - Maria Domenica Castellone
- Institute of Experimental Endocrinology and Oncology (CNR), c/o Department of Biology and Cellular and Molecular Pathology, University of Naples Federico II, Naples, Italy
| | - Juha P. Laurila
- University of Turku, Medicity Research Laboratory, Turku, Finland
| | - Massimo Santoro
- Institute of Experimental Endocrinology and Oncology (CNR), c/o Department of Biology and Cellular and Molecular Pathology, University of Naples Federico II, Naples, Italy
| | - Mikko O. Laukkanen
- University of Turku, Medicity Research Laboratory, Turku, Finland
- Fondazione IRCCS SDN, Naples, Italy
- * E-mail:
| |
Collapse
|
42
|
Abstract
Several mechanisms contribute to the decline of all physiologic functions during aging. As a consequence, disease incidence increases with age. Central to this multifactorial process is the increase in oxidative stress levels, which correlates with age-related disease pathogenesis in animal models and in humans. Accordingly, skeletal aging and aging-related bone diseases are also associated with accumulation of reactive oxygen species. In a variety of organs, including the skeleton, mutations in components of antioxidant defense pathways have been found to lead to progressive degenerative diseases. The molecules involved are highly conserved, can sense and respond to increases in oxidative stress levels, alterations in energy status, DNA and protein damage, and they all have a common transcriptional target, the FoxO family of Forkhead transcription factors. Oxidative stress promotes both the transcriptional activity and protein stability of FoxOs. In turn, activated FoxOs promote antioxidant defense by controlling the expression of genes involved in the oxidative stress response, DNA repair, cell cycle, and apoptosis. Among the FoxO isoforms, FoxO1 in osteoblasts uses a previously unrecognized mechanism to preserve redox balance by promoting protein synthesis and subsequently inhibiting cell cycle arrest. This evidence indicates that FoxO1 integrates and orchestrates responses to different stress signals to maintain bone cell function and preserve skeletal homeostasis.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Department of Medicine, Division of Endocrinology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
43
|
Abstract
The FoxO family of forkhead transcription factors is at the crossroads of many signal transduction pathways that are evolutionarily conserved. Such pathways have been co-opted in differentiated tissues for a variety of vital and specialized functions, such as differentiation, proliferation, and survival in cells as diverse as adipocytes, hepatocytes, β-cells, myoblasts, thymocytes, and cancer cells. FoxO metabolic functions are relevant to glucose metabolism, tumor suppression, hematopoiesis, angiogenesis, and antioxidant defense. Among the FoxO isoforms, FoxO1 is a main target of insulin signaling and regulates metabolic homeostasis and organismal survival at many different levels. FoxO1 entered into the field of skeletal biology by a property that is unique among its functions in other organs. With the osteoblast as its target cell, FoxO1 not only acts on it to regulate bone homeostasis but also through it as a transcriptional modulator of the endocrine function of the skeleton in regulating glucose metabolism. Through its direct skeletal actions, FoxO1 promotes osteoblast proliferation by maintaining protein synthesis and redox balance. Through its endocrine actions on target tissues of insulin, FoxO1 acts by way of osteocalcin to suppress glucose production by pancreatic beta cells and hepatocytes and to decrease insulin production and sensitivity. These two parallel but opposing actions, one in favor of the skeleton and the other in disadvantage of glucose-regulating tissues, may signify an adaptive mechanism that integrates responses between different organs and is beneficial for whole-body physiology during stress and aging.
Collapse
Affiliation(s)
- Stavroula Kousteni
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
44
|
Chang KP, Wu CC, Chen HC, Chen SJ, Peng PH, Tsang NM, Lee LY, Liu SC, Liang Y, Lee YS, Hao SP, Chang YS, Yu JS. Identification of candidate nasopharyngeal carcinoma serum biomarkers by cancer cell secretome and tissue transcriptome analysis: potential usage of cystatin A for predicting nodal stage and poor prognosis. Proteomics 2010; 10:2644-60. [PMID: 20461718 DOI: 10.1002/pmic.200900620] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is usually diagnosed at advanced clinical stages, resulting in poor outcomes. To discover serum biomarkers for improved NPC diagnosis and/or management, we simultaneously analyzed the NPC cell secretome and tissue transcriptome to identify candidate genes/proteins that are highly upregulated in NPC tissues and also secreted/released from NPC cells. Among the 30 candidates identified, 11 proteins were chosen for further validation using the serum samples from NPC patients and healthy controls, including cystatin A, cathepsin B, manganese superoxide dismutase and matrix metalloproteinase 2. The results showed that serum levels of all the four proteins were indeed higher in NPC patients versus healthy controls and that the use of a three-marker panel (cystatin A, manganese superoxide dismutase and matrix metalloproteinase 2) can contribute to a better NPC detection than each marker alone. In addition, a higher pretreated serum level of cystatin A was found to be associated with a higher nodal stage and poorer prognosis of NPC patients and cystatin A could modulate the migration and invasion of NPC cells in vitro. Altogether, our results indicate that analysis of both the cancer cell secretome and tissue transcriptome is a feasible strategy for efficient identification of novel NPC serum marker panel.
Collapse
Affiliation(s)
- Kai-Ping Chang
- Department of Otolaryngology-Head and Neck Surgery, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wilk A, Urbanska K, Yang S, Wang JY, Amini S, Del Valle L, Peruzzi F, Meggs L, Reiss K. Insulin-like growth factor-I-forkhead box O transcription factor 3a counteracts high glucose/tumor necrosis factor-α-mediated neuronal damage: implications for human immunodeficiency virus encephalitis. J Neurosci Res 2010; 89:183-98. [PMID: 21162126 DOI: 10.1002/jnr.22542] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 12/17/2022]
Abstract
In HIV patients, antiretroviral medications trigger metabolic abnormalities, including insulin resistance. In addition, the inflammatory cytokine tumor necrosis factor-α (TNFα), which is elevated in human immunodeficiency virus encephalitis (HIVE), also induces insulin resistance and inflicts neuronal damage in vitro. In differentiated PC12 cells and rat cortical neurons, high glucose (HG; 25 mM) triggers reactive oxygen species (ROS) accumulation, contributing to the retraction of neuronal processes, with only a minimal involvement of neuronal apoptosis. In the presence of TNFα, HG-treated neurons undergo massive apoptosis. Because mammalian homolog of the Forkhead family of transcription factors, Forkhead box O transcription factor 3a (FOXO3a), controls ROS metabolism, we asked whether FOXO3a could affect the fate of differentiated neurons in the paradigm of HIVE. We observed FOXO3a nuclear translocation in HG-treated neuronal cultures, accompanied by partial loss of mitochondrial potential and gradual retraction of neuronal processes. Addition of TNFα to HG-treated neurons increased expression of the FOXO-dependent proapoptotic gene Bim, which resulted in extensive apoptotic death. Insulin-like growth factor-I (IGF-I) significantly lowered intracellular ROS, which was accompanied by IGF-I-mediated FOXO3a nuclear export and decrease in its transcriptional activity. The clinical relevance of these findings is supported by detection of nuclear FOXO3a in TUNEL-positive cortical neurons from HIVE, especially in brain areas characterized by elevated TNFα.
Collapse
Affiliation(s)
- Anna Wilk
- Neurological Cancer Research, Stanley S. Scott Cancer Center, LSU Health Sciences Center, New Orleans, Louisianna 70112, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yamaguchi H, Chen CT, Chou CK, Pal A, Bornmann W, Hortobagyi GN, Hung MC. Adenovirus 5 E1A enhances histone deacetylase inhibitors-induced apoptosis through Egr-1-mediated Bim upregulation. Oncogene 2010; 29:5619-29. [PMID: 20676141 DOI: 10.1038/onc.2010.295] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone deacetylase inhibitors (HDACi) are potent anti-cancer agents for variety of cancer types. Suberoylanilide hydroxamic acid (SAHA) has been approved as a drug to treat cutaneous T cell lymphoma, and the combination of HDACi and other agents have been actively tested in many clinical trials. Adenovirus 5 early region 1A (E1A) has been shown to exhibit high tumor suppressor activity, and gene therapy using E1A has been tested in clinical trials. Here, we showed that proapoptotic activity of HDACi was robustly enhanced by E1A in multiple cancer cells, but not in normal cells. Moreover, we showed that combination of E1A gene therapy and SAHA showed high therapeutic efficacy with low toxicity in vivo ovarian and breast xenograft models. SAHA downregulated Bcl-XL and upregulated proapoptotic BH3-only protein Bim, whose expression was further enhanced by E1A in cancer cells. These alterations of Bcl-2 family proteins were critical for apoptosis induced by the combination in cancer cells. SAHA enhanced acetylation of histone H3 in Bim promoter region, while E1A upregulated Egr-1, which was directly involved in Bim transactivation. Together, our results provide not only a novel insight into the mechanisms underlying anti-tumor activity of E1A, but also a rationale for the combined HDACi and E1A gene therapy in future clinical trials.
Collapse
Affiliation(s)
- H Yamaguchi
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Wen YY, Yang ZQ, Song M, Li BL, Yao XH, Chen XL, Zhao J, Lu YY, Zhu JJ, Wang EH. The expression of SIAH1 is downregulated and associated with Bim and apoptosis in human breast cancer tissues and cells. Mol Carcinog 2010; 49:440-9. [PMID: 20082325 DOI: 10.1002/mc.20615] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Seven in absentia homolog1 (SIAH1) was reported as a tumor suppressor and played an important role in regulating cell apoptosis. However, its effects on the breast carcinogenesis remain unclear. In this study, our aims were to examine the relationship between SIAH1 and Bcl-2-interacting mediator of cell death (Bim) and to explore the effects of SIAH1 on the breast carcinogenesis. Immunohistochemical analysis in 231 cases of breast tissues showed that the expression of SIAH1 and Bim were significantly decreased in the breast carcinogenesis. Moreover, SIAH1 expression was significantly correlated with Bim. Both SIAH1 and Bim expression were significantly higher in well to moderately differentiated and in early-stage breast cancer. Reverse transcription (RT)-polymerase chain reaction (PCR) and Western blot analysis in paired breast cancer tissues and breast cell lines found that the expression of SIAH1 was lower in the breast cancer tissues and cell lines. SIAH1 inducing apoptosis of the breast cancer cells was dependent on Bim. However, SIAH1 inhibiting invasion of the breast cancer cells was independent of Bim. The increase of the function of SIAH1 to upregulate the expression of Bim may play an important role in the progression of breast cancer. Restoration of the function of SIAH1 may be a new therapeutic target of human breast cancer.
Collapse
Affiliation(s)
- Yuan-Yuan Wen
- Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Heping District, Shenyang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Rached MT, Kode A, Xu L, Yoshikawa Y, Paik JH, Depinho RA, Kousteni S. FoxO1 is a positive regulator of bone formation by favoring protein synthesis and resistance to oxidative stress in osteoblasts. Cell Metab 2010; 11:147-60. [PMID: 20142102 PMCID: PMC2820405 DOI: 10.1016/j.cmet.2010.01.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/23/2009] [Accepted: 01/06/2010] [Indexed: 12/13/2022]
Abstract
Osteoporosis, a disease of low bone mass, is associated with decreased osteoblast numbers and increased levels of oxidative stress within osteoblasts. Since transcription factors of the FoxO family confer stress resistance, we investigated their potential impact on skeletal integrity. Here we employ cell-specific deletion and molecular analyses to show that, among the three FoxO proteins, only FoxO1 is required for proliferation and redox balance in osteoblasts and thereby controls bone formation. FoxO1 regulation of osteoblast proliferation occurs through its interaction with ATF4, a transcription factor regulating amino acid import, as well as through its regulation of a stress-dependent pathway influencing p53 signaling. Accordingly, decreasing oxidative stress levels or increasing protein intake normalizes bone formation and bone mass in mice lacking FoxO1 specifically in osteoblasts. These results identify FoxO1 as a crucial regulator of osteoblast physiology and provide a direct mechanistic link between oxidative stress and the regulation of bone remodeling.
Collapse
Affiliation(s)
- Marie-Therese Rached
- Department of Medicine, Division of Endocrinology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Tosetti F, Noonan DM, Albini A. Metabolic regulation and redox activity as mechanisms for angioprevention by dietary phytochemicals. Int J Cancer 2009; 125:1997-2003. [PMID: 19551861 DOI: 10.1002/ijc.24677] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The existence of active principles in numerous foods and beverages has been recognized by traditional medicines worldwide after centuries of empirical trial. Epidemiological studies support the concepts linking diet to survival, particularly in the incidence rates of specific cancers. Molecular studies have provided evidence that a wide range of food-derived phytochemicals and other diet-associated compounds or their synthetic derivatives represent a cornucopia of potential new compounds for prevention and treatment of chronic or acute diseases. Many have entered clinical practice or are under clinical testing. A remarkable property shared by several phytochemicals is the capacity to restrain inflammation and angiogenesis, two complex physiologic processes kept under control by strict rules, which can backfire in cancer and in pathologic conditions such as metabolic, cardiovascular and neurological disorders. We termed this concept "angioprevention". Here, we discuss recent findings on the metabolic effects of several phytochemicals with anticancer properties. The different molecular targets shared by these compounds seem to converge on crosstalking signaling networks involved in controlling energy metabolism through a redox-regulated code. The redox imbalance produced in the tissue microenvironment elicits an adaptive response that seems to provide cytoprotective effects potentially beneficial in cardiovascular and neurological disorders or energy balancing effects in metabolic disorders. However, in transformed and overt tumor cells, this redox imbalance favors cell death while curbing tumor inflammation and angiogenesis, thus engaging an overall antitumor response. These concepts provide a broader framework for pharmacological application of phytochemical-derived drugs against cancer.
Collapse
Affiliation(s)
- Francesca Tosetti
- Department of Translational Oncology, Istituto Nazionale per la Ricerca sul Cancro (IST), Genoa, Italy
| | | | | |
Collapse
|
50
|
|