1
|
Adjir K, Berrekhchi-Berrahma AC, Sekkal-Rahal M. Theoretical characterization and biological activity investigation of indirubins, cyclin dependent kinases inhibitors. J Biomol Struct Dyn 2025; 43:2693-2702. [PMID: 38100566 DOI: 10.1080/07391102.2023.2294182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Up to now, significant research efforts have been directed towards investigating indirubin and its derivatives as potential candidates for developing new compounds with multiple biological activities. In the present work, natural indirubin and numerous of its chemical derivatives referred to as indirubins have been investigated computationally using DFT method with the B3LYP/6-311 + G(d,p) level of theory, in order to reveal structure- biological activity relationship. We started with a structural properties description. Results analysis indicated that extra interaction sites were provided through the set of substitutions in compounds (1): Indirubin-3'-monoxime, (2): Indirubin-5-sulfonic acid, (3): 5-Nitro-indirubinoxime, (4): 5'-OH-5-nitro-indirubinoxime (AGM130), (5): 7-Bromo-5'-carboxyindirubin-3'-oxime, and (6): 7 BIO and consequently, extra hydrogen bonds may be formed with the active sites of molecular targets, such as GSK-3, CDKs, and Aurora kinases, as well as the aryl hydrocarbon receptor. Subsequently, to get more information on the electronic properties of indirubin and its analogues, HOMO, LUMO, Egap, and further electronic parameters were carried out. The indirubin derivatives showed an easier interaction with its environment than indirubin, the parent compound. The UV-Visible spectra of indirubin and compounds 1-6 were also produced using TD-DFT with B3LYP functional and 6-311 + G(2d,p) basis set. The relationship between absorption and chemical structure is discussed. Two phototoxic brominated compounds showed important absorption spectra modifications. It was also found that the main absorption bands of all compounds derived from π→π*(HOMO→LUMO) transitions.
Collapse
Affiliation(s)
- Khadidja Adjir
- Laboratory of Thermodynamics and Molecular Modeling, Faculty of Chemistry, Bab Ezzouar, Algiers, Algeria
| | - Amina C Berrekhchi-Berrahma
- Laboratoire de Chimie Théorique de Bio- et Nanosystèmes (LCTBN), Faculty of Exact Sciences, University Djillali Liabes of Sidi Bel Abbès, Sidi Bel Abbès, Algeria
| | - Majda Sekkal-Rahal
- Laboratoire de Chimie Théorique de Bio- et Nanosystèmes (LCTBN), Faculty of Exact Sciences, University Djillali Liabes of Sidi Bel Abbès, Sidi Bel Abbès, Algeria
| |
Collapse
|
2
|
Nobre DC, Delgado-Pinar E, Cunha C, Sérgio Seixas de Melo J. The role of the oxime group in the excited state deactivation processes of indirubin. Phys Chem Chem Phys 2024; 26:7416-7423. [PMID: 38351859 DOI: 10.1039/d3cp05260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The introduction of an oxime group into indirubin (INR) derivatives, including INROx, MINROx, and 6-BrINROx, and its impact on the spectral and photophysical properties of INR was investigated using a combination of fast-transient absorption (fs-TA/fs-UC) and steady-state fluorescence techniques. The oxime group introduces structural modifications that promote a rapid keto-enol tautomeric equilibrium and enhance the excited-state proton transfer (ESPT) process compared to its analogue, INR. In the oxime-indirubin derivatives investigated, the ESPT process is notably more efficient than what is observed in INR and indigo, occurring extremely fast (<1 ps) in all solvents, except for the viscous solvent glycerol. The more rapid deactivation mechanism precludes the formation of an intermediate species (syn-rotamer), as observed with INR. These findings are corroborated by time-dependent density functional theory (TDDFT) calculations. The work demonstrates that introducing an oxime group to INR, whether in nature or in the laboratory, results in an enhancement of its photostability.
Collapse
Affiliation(s)
- Danîela C Nobre
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
| | - Estefanía Delgado-Pinar
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
- Instituto de Ciencia Molecular, Departamento de Química Inorgánica, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Carla Cunha
- University of Coimbra, CQC-ISM, Department of Chemistry, P3004-535 Coimbra, Portugal.
| | | |
Collapse
|
3
|
Dos Santos DNS, Naskar N, Delgado-Pinar E, Reess K, Seixas de Melo JS, Rueck A. Bromine indirubin FLIM/PLIM sensors to measure oxygen in normoxic and hypoxic PDT conditions. Photodiagnosis Photodyn Ther 2024; 45:103964. [PMID: 38218570 DOI: 10.1016/j.pdpdt.2024.103964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
BACKGROUND The induction of phototoxicity during photodynamic therapy (PDT) is dependent on oxygen availability. For this reason, the development of sensors to measure oxygen and oxygen consumption is extremely important. APPROACH In this project we have used Fluorescence Lifetime imaging (FLIM) and Phosphorescence Lifetime Imaging/ delayed Fluorescence Lifetime Imaging (PLIM/dFLIM) to investigate the ability of bromine indirubin derivatives as oxygen sensors. RESULTS The oxygen sensitivity of bromine indirubins was detected through PLIM/dFLIM. Moreover, we have observed, by measuring nicotinamide adenine dinucleotide (NADH) FLIM, that bromine indirubin has a significant impact on cellular metabolism by shifting the SCC-4 Cells metabolism from oxidative phosphorylation (OXPHOS) to glycolysis. CONCLUSIONS In conclusion, this study successfully achieves its goals and provides important insights into the use of indirubin as a potential oxygen consumption sensor with the capability to identify and differentiate between normoxic and hypoxic regions within the cells.
Collapse
Affiliation(s)
- D N S Dos Santos
- University Ulm, Core Facility Confocal and Multiphoton Microscopy N24, Albert-Einstein-Allee 11, 89081 Ulm, Germany; University of Coimbra, CQC-ISM, Department of Chemistry, Coimbra, P3004-535, Portugal.
| | - N Naskar
- University Ulm, Core Facility Confocal and Multiphoton Microscopy N24, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - E Delgado-Pinar
- University of Coimbra, CQC-ISM, Department of Chemistry, Coimbra, P3004-535, Portugal; Molecular Science Institute, Inorganic Chemistry Department, University of Valencia, C/Catedrático José Beltrán 2, Paterna 46980, Valencia, Spain
| | - K Reess
- University Ulm, Core Facility Confocal and Multiphoton Microscopy N24, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - J S Seixas de Melo
- University of Coimbra, CQC-ISM, Department of Chemistry, Coimbra, P3004-535, Portugal
| | - A Rueck
- University Ulm, Core Facility Confocal and Multiphoton Microscopy N24, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
4
|
Fotie J, Matherne CM, Mather JB, Wroblewski JE, Johnson K, Boudreaux LG, Perez AA. The Fundamental Role of Oxime and Oxime Ether Moieties in Improving the Physicochemical and Anticancer Properties of Structurally Diverse Scaffolds. Int J Mol Sci 2023; 24:16854. [PMID: 38069175 PMCID: PMC10705934 DOI: 10.3390/ijms242316854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The present review explores the critical role of oxime and oxime ether moieties in enhancing the physicochemical and anticancer properties of structurally diverse molecular frameworks. Specific examples are carefully selected to illustrate the distinct contributions of these functional groups to general strategies for molecular design, modulation of biological activities, computational modeling, and structure-activity relationship studies. An extensive literature search was conducted across three databases, including PubMed, Google Scholar, and Scifinder, enabling us to create one of the most comprehensive overviews of how oximes and oxime ethers impact antitumor activities within a wide range of structural frameworks. This search focused on various combinations of keywords or their synonyms, related to the anticancer activity of oximes and oxime ethers, structure-activity relationships, mechanism of action, as well as molecular dynamics and docking studies. Each article was evaluated based on its scientific merit and the depth of the study, resulting in 268 cited references and more than 336 illustrative chemical structures carefully selected to support this analysis. As many previous reviews focus on one subclass of this extensive family of compounds, this report represents one of the rare and fully comprehensive assessments of the anticancer potential of this group of molecules across diverse molecular scaffolds.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, SLU 10878, Hammond, LA 70402-0878, USA; (C.M.M.); (J.B.M.); (J.E.W.); (K.J.); (L.G.B.); (A.A.P.)
| | | | | | | | | | | | | |
Collapse
|
5
|
Bronchain O, Ducos B, Putzer H, Delagrange M, Laalami S, Philippe-Caraty L, Saroul K, Ciapa B. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development. J Cell Sci 2023; 136:jcs261284. [PMID: 37345489 DOI: 10.1242/jcs.261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Soumaya Laalami
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Laetitia Philippe-Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Krystel Saroul
- Institut CURIE, Université Paris-Saclay, INSERM U932, Immunité et Cancer, 91400 Orsay, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
6
|
Malla A, Bose A, Sur R, Gupta S. Cellular, Biophysical and in Silico Binding Study of β-Estradiol-6-one 6- (O-carboxy methyl Oxime) with Tubulin in Search of Antimitotic Derivative of 2-Methoxy Estradiol. Cell Biochem Biophys 2023:10.1007/s12013-023-01142-3. [PMID: 37233844 DOI: 10.1007/s12013-023-01142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/07/2023] [Indexed: 05/27/2023]
Abstract
The tubulin-microtubule system is a major target for a variety of small molecules which can interfere in cell cycle progression. Therefore, it serves as a prospective to control the incessant division of cancer cells. To identify novel inhibitors of the tubulin-microtubule system, a group of estrogen derivatives has been tested with tubulin as a target since literature surveys portray coveted behaviour from the same. Out of them, β-Estradiol-6-one 6- (O-carboxy methyl Oxime) abbreviated as Oxime, disrupts the cytoskeleton network and induces apoptosis with nuclei fragmentation. It has been revealed from the work that Oxime targets the colchicine binding site and binds tubulin in an entropy-driven manner. This suggests that structural variation might play a key role in modulating the anti-mitotic role of estrogen derivatives. Our work reveals that Oxime might serve as a lead molecule to nurture anti-cancer research, having the potential for recovery of the vast cancer population.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Adrija Bose
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India
| | - Runa Sur
- Department of Biophysics Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, West Bengal, India
| | - Suvroma Gupta
- Department of Biotechnology, Haldia Institute of Technology, Haldia, West Bengal, India.
| |
Collapse
|
7
|
Broni E, Striegel A, Ashley C, Sakyi PO, Peracha S, Velazquez M, Bebla K, Sodhi M, Kwofie SK, Ademokunwa A, Khan S, Miller WA. Molecular Docking and Dynamics Simulation Studies Predict Potential Anti-ADAR2 Inhibitors: Implications for the Treatment of Cancer, Neurological, Immunological and Infectious Diseases. Int J Mol Sci 2023; 24:6795. [PMID: 37047766 PMCID: PMC10095294 DOI: 10.3390/ijms24076795] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Altered RNA editing has been linked to several neurodevelopmental disorders, including autism spectrum disorder (ASD) and intellectual disability, in addition to depression, schizophrenia, some cancers, viral infections and autoimmune disorders. The human ADAR2 is a potential therapeutic target for managing these various disorders due to its crucial role in adenosine to inosine editing. This study applied consensus scoring to rank potential ADAR2 inhibitors after performing molecular docking with AutoDock Vina and Glide (Maestro), using a library of 35,161 compounds obtained from traditional Chinese medicine. A total of 47 compounds were predicted to be good binders of the human ADAR2 and had insignificant toxicity concerns. Molecular dynamics (MD) simulations, including the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) procedure, also emphasized the binding of the shortlisted compounds. The potential compounds had plausible binding free energies ranging from -81.304 to -1068.26 kJ/mol from the MM/PBSA calculations. ZINC000085511995, a naphthoquinone had more negative binding free energy (-1068.26 kJ/mol) than inositol hexakisphosphate (IHP) [-873.873 kJ/mol], an agonist and a strong binder of ADAR2. The potential displacement of IHP by ZINC000085511995 in the IHP binding site of ADAR2 could be explored for possible deactivation of ADAR2. Bayesian-based biological activity prediction corroborates the neuropharmacological, antineoplastic and antiviral activity of the potential lead compounds. All the potential lead compounds, except ZINC000014612330 and ZINC000013462928, were predicted to be inhibitors of various deaminases. The potential lead compounds also had probability of activity (Pa) > 0.442 and probability of inactivity (Pi) < 0.116 values for treating acute neurologic disorders, except for ZINC000085996580 and ZINC000013462928. Pursuing these compounds for their anti-ADAR2 activities holds a promising future, especially against neurological disorders, some cancers and viral infections caused by RNA viruses. Molecular interaction, hydrogen bond and per-residue decomposition analyses predicted Arg400, Arg401, Lys519, Trp687, Glu689, and Lys690 as hot-spot residues in the ADAR2 IHP binding site. Most of the top compounds were observed to have naphthoquinone, indole, furanocoumarin or benzofuran moieties. Serotonin and tryptophan, which are beneficial in digestive regulation, improving sleep cycle and mood, are indole derivatives. These chemical series may have the potential to treat neurological disorders, prion diseases, some cancers, specific viral infections, metabolic disorders and eating disorders through the disruption of ADAR2 pathways. A total of nine potential lead compounds were shortlisted as plausible modulators of ADAR2.
Collapse
Affiliation(s)
- Emmanuel Broni
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Andrew Striegel
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Chemical and Biochemistry, College of Science, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Carolyn Ashley
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Patrick O. Sakyi
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 56, Ghana
- Department of Chemical Sciences, School of Sciences, University of Energy and Natural Resources, Sunyani P.O. Box 214, Ghana
| | - Saqib Peracha
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Miriam Velazquez
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kristeen Bebla
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Monsheel Sodhi
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Adesanya Ademokunwa
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Cognitive and Behavioral Neuroscience, Loyola University Chicago, Chicago, IL 60660, USA
| | - Sufia Khan
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA
| | - Whelton A. Miller
- Department of Medicine, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
- Department of Molecular Pharmacology & Neuroscience, Loyola University Medical Center, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
8
|
Lee J, Kim J, Kim H, Park H, Kim JY, Kim EJ, Yang YH, Choi KY, Kim BG. Constructing multi-enzymatic cascade reactions for selective production of 6-bromoindirubin from tryptophan in Escherichia coli. Biotechnol Bioeng 2022; 119:2938-2949. [PMID: 35876239 DOI: 10.1002/bit.28188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/17/2022] [Indexed: 11/06/2022]
Abstract
6-Bromoindirubin (6BrIR), found in Murex sea snails, is a precursor of indirubin-derivatives anticancer drugs. However, its synthesis remains limited due to uncharacterized biosynthetic pathways and difficulties in site-specific bromination and oxidation at indole ring. Here, we present an efficient 6BrIR production strategy in E. coli by using four enzymes, i.e., tryptophan 6-halogenase fused with flavin reductase Fre (Fre-L3-SttH), tryptophanase (TnaA), toluene 4-monooxygenase (PmT4MO) and flavin-containing monooxygenase (MaFMO). Although most indole oxygenases preferentially oxygenate the electronically active C3 position of indole, PmT4MO was newly characterized to perform C2 oxygenation of 6-bromoindole with 45 % yield to produce 6-bromo-2-oxindole. In addition, 6BrIR was selectively generated without indigo and indirubin byproducts by controlling the reducing power of cysteine and oxygen supply during the MaFMO reaction. These approaches led to 34.1 mg/L 6BrIR productions, making it possible to produce the critical precursor of the anticancer drugs only from natural ingredients such as tryptophan, NaBr and oxygen. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jeongchan Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Joonwon Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hyun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - HyunA Park
- Department of Environmental Engineering, Ajou University, Suwon, Republic of Korea
| | - Jin Young Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, Ajou University, Suwon, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.,Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.,Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wang H, Wang Z, Wei C, Wang J, Xu Y, Bai G, Yao Q, Zhang L, Chen Y. Anticancer potential of indirubins in medicinal chemistry: Biological activity, structural modification, and structure-activity relationship. Eur J Med Chem 2021; 223:113652. [PMID: 34161865 DOI: 10.1016/j.ejmech.2021.113652] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Indirubin is the crucial ingredient of Danggui Longhui Wan and Qing-Dai, traditional Chinese medicine herbal formulas used for the therapy of chronic myelocytic leukemia in China for hundreds of years. Although the monomeric indirubin has been used in China for the treatment human chronic myelocytic leukemia. However, due to low water solubility, poor pharmacokinetic properties and low therapeutic effects are the major obstacle, and had significantly limited its clinical application. Consequently, the attractive anticancer profile of indirubin has enthused numerous researchers to discover novel indirubin derivatives with improved pharmacodynamic activity as well as good pharmacokinetic property. In this paper, we comprehensively review the recent progress of anticancer potential of indirubins, structural modification and structure-activity relationship, which may provide useful direction for the further development of novel indirubins with improved pharmacological profiles for the treatment of various types of cancer.
Collapse
Affiliation(s)
- Hezhen Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Zhiyuan Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Chunyong Wei
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Jing Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Yingshu Xu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China
| | - Guohui Bai
- Key Laboratory of Oral Disease of Higher Schools in Guizhou Province, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Qizheng Yao
- School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing, 210009, PR China.
| | - Lei Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Key Laboratory of Basic Pharmacology of Ministry of Education, School of Pharmacy, Zunyi Medical University, 6 West Xuefu Road, Zunyi, 563000, PR China.
| |
Collapse
|
10
|
Schepetkin IA, Plotnikov MB, Khlebnikov AI, Plotnikova TM, Quinn MT. Oximes: Novel Therapeutics with Anticancer and Anti-Inflammatory Potential. Biomolecules 2021; 11:biom11060777. [PMID: 34067242 PMCID: PMC8224626 DOI: 10.3390/biom11060777] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Oximes have been studied for decades because of their significant roles as acetylcholinesterase reactivators. Over the last twenty years, a large number of oximes have been reported with useful pharmaceutical properties, including compounds with antibacterial, anticancer, anti-arthritis, and anti-stroke activities. Many oximes are kinase inhibitors and have been shown to inhibit over 40 different kinases, including AMP-activated protein kinase (AMPK), phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase (CDK), serine/threonine kinases glycogen synthase kinase 3 α/β (GSK-3α/β), Aurora A, B-Raf, Chk1, death-associated protein-kinase-related 2 (DRAK2), phosphorylase kinase (PhK), serum and glucocorticoid-regulated kinase (SGK), Janus tyrosine kinase (JAK), and multiple receptor and non-receptor tyrosine kinases. Some oximes are inhibitors of lipoxygenase 5, human neutrophil elastase, and proteinase 3. The oxime group contains two H-bond acceptors (nitrogen and oxygen atoms) and one H-bond donor (OH group), versus only one H-bond acceptor present in carbonyl groups. This feature, together with the high polarity of oxime groups, may lead to a significantly different mode of interaction with receptor binding sites compared to corresponding carbonyl compounds, despite small changes in the total size and shape of the compound. In addition, oximes can generate nitric oxide. This review is focused on oximes as kinase inhibitors with anticancer and anti-inflammatory activities. Oximes with non-kinase targets or mechanisms of anti-inflammatory activity are also discussed.
Collapse
Affiliation(s)
- Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Mark B. Plotnikov
- Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Center, Russian Academy of Sciences, 634028 Tomsk, Russia;
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Scientific Research Institute of Biological Medicine, Altai State University, 656049 Barnaul, Russia
| | - Tatiana M. Plotnikova
- Department of Pharmacology, Siberian State Medical University, 634050 Tomsk, Russia;
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: ; Tel.: +1-406-994-4707; Fax: +1-406-994-4303
| |
Collapse
|
11
|
Correa-Sáez A, Jiménez-Izquierdo R, Garrido-Rodríguez M, Morrugares R, Muñoz E, Calzado MA. Updating dual-specificity tyrosine-phosphorylation-regulated kinase 2 (DYRK2): molecular basis, functions and role in diseases. Cell Mol Life Sci 2020; 77:4747-4763. [PMID: 32462403 PMCID: PMC7658070 DOI: 10.1007/s00018-020-03556-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/15/2022]
Abstract
Members of the dual-specificity tyrosine-regulated kinase (DYRKs) subfamily possess a distinctive capacity to phosphorylate tyrosine, serine, and threonine residues. Among the DYRK class II members, DYRK2 is considered a unique protein due to its role in disease. According to the post-transcriptional and post-translational modifications, DYRK2 expression greatly differs among human tissues. Regarding its mechanism of action, this kinase performs direct phosphorylation on its substrates or acts as a priming kinase, enabling subsequent substrate phosphorylation by GSK3β. Moreover, DYRK2 acts as a scaffold for the EDVP E3 ligase complex during the G2/M phase of cell cycle. DYRK2 functions such as cell survival, cell development, cell differentiation, proteasome regulation, and microtubules were studied in complete detail in this review. We have also gathered available information from different bioinformatic resources to show DYRK2 interactome, normal and tumoral tissue expression, and recurrent cancer mutations. Then, here we present an innovative approach to clarify DYRK2 functionality and importance. DYRK2 roles in diseases have been studied in detail, highlighting this kinase as a key protein in cancer development. First, DYRK2 regulation of c-Jun, c-Myc, Rpt3, TERT, and katanin p60 reveals the implication of this kinase in cell-cycle-mediated cancer development. Additionally, depletion of this kinase correlated with reduced apoptosis, with consequences on cancer patient response to chemotherapy. Other functions like cancer stem cell formation and epithelial-mesenchymal transition regulation are also controlled by DYRK2. Furthermore, the pharmacological modulation of this protein by different inhibitors (harmine, curcumine, LDN192960, and ID-8) has enabled to clarify DYRK2 functionality.
Collapse
Affiliation(s)
- Alejandro Correa-Sáez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rafael Jiménez-Izquierdo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Martín Garrido-Rodríguez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Rosario Morrugares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Marco A Calzado
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n., 14004, Córdoba, Spain.
- Departamento de Biología Celular, Fisiología E Inmunología, Universidad de Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
12
|
Zhou S, Huang G, Chen G. Synthesis and biological activities of drugs for the treatment of osteoporosis. Eur J Med Chem 2020; 197:112313. [PMID: 32335412 DOI: 10.1016/j.ejmech.2020.112313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/15/2022]
Abstract
Osteoporosis is an asymptomatic progressive disease. With the improvement of people's living standard and the aging of population, osteoporosis and its fracture have become one of the main diseases threatening the aging society. The serious medical and social burden caused by this has aroused wide public concern. Osteoporosis is listed as one of the three major diseases of the elderly. At present, the drugs for osteoporosis include bone resorption inhibitors and bone formation promoters. The purpose of these anti-osteoporosis drugs is to balance osteoblast bone formation and osteoclast bone resorption. With the development of anti-osteoporosis drugs, new anti osteoporosis drugs have been designed and synthesized. There are many kinds of new compounds with anti osteoporosis activity, but most of them are concentrated on the original drugs with anti osteoporosis activity, or the natural products with anti-osteoporosis activity are extracted from the natural products for structural modification to obtain the corresponding derivatives or analogues. These target compounds showed good ALP activity in vitro and in vivo, promoted osteoblast differentiation and mineralization, or had anti TRAP activity, inhibited osteoclast absorption. This work attempts to systematically review the studies on the synthesis and bioactivity of anti-osteoporosis drugs in the past 10 years. The structure-activity relationship was discussed, which provided a reasonable idea for the design and development of new anti-osteoporosis drugs.
Collapse
Affiliation(s)
- Shiyang Zhou
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Green Synthesis and Application, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
13
|
Ko PJ, Woodrow C, Dubreuil MM, Martin BR, Skouta R, Bassik MC, Dixon SJ. A ZDHHC5-GOLGA7 Protein Acyltransferase Complex Promotes Nonapoptotic Cell Death. Cell Chem Biol 2019; 26:1716-1724.e9. [PMID: 31631010 DOI: 10.1016/j.chembiol.2019.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/29/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Lethal small molecules are useful probes to discover and characterize novel cell death pathways and biochemical mechanisms. Here we report that the synthetic oxime-containing small molecule caspase-independent lethal 56 (CIL56) induces an unconventional form of nonapoptotic cell death distinct from necroptosis, ferroptosis, and other pathways. CIL56-induced cell death requires a catalytically active protein S-acyltransferase complex comprising the enzyme ZDHHC5 and an accessory subunit GOLGA7. The ZDHHC5-GOLGA7 complex is mutually stabilizing and localizes to the plasma membrane. CIL56 inhibits anterograde protein transport from the Golgi apparatus, which may be lethal in the context of ongoing ZDHHC5-GOLGA7 complex-dependent retrograde protein trafficking from the plasma membrane to internal sites. Other oxime-containing small molecules, structurally distinct from CIL56, may trigger cell death through the same pathway. These results define an unconventional form of nonapoptotic cell death regulated by protein S-acylation.
Collapse
Affiliation(s)
- Pin-Joe Ko
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Claire Woodrow
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael M Dubreuil
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brent R Martin
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachid Skouta
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Modulation of glioma-inflammation crosstalk profiles in human glioblastoma cells by indirubin-3'-(2,3 dihydroxypropyl)-oximether (E804) and 7-bromoindirubin-3'-oxime (7BIO). Chem Biol Interact 2019; 312:108816. [PMID: 31505164 DOI: 10.1016/j.cbi.2019.108816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022]
Abstract
Indirubins E804 (indirubin-3'-(2,3 dihydroxypropyl)-oximether) and 7BIO (7-Bromoindirubin-3'-oxime) are synthetic derivatives of natural indirubin, the active compound in Danggui Longhui Wan, a traditional Chinese remedy for cancer and inflammation. Herein, we explore E804 and 7BIO for their potential to modulate key pro-inflammatory genes and cytokines in LN-18 and T98G glioblastoma cells. High grade gliomas typically secrete large amounts of inflammatory cytokines and growth factors that promote tumor growth in an autocrine fashion. Inflammation is emerging as a key concern in the success of new treatment modalities for glioblastomas. Studies indicate that select indirubin derivatives bind and activate signaling of the AHR pathway, as well as inhibit cyclin-dependent kinases and STAT3 signaling. AHR signaling is involved in hematopoiesis, immune function, cell cycling, and inflammation, and thus may be a possible target for glioma treatment. To determine the significance of the AHR pathway in LN-18 and T98G glioma inflammatory profiles, and on the effects of E804 and 7BIO on these profiles, we used 6,2',4'-trimethoxyflavone (TMF), a putative selective AHR antagonist. It was confirmed that E804 and 7BIO activates the AHR leading to cyp1b1 expression, and that TMF antagonizes expression. We then employed a commercial cancer inflammation and immunity crosstalk qRT-PCR array to screen for anti-inflammatory related properties. TMF alone inhibited expression of ifng, ptsg2, il12b, tnfa, il10, il13, the balance between pd1 and pdl1, and even expression of mhc1a/b. E804 was very potent in suppressing many pro-inflammatory genes, including il1a, il1b, il12a, ptgs2, tlr4, and others. E804 also affected expression of il6, vegfa, and stat3. Conversely, 7BIO induced cox2, but suppressed a different selection of pro-inflammatory genes including nos2, tnfa, and igf1. Secretion of IL-6 protein, an iconic inflammatory cytokine, was decreased by E804. VEGF (vascular endothelial growth factor) protein secretion was upregulated by 7BIO, yet downregulated by E804 and E804 plus TMF. Thus, E804 is both an AHR ligand and regulator of important pro-inflammatory cytokines such as IL-6 and oncogene STAT3, among others. Our results point to the use of E804 and TMF in combination as a promising new treatment for glioblastoma.
Collapse
|
15
|
Nikolaou PE, Boengler K, Efentakis P, Vouvogiannopoulou K, Zoga A, Gaboriaud-Kolar N, Myrianthopoulos V, Alexakos P, Kostomitsopoulos N, Rerras I, Tsantili-Kakoulidou A, Skaltsounis AL, Papapetropoulos A, Iliodromitis EK, Schulz R, Andreadou I. Investigating and re-evaluating the role of glycogen synthase kinase 3 beta kinase as a molecular target for cardioprotection by using novel pharmacological inhibitors. Cardiovasc Res 2019; 115:1228-1243. [PMID: 30843027 DOI: 10.1093/cvr/cvz061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/13/2019] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
AIMS Glycogen synthase kinase 3 beta (GSK3β) link with the mitochondrial Permeability Transition Pore (mPTP) in cardioprotection is debated. We investigated the role of GSK3β in ischaemia (I)/reperfusion (R) injury using pharmacological tools. METHODS AND RESULTS Infarct size using the GSK3β inhibitor BIO (6-bromoindirubin-3'-oxime) and several novel analogues (MLS2776-MLS2779) was determined in anaesthetized rabbits and mice. In myocardial tissue GSK3β inhibition and the specificity of the compounds was tested. The mechanism of protection focused on autophagy-related proteins. GSK3β localization was determined in subsarcolemmal (SSM) and interfibrillar mitochondria (IFM) isolated from Langendorff-perfused murine hearts (30'I/10'R or normoxic conditions). Calcium retention capacity (CRC) was determined in mitochondria after administration of the inhibitors in mice and in vitro. The effects of the inhibitors on mitochondrial respiration, reactive oxygen species (ROS) formation, ATP production, or hydrolysis were measured in SSM at baseline. Cyclosporine A (CsA) was co-administered with the inhibitors to address putative additive cardioprotective effects. Rabbits and mice treated with MLS compounds had smaller infarct size compared with control. In rabbits, MLS2776 and MLS2778 possessed greater infarct-sparing effects than BIO. GSK3β inhibition was confirmed at the 10th min and 2 h of reperfusion, while up-regulation of autophagy-related proteins was evident at late reperfusion. The mitochondrial amount of GSK3β was similar in normoxic SSM and IFM and was not altered by I/R. The inhibitors did not affect CRC or respiration, ROS and ATP production/hydrolysis at baseline. The co-administration of CsA ensured that cardioprotection was CypD-independent. CONCLUSION Pharmacological inhibition of GSK3β attenuates infarct size beyond mPTP inhibition.
Collapse
Affiliation(s)
- Panagiota-Efstathia Nikolaou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Kerstin Boengler
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Panagiotis Efentakis
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | | - Anastasia Zoga
- National and Kapodistrian University of Athens, Medical School, Attikon University Hospital, Athens, Greece
| | - Nicholas Gaboriaud-Kolar
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Bioval Océan Indien, Montpellier Cedex, France
| | - Vassilios Myrianthopoulos
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Pavlos Alexakos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Nikolaos Kostomitsopoulos
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Ioannis Rerras
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Anna Tsantili-Kakoulidou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Alexios Leandros Skaltsounis
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| | - Andreas Papapetropoulos
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
- Academy of Athens Biomedical Research Foundation, Centre of Clinical Experimental Surgery and Translational Research, Athens, Greece
| | - Efstathios K Iliodromitis
- National and Kapodistrian University of Athens, Medical School, Attikon University Hospital, Athens, Greece
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Ioanna Andreadou
- National and Kapodistrian University of Athens, Faculty of Pharmacy, Panepistimiopolis, Zografou, Athens, Greece
| |
Collapse
|
16
|
Pacureanu L, Avram S, Bora A, Kurunczi L, Crisan L. Portraying the selectivity of GSK-3 inhibitors towards CDK-2 by 3D similarity and molecular docking. Struct Chem 2018. [DOI: 10.1007/s11224-018-1224-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Chen L, Huang C, Shentu J, Wang M, Yan S, Zhou F, Zhang Z, Wang C, Han Y, Wang Q, Cui W. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio) Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice. Front Mol Neurosci 2017; 10:393. [PMID: 29234273 PMCID: PMC5712304 DOI: 10.3389/fnmol.2017.00393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/10/2017] [Indexed: 12/28/2022] Open
Abstract
Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio), an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5) and glycogen synthase kinase-3β (GSK3β), two pharmacological targets of Alzheimer's disease (AD). In this study, we have discovered that 2.3–23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ) oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD) with hyper-phosphorylated tau (pTau), glial fibrillary acidic protein (GFAP) and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.
Collapse
Affiliation(s)
- Liping Chen
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Chunhui Huang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jieyi Shentu
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Minjun Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China.,Laboratory of Marine Natural Products, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Sicheng Yan
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fei Zhou
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Zaijun Zhang
- Institute of New Drug Research, Guangdong Province Key Laboratory of Pharmacodynamic, Constituents of Traditional Chinese Medicine and New Drug Research, College of Pharmacy, Jinan University, Guangdong, China
| | - Chuang Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Yifan Han
- Department of Applied Biology and Chemistry Technology, Institute of Modern Chinese Medicine, Hong Kong Polytechnic University, Hong Kong, China
| | - Qinwen Wang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Tsakiri EN, Gaboriaud-Kolar N, Iliaki KK, Tchoumtchoua J, Papanagnou ED, Chatzigeorgiou S, Tallas KD, Mikros E, Halabalaki M, Skaltsounis AL, Trougakos IP. The Indirubin Derivative 6-Bromoindirubin-3'-Oxime Activates Proteostatic Modules, Reprograms Cellular Bioenergetic Pathways, and Exerts Antiaging Effects. Antioxid Redox Signal 2017; 27:1027-1047. [PMID: 28253732 PMCID: PMC5651956 DOI: 10.1089/ars.2016.6910] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Organismal aging can be delayed by mutations that either activate stress responses or reduce the nutrient-sensing pathway signaling; thus, by using Drosophila melanogaster as an in vivo experimental screening platform, we searched for compounds that modulate these pathways. RESULTS We noted that oral administration of the glycogen synthase kinase 3 (Gsk-3) inhibitor 6-bromoindirubin-3'-oxime (6BIO) in Drosophila flies extended healthy life span. 6BIO is not metabolized in fly tissues, modulated bioenergetic pathways, decreased lipid and glucose tissue load, activated antioxidant and proteostatic modules, and enhanced resistance to stressors. Mechanistically, we found that the effects on the stress-responsive pathways were largely dependent on the activity of the transcription factor nuclear factor erythroid 2-related factor (Nrf-2). Genetic inhibition of Gsk-3 largely phenocopied the 6BIO-mediated effects, while high levels of Gsk-3 expression and/or kinase activity suppressed proteostatic modules and reduced flies' longevity; these effects were partially rescued by 6BIO. Also, 6BIO was found to partially reduce the 3-phosphoinositide-dependent protein kinase-1 (Pdpk1) activity, a major effector of the insulin/insulin-like growth factor-1 cell signaling pathways. INNOVATION 6BIO exerts the unique property of increasing stress tolerance and in parallel partially suppressing the nutrient-sensing pathway signaling. CONCLUSION Our findings suggest that the 6BIO scaffold can be used for the development of novel antiaging compounds. Antioxid. Redox Signal. 27, 1027-1047.
Collapse
Affiliation(s)
- Eleni N Tsakiri
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Nicolas Gaboriaud-Kolar
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Kalliopi K Iliaki
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Job Tchoumtchoua
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Eleni-Dimitra Papanagnou
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Sofia Chatzigeorgiou
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Konstantinos D Tallas
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| | - Emmanuel Mikros
- 3 Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Maria Halabalaki
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Alexios-Leandros Skaltsounis
- 2 Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens , Athens, Greece
| | - Ioannis P Trougakos
- 1 Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens , Athens, Greece
| |
Collapse
|
19
|
Ichimaru Y, Fujii T, Saito H, Sano M, Uchiyama T, Miyairi S. 5-Bromoindirubin 3′-(O-oxiran-2-ylmethyl)oxime: A long-acting anticancer agent and a suicide inhibitor for epoxide hydrolase. Bioorg Med Chem 2017; 25:4665-4676. [DOI: 10.1016/j.bmc.2017.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/20/2017] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
|
20
|
Wang C, Yan J, Du M, Burlison JA, Li C, Sun Y, Zhao D, Liu J. One step synthesis of indirubins by reductive coupling of isatins with KBH 4. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Huang M, Wang L, Zeng S, Qiu Q, Zou Y, Shi M, Xu H, Liang L. Indirubin inhibits the migration, invasion, and activation of fibroblast-like synoviocytes from rheumatoid arthritis patients. Inflamm Res 2017; 66:433-440. [PMID: 28265680 DOI: 10.1007/s00011-017-1027-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/25/2016] [Accepted: 02/11/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To evaluate the inhibition of indirubin in FLSs migration, invasion, activation, and proliferation in RA FLSs. METHODS The levels of IL-6 and IL-8 in cultural supernatants were measured by ELISA. RA FLS migration and invasion in vitro were measured by the Boyden chamber method and the scratch assay. Signal transduction protein expression was measured by western blot. FLS proliferation was detected by Edu incorporation. F-actin was measured by immunofluorescence staining. RESULTS We found that indirubin reduced migration, invasion, inflammation, and proliferation in RA FLSs. In addition, we demonstrated that indirubin inhibited lamellipodium formation during cell migration. To gain insight into molecular mechanisms, we evaluated the effect of indirubin on PAK1 and MAPK activation. Our results indicated that indirubin inhibited the activity of PAK1 and MAPK. CONCLUSIONS Our observations suggest that indirubin may be protective against joint destruction in RA by regulating synoviocyte migration, invasion, activation, and proliferation.
Collapse
Affiliation(s)
- Mingcheng Huang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Lihui Wang
- Department of Orthopedics, The People's Hospital of Nanhai District, Foshan, Guangdong, China
| | - Shan Zeng
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Qian Qiu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Yaoyao Zou
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Maohua Shi
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Hanshi Xu
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China
| | - Liuqin Liang
- Department of Rheumatology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
22
|
Cheng X, Merz KH. The Role of Indirubins in Inflammation and Associated Tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 929:269-290. [DOI: 10.1007/978-3-319-41342-6_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Cheng X, Kim JY, Ghafoory S, Duvaci T, Rafiee R, Theobald J, Alborzinia H, Holenya P, Fredebohm J, Merz KH, Mehrabi A, Hafezi M, Saffari A, Eisenbrand G, Hoheisel JD, Wölfl S. Methylisoindigo preferentially kills cancer stem cells by interfering cell metabolism via inhibition of LKB1 and activation of AMPK in PDACs. Mol Oncol 2016; 10:806-24. [PMID: 26887594 PMCID: PMC5423166 DOI: 10.1016/j.molonc.2016.01.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) clinically has a very poor prognosis. No small molecule is available to reliably achieve cures. Meisoindigo is chemically related to the natural product indirubin and showed substantial efficiency in clinical chemotherapy for CML in China. However, its effect on PDAC is still unknown. Our results showed strong anti-proliferation effect of meisoindigo on gemcitabine-resistant PDACs. Using a recently established primary PDAC cell line, called Jopaca-1 with a larger CSCs population as model, we observed a reduction of CD133+ and ESA+/CD44+/CD24+ populations upon treatment and concomitantly a decreased expression of CSC-associated genes, and reduced cellular mobility and sphere formation. Investigating basic cellular metabolic responses, we detected lower oxygen consumption and glucose uptake, while intracellular ROS levels increased. This was effectively neutralized by the addition of antioxidants, indicating an essential role of the cellular redox balance. Further analysis on energy metabolism related signaling revealed that meisoindigo inhibited LKB1, but activated AMPK. Both of them were involved in cellular apoptosis. Additional in situ hybridization in tissue sections of PDAC patients reproducibly demonstrated co-expression and -localization of LKB1 and CD133 in malignant areas. Finally, we detected that CD133+/CD44+ were more vulnerable to meisoindigo, which could be mimicked by LKB1 siRNAs. Our results provide the first evidence, to our knowledge, that LKB1 sustains the CSC population in PDACs and demonstrate a clear benefit of meisoindigo in treatment of gemcitabine-resistant cells. This novel mechanism may provide a promising new treatment option for PDAC.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Jee Young Kim
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Tijen Duvaci
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Roya Rafiee
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Pavlo Holenya
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| | - Johannes Fredebohm
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Karl-Heinz Merz
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Germany.
| | - Mohammadreza Hafezi
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Germany.
| | - Arash Saffari
- Department of General, Visceral and Transplantation Surgery, Heidelberg University, Germany.
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, University of Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663 Kaiserslautern, Germany.
| | - Jörg D Hoheisel
- Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Pharmaceutical Biology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany.
| |
Collapse
|
24
|
Nisha CM, Kumar A, Vimal A, Bai BM, Pal D, Kumar A. Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. J Mol Graph Model 2016; 65:100-7. [PMID: 26967552 DOI: 10.1016/j.jmgm.2016.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/04/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
GSK-3 is a member of cellular kinases with diversified functions such as cellular differentiation, metabolic signaling, neuronal functions and apoptosis. It has been validated as an important therapeutic target in Alzheimer's disease and type 2 diabetes. Few molecules targeting GSK-3 are currently in clinical trials. In this study, we have compared certain docking and computational ADME (Absorption, Distribution, Metabolism, Excretion) parameters of a few GSK-3 targeted ligands (Indirubin, Hymenialdisine, Meridianins, 6-bromoindirubin-3-oxime) against two control molecules (Tideglusib and LY-2090314) to derive and analyze the basic drug-like properties of the test compounds. Docking between the GSK-3 and various ligands was done using AutoDock while ADME parameters were derived from ADMET server PreADMET and admetSAR. Various docked images were retrieved from docking, indicating the docking sites in the target protein. Out of four compounds tested, 6-bromoindirubin-3-oxime (6-BIO) was found as the best docking and ADME parameters, followed by Hymenialdisine (HMD). The LigPlot interaction results show two residues Leu (188) and Thr (138) to be common at the interaction site. The LD50 of 6-BIO is better than one of the control ligands while very similar to the other. Some of the parameters were very similar to the control ligands, thus, making it a suitable candidate among the test ligands. From this in-silico study, we concluded that 6-BIO is a potent drug candidate which could be further tested in vitro and in vivo to establish a drug molecule. Since, 6-BIO is a chemically modified form of the basic molecule Indirubin, we can hypothesize that certain other modified indirubins could be tested as GSK-3 targeted ligands.
Collapse
Affiliation(s)
| | - Ashwini Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Archana Vimal
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Bhukya Mounika Bai
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Dharm Pal
- Department of Chemical Engineering, National Institute of Technology, Raipur 492010, Chhattisgarh, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology, Raipur 492010, Chhattisgarh, India.
| |
Collapse
|
25
|
Tian F, Yao J, Yan M, Sun X, Wang W, Gao W, Tian Z, Guo S, Dong Z, Li B, Gao T, Shan P, Liu B, Wang H, Cheng J, Gao Q, Zhang Z, Cao W, Tian Y. 5-Aminolevulinic Acid-Mediated Sonodynamic Therapy Inhibits RIPK1/RIPK3-Dependent Necroptosis in THP-1-Derived Foam Cells. Sci Rep 2016; 6:21992. [PMID: 26911899 PMCID: PMC4766406 DOI: 10.1038/srep21992] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/29/2016] [Indexed: 12/15/2022] Open
Abstract
Necroptosis, or programmed necrosis, contributes to the formation of necrotic cores in atherosclerotic plaque in animal models. However, whether inhibition of necroptosis ameliorates atherosclerosis is largely unknown. In this study, we demonstrated that necroptosis occurred in clinical atherosclerotic samples, suggesting that it may also play an important role in human atherosclerosis. We established an in vitro necroptotic model in which necroptosis was induced in THP-1-derived foam cells by serum deprivation. With this model, we demonstrated that 5-aminolevulinic acid-mediated sonodynamic therapy (ALA-SDT) inhibited necroptosis while promoting apoptosis. ALA-SDT activated the caspase-3 and caspase-8 pathways in foam cells, which is responsible for the switch from necroptosis to apoptosis. The inhibition of either caspase-8 or caspase-3 abolished the anti-necroptotic effect of ALA-SDT. In addition, we found that caspase-3 activation peaked 4 hours after ALA-SDT treatment, 2 hours earlier than maximal caspase-8activation. Taken together, our data indicate that ALA-SDT mediates the switch from necroptosis to apoptosis by activating the caspase-3 and caspase-8 pathways and may improve the prognosis of atherosclerosis.
Collapse
Affiliation(s)
- Fang Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Jianting Yao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Meng Yan
- Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, the Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin 150081, P. R. China
| | - Xin Sun
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Wei Wang
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Weiwei Gao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Zhen Tian
- Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, the Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin 150081, P. R. China
| | - Shuyuan Guo
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Zengxiang Dong
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Bicheng Li
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Tielei Gao
- Department of Forensic Medicine, Harbin Medical University, Harbin 150001, P. R. China
| | - Peng Shan
- Department of Vascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Bing Liu
- Department of Vascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Haiyang Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, P. R. China
| | - Jiali Cheng
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Qianping Gao
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China
| | - Zhiguo Zhang
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Wenwu Cao
- Laboratory of Photo- and Sono-theranostic Technologies and Condensed Matter Science and Technology Institute, Harbin Institute of Technology, Harbin 150080, P. R. China.,Materials Research Institute, The Pennsylvania State University, University Park 16802, PA, USA
| | - Ye Tian
- Department of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, P. R. China.,Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, the Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin 150081, P. R. China.,Heilongjiang Academy of Medical Sciences, Harbin 150086, P. R. China
| |
Collapse
|
26
|
Gaboriaud-Kolar N, Vougogiannopoulou K, Skaltsounis AL. Indirubin derivatives: a patent review (2010 - present). Expert Opin Ther Pat 2015; 25:583-93. [PMID: 25887337 DOI: 10.1517/13543776.2015.1019865] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Indirubins are bisindole alkaloids naturally occurring in indigo-bearing plants or in mollusks from the Muricidae family. They belong to the rather small family of indigoids, which has nevertheless found an extreme importance in the fields of dyes and medicinal chemistry. Indirubin has been found to be the active ingredient of a traditional Chinese Medicine used to treat the symptoms of leukemia. Further biological explorations revealed the ability of indirubin to bind cyclin-dependent kinases and 6-bromoindirubin, extracted from mollusks, to bind glycogen synthase kinase-3. The high affinity displayed by the two natural products has opened a vast field of research and triggered the development of hundred of derivatives with biological activities. AREAS COVERED The traditional use of indirubin for the treatment of leukemia has prompted different research groups to study the cytotoxic effect of indirubin derivatives on both solid tumors and leukemia. Moreover, the affinity of indirubins for kinases also allowed the exploration of their activity towards stem cells. EXPERT OPINION The derivatives presented are in accordance with first discoveries and establish the close relation between activity and kinase inhibition. New derivatives have been patented and new interferences in signaling pathways are described. However, few in vivo studies have been performed and more efficient solutions are needed to unravel the major issue of solubility.
Collapse
Affiliation(s)
- Nicolas Gaboriaud-Kolar
- University of Athens, Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy , Panepistimiopolis Zografou, GR-15771, Athens , Greece
| | | | | |
Collapse
|
27
|
Ahn MY, Kim TH, Kwon SM, Yoon HE, Kim HS, Kim JI, Kim YC, Kang KW, Ahn SG, Yoon JH. 5-Nitro-5'-hydroxy-indirubin-3'-oxime (AGM130), an indirubin-3'-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci 2015; 79:122-131. [PMID: 26342773 DOI: 10.1016/j.ejps.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
Abstract
This study examined the anti-tumor effects of AGM130, a novel indirubin-3'-oxime derivative in A549 human non-small cell lung cancer cells. AGM130 significantly inhibited the proliferation and arrested the cell cycle of G2/M phase. Induction of apoptosis was detected in AGM130-treated A549 cells. The protein levels of Cytochrome c release, Bax, cleaved caspases and PARP were increased in AGM130 treated cells, whereas Bcl-2 levels were decreased. AGM130 inhibited Insulin-like growth factor 1 receptor (IGF1R), AKT/mTOR signaling and inactivated mitogen-activated protein kinases (MAPK). AGM130 also induced slight autophagy as pro-survival function and autophagy inhibition by chloroquine (CQ) induced necrosis. In vivo tumor xenograft model, AGM130 dose-dependently suppressed transplanted A549 cell tumor growth and induced the expression of proliferative cell nuclear antigen (PCNA). AGM130 also increased TUNEL positive apoptotic cell populations and the induction of glandular differentiation with mucin pool compared with vehicle-treated control in tumor tissue. These results suggest that AGM130 is an effective novel indirubin-3'-oxime derivative of anti-cancer drug and may be an attractive candidate for non-small cell lung cancer therapy.
Collapse
Affiliation(s)
- Mee-Young Ahn
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Tae-Hyung Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Seong-Min Kwon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Hyo-Eun Yoon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea
| | - Hyung-Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae-Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Division of Drug Discovery, Anygen Co., Ltd., Gwangju 500-712, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea; Division of Drug Discovery, Anygen Co., Ltd., Gwangju 500-712, Republic of Korea
| | - Keon-Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang-Gun Ahn
- Department of Pathology, College of Dentistry, Chosun University, Gwangju 501-759, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Oral & Maxillofacial Pathology, College of Dentistry, Wonkwang Bone Regeneration Research Institute, Daejeon Dental Hospital, Wonkwang University, Daejeon 302-120, Republic of Korea.
| |
Collapse
|
28
|
Jiang Y, Shan S, Chi L, Zhang G, Gao X, Li H, Zhu X, Yang J. Methyl methanesulfonate induces necroptosis in human lung adenoma A549 cells through the PIG-3-reactive oxygen species pathway. Tumour Biol 2015; 37:3785-95. [PMID: 26472723 DOI: 10.1007/s13277-015-3531-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 05/05/2015] [Indexed: 11/26/2022] Open
Abstract
Methyl methanesulfonate (MMS) is an alkylating agent that can induce cell death through apoptosis and necroptosis. The molecular mechanisms underlying MMS-induced apoptosis have been studied extensively; however, little is known about the mechanism for MMS-induced necroptosis. Therefore, we first established MMS-induced necroptosis model using human lung carcinoma A549 cells. It was found that, within a 24-h period, although MMS at concentrations of 50, 100, 200, 400, and 800 μM can induce DNA damage, only at higher concentrations (400 and 800 μM) MMS treatment lead to necroptosis in A549 cells, as it could be inhibited by the specific necroptotic inhibitor necrostatin-1, but not the specific apoptotic inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-fmk). MMS-induced necroptosis was further confirmed by the induction of the necroptosis biomarkers including the depletion of cellular NADH and ATP and leakage of LDH. This necroptotic cell death was also concurrent with the increased expression of p53, p53-induced gene 3 (PIG-3), high mobility group box-1 protein (HMGB1), and receptor interaction protein kinase (RIP) but not the apoptosis-associated caspase-3 and caspase-9 proteins. Elevated reactive oxygen species (ROS) level was also involved in this process as the specific ROS inhibitor (4-amino-2,4-pyrrolidine-dicarboxylic acid (APDC)) can inhibit the necroptotic cell death. Interestingly, knockdown of PIG-3 expression by small interfering RNA (siRNA) treatment can inhibit the generation of ROS. Taken together, these results suggest that MMS can induce necroptosis in A549 cells, probably through the PIG-3-ROS pathway.
Collapse
Affiliation(s)
- Ying Jiang
- Suzhou Biological Technology Co. Ltd. of Centre Testing International Corporation, Kunshan, Jiangsu, 215300, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shigang Shan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Linfeng Chi
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Guanglin Zhang
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China
| | - Xiangjing Gao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, 310058, China
| | - Hongjuan Li
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Xinqiang Zhu
- Department of Toxicology, Zhejiang University School of Public Health, Hangzhou, Zhejiang, 310058, China.
| | - Jun Yang
- Department of Toxicology, Hangzhou Normal University School of Medicine, Hangzhou, Zhejiang, 310016, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
29
|
Broecker-Preuss M, Becher-Boveleth N, Gall S, Rehmann K, Schenke S, Mann K. Induction of atypical cell death in thyroid carcinoma cells by the indirubin derivative 7-bromoindirubin-3'-oxime (7BIO). Cancer Cell Int 2015; 15:97. [PMID: 26464561 PMCID: PMC4603293 DOI: 10.1186/s12935-015-0251-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The indirubin derivative 7-bromoindirubin-3'-oxime (7BIO) has already shown anticancer properties by causing cell death in some tumour cell lines and may be a new therapeutic option for treatment-resistant tumour cells. Since dedifferentiated and anaplastic thyroid carcinomas do not take up radioiodine and are insensitive to chemotherapeutic treatment and external radiation, direct cell death induction in these tumour cells may be a promising approach. We thus investigated the effect of 7BIO on thyroid carcinoma cell lines of different histological origins and characterized the type of cell death induction by 7BIO. METHODS Cell viability was measured with MTT assay. Cell death was analysed by caspase 3/7 activity, lactate dehydrogenase liberation, caspase cleavage products, DNA fragmentation, cell cycle phase distribution and LC3B analysis. RESULTS After 7BIO treatment, cell viability was reduced in all 14 thyroid carcinoma cell lines investigated. Treated cells showed DNA fragmentation, cell cycle arrest and lactate dehydrogenase liberation but no LC3B cleavage. Caspase activation following 7BIO treatment was found in five of six cell lines investigated. Interestingly, inhibition of caspases had no effect on viability of the cells after 7BIO incubation. CONCLUSIONS Our results indicate that 7BIO efficiently killed dedifferentiated thyroid carcinoma cells. It induced a non-classical kind of cell death that was caspase-independent and includes DNA fragmentation. 7BIO and related indirubin components thus may have value as a new therapeutic option for dedifferentiated thyroid cancer irrespective of the exact target molecules and the kind of cell death they induce.
Collapse
Affiliation(s)
- Martina Broecker-Preuss
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Nina Becher-Boveleth
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Clinic of Nuclear Medicine, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susanne Gall
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Katrin Rehmann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Department of Clinical Chemistry, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Susann Schenke
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Klaus Mann
- Division of Laboratory Research, Department of Endocrinology and Metabolism, University Hospital Essen, Hufelandstr. 55, Essen, Germany ; Center of Endocrinology Alter Hof München, Dienerstr. 12, Munich, Germany
| |
Collapse
|
30
|
Mattiolo P, Yuste VJ, Boix J, Ribas J. Autophagy exacerbates caspase-dependent apoptotic cell death after short times of starvation. Biochem Pharmacol 2015; 98:573-86. [PMID: 26441250 DOI: 10.1016/j.bcp.2015.09.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
Autophagy is generally regarded as a mechanism to promote cell survival. However, autophagy can occasionally be the mechanism responsible of cell demise. We have found that a concomitant depletion of glucose, nutrients and growth factors provoked cell death in a variety of cell lines. This death process was contingent upon caspase activation and was mediated by BAX/BAK proteins, thus indicating its apoptotic nature and the engagement of an intrinsic pathway. In order to abrogate autophagy, 3-methyladenine (3-MA), BECLIN-1 siRNA and Atg5 knock-out (Tet-Off type) approaches were alternatively employed. Irrespective of the procedure, at short times of starvation, we found that the ongoing autophagy was sensitizing cells to the permeabilization of the mitochondrial outer membrane (MOMP), caspase activation and, therefore, apoptosis. On the contrary, at longer times of starvation, autophagy displayed its characteristic pro-survival effect on cells. As far as we know, we provide the first experimental paradigm where time is the only variable determining the final outcome of autophagy. In other words, we have circumscribed in time the shift transforming autophagy from a cell death to a protection mechanism. Moreover, at short times, starvation-driven autophagy exacerbated the apoptotic cell death caused by several antitumor agents. In agreement with this fact, their apoptotic effects were greatly diminished by autophagy inhibition. The implications of these facts in tumor biology will be discussed.
Collapse
Affiliation(s)
- Paolo Mattiolo
- Cell Death Regulation by Non-coding RNAs (ncRNAs) Group, Departament de Medicina Experimental, Universitat de Lleida/IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Spain; Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida/IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Spain
| | - Victor J Yuste
- Cell Death, Senescence and Survival Group, Departament de Bioquímica i Biologia Molecular & Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jacint Boix
- Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida/IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Spain
| | - Judit Ribas
- Cell Death Regulation by Non-coding RNAs (ncRNAs) Group, Departament de Medicina Experimental, Universitat de Lleida/IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Spain; Pharmacology Unit, Departament de Medicina Experimental, Universitat de Lleida/IRBLleida, Av. Rovira Roure 80, E-25198 Lleida, Spain.
| |
Collapse
|
31
|
Gao B, Shen L, He KW, Xiao WH. GNRs@SiO₂-FA in combination with radiotherapy induces the apoptosis of HepG2 cells by modulating the expression of apoptosis-related proteins. Int J Mol Med 2015; 36:1282-90. [PMID: 26648274 PMCID: PMC4601742 DOI: 10.3892/ijmm.2015.2358] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to examine the apoptosis of the hepatocellular carcinoma cell line, HepG2, induced by treatment with folic acid-conjugated silica-coated gold nanorods (GNRs@SiO2-FA) in combination with radiotherapy, and to determine the involvement of apoptosis-related proteins. An MTT colorimetric assay was used to assess the biocompatibility of GNRs@SiO2-FA. The distribution of GNRs@SiO2-FA into the cells was observed using transmission electron microscopy (TEM). HepG2 cells cultured in vitro were divided into the following 4 groups: i)the control group (untreated), ii) the GNRs@SiO2-FA group, iii) the radiotherapy group (iodine 125 seeds) and iv) the combination group (treated with GNRs@SiO2-FA and iodine 125 seeds) groups. The apoptosis of the HepG2 cells was detected by flow cytometry. The concentration range of <40 µg/ml GNRs@SiO2-FA was found to be safe for the biological activity of the HepG2 cells. GNRs@SiO2-FA entered the cytoplasm through endocytosis. The apoptotic rates of the HepG2 cells were higher in the GNRs@SiO2-FA and radiotherapy groups than in the control group (P<0.05). The apoptotic rate was also significantly higher in the combination group than the GNRs@SiO2-FA and radiotherapy groups (P<0.05). Taken together, these findings demonstrate that the combination of GNRs@SiO2-FA and radiotherapy more effectively induces the apoptosis of HepG2 cells. These apoptotic effects are achieved by increasing the protein expression of Bax and caspase-3, and inhibiting the protein expression of Bcl-2 and Ki-67. The combination of GNRs@SiO2-FA and radiotherapy may thus prove to be a new approach in the treatment of primary liver cancer.
Collapse
Affiliation(s)
- Bin Gao
- Department of Interventional Radiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Lei Shen
- Department of Interventional Radiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Ke-Wu He
- Department of Interventional Radiology, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Wei-Hua Xiao
- School of Life Science, University of Science and Technology of China, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
32
|
Crosstalk between SOXB1 proteins and WNT/β-catenin signaling in NT2/D1 cells. Histochem Cell Biol 2015; 144:429-41. [PMID: 26239426 DOI: 10.1007/s00418-015-1352-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2015] [Indexed: 02/06/2023]
Abstract
During early vertebrate embryogenesis, the expression of SOXB1 proteins is precisely regulated by a number of different mechanisms, including Wnt/β-catenin signaling. This is essential for controlling the balance between stemness and differentiation in embryonic stem cells. In the present study, we analyzed the molecular mechanism of LiCl action in NT2/D1 cells and examined the crosstalk between SOXB1 proteins and Wnt signaling in this model system. We have shown that LiCl increases β-catenin level, induces its translocation to the nucleus and consequently up-regulates β-catenin/Tcf-dependent transcription in NT2/D1 cells. Our results also suggest that LiCl treatment leads to increased expression of SOX2 and SOX3 proteins in NT2/D1 cells through activation of canonical Wnt signaling. Finally, we have detected a negative feedback loop between β-catenin and SOX2 expression in NT2/D1 cells. Since β-catenin and SOX2 have been linked to processes of self-renewal and pluripotency, our results have implications for future research on the maintenance of stemness and lineage commitment of embryonic stem cells.
Collapse
|
33
|
Begum J, Skamnaki VT, Moffatt C, Bischler N, Sarrou J, Skaltsounis AL, Leonidas DD, Oikonomakos NG, Hayes JM. An evaluation of indirubin analogues as phosphorylase kinase inhibitors. J Mol Graph Model 2015; 61:231-42. [PMID: 26364215 DOI: 10.1016/j.jmgm.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
Phosphorylase kinase (PhK) has been linked with a number of conditions such as glycogen storage diseases, psoriasis, type 2 diabetes and more recently, cancer (Camus et al., 2012 [6]). However, with few reported structural studies on PhK inhibitors, this hinders a structure based drug design approach. In this study, the inhibitory potential of 38 indirubin analogues have been investigated. 11 of these ligands had IC50 values in the range 0.170-0.360μM, with indirubin-3'-acetoxime (1c) the most potent. 7-Bromoindirubin-3'-oxime (13b), an antitumor compound which induces caspase-independent cell-death (Ribas et al., 2006 [20]) is revealed as a specific inhibitor of PhK (IC50=1.8μM). Binding assay experiments performed using both PhK-holo and PhK-γtrnc confirmed the inhibitory effects to arise from binding at the kinase domain (γ subunit). High level computations using QM/MM-PBSA binding free energy calculations were in good agreement with experimental binding data, as determined using statistical analysis, and support binding at the ATP-binding site. The value of a QM description for the binding of halogenated ligands exhibiting σ-hole effects is highlighted. A new statistical metric, the 'sum of the modified logarithm of ranks' (SMLR), has been defined which measures performance of a model for both the "early recognition" (ranking earlier/higher) of active compounds and their relative ordering by potency. Through a detailed structure activity relationship analysis considering other kinases (CDK2, CDK5 and GSK-3α/β), 6'(Z) and 7(L) indirubin substitutions have been identified to achieve selective PhK inhibition. The key PhK binding site residues involved can also be targeted using other ligand scaffolds in future work.
Collapse
Affiliation(s)
- Jaida Begum
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Vassiliki T Skamnaki
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Colin Moffatt
- School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom
| | - Nicolas Bischler
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Josephine Sarrou
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy, Department of Pharmacy, University of Athens, Panepistimiopolis-Zografou, Athens 15771, Greece
| | - Demetres D Leonidas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Nikos G Oikonomakos
- Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Joseph M Hayes
- School of Physical Sciences & Computing, Division of Chemistry, University of Central Lancashire, Preston PR1 2HE, United Kingdom; School of Forensic & Investigative Sciences, University of Central Lancashire, Preston PR1 2HE, United Kingdom.
| |
Collapse
|
34
|
Chiou CT, Lee WC, Liao JH, Cheng JJ, Lin LC, Chen CY, Song JS, Wu MH, Shia KS, Li WT. Synthesis and evaluation of 3-ylideneoxindole acetamides as potent anticancer agents. Eur J Med Chem 2015; 98:1-12. [PMID: 25988923 DOI: 10.1016/j.ejmech.2015.04.062] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/20/2022]
Abstract
Indirubin, an active component in the traditional Chinese medicine formula Danggui Longhui Wan, shows promising anticancer effects. Meisoindigo is an analog derived from indirubin, which is less toxic and appears to be even more potent against cancer. In considering meisoindigo as a structural template for the development of new drugs, we designed and synthesized a series of 3-ylideneoxindole acetamides as novel anticancer agents. The acetamides were then evaluated for in vitro and in vivo anticancer activities. The 3-ylideneoxindole acetamides were found to have better anticancer activity than was indirubin-3'-oxime in several cancer cell lines and also displayed a spectrum of activity similar to that of the drug candidate roscovitine, a CDK inhibitor. Among the 3-ylideneoxindole acetamides, compound 10 showed particularly good efficacy. Cell cycle analysis further revealed that compound 10 arrested cells in the G1 phase and caused an increase in the sub-G1 population, indicating that the apoptosis pathway had been induced. In addition, exposure of cells to compound 10 led to the upregulation of the cell-cycle regulator cyclin D1, which was sustained at a high level. In contrast, the same compound induced a short-term elevation in the level of cyclin E, which was followed by a rapid decrease and the attenuation of Rb phosphorylation. Furthermore, a docking model suggests that compound 10 binds to the active site of CDK4. In testing the therapeutic potency of compound 10 on CT26-xenografted BALB/c mice, a significant reduction in tumor size comparable to that of cisplatin was found when administrated via the i.p. route. The mice presented no loss of body weight, indicating that this compound possesses low toxicity. In the future, we are planning in vivo investigations of these new active anticancer agents to better elucidate active mechanisms at the cellular level and thus benefit the development of anticancer therapies.
Collapse
Affiliation(s)
- Chun-Tang Chiou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Wei-Chun Lee
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jing-Jy Cheng
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Lie-Chwen Lin
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Chih-Yu Chen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Ming-Hsien Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Kak-Shan Shia
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli 35053, Taiwan
| | - Wen-Tai Li
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan.
| |
Collapse
|
35
|
Tanaka T, Ohashi S, Saito H, Higuchi T, Tabata K, Kosuge Y, Suzuki T, Miyairi S, Kobayashi S. Indirubin derivatives alter DNA binding activity of the transcription factor NF-Y and inhibit MDR1 gene promoter. Eur J Pharmacol 2014; 741:83-9. [DOI: 10.1016/j.ejphar.2014.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/20/2014] [Accepted: 07/14/2014] [Indexed: 01/04/2023]
|
36
|
Pergola C, Gaboriaud-Kolar N, Jestädt N, König S, Kritsanida M, Schaible AM, Li H, Garscha U, Weinigel C, Barz D, Albring KF, Huber O, Skaltsounis AL, Werz O. Indirubin Core Structure of Glycogen Synthase Kinase-3 Inhibitors as Novel Chemotype for Intervention with 5-Lipoxygenase. J Med Chem 2014; 57:3715-23. [DOI: 10.1021/jm401740w] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Carlo Pergola
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | - Nicolas Gaboriaud-Kolar
- Department
of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Athens 15771, Greece
| | - Nadine Jestädt
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | - Stefanie König
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | - Marina Kritsanida
- Department
of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Athens 15771, Greece
| | - Anja M. Schaible
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | - Haokun Li
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | - Ulrike Garscha
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| | | | | | | | | | - Alexios L. Skaltsounis
- Department
of Pharmacognosy and Chemistry of Natural Products, School of Pharmacy, University of Athens, Athens 15771, Greece
| | - Oliver Werz
- Pharmaceutical/Medicinal
Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena 07743, Germany
| |
Collapse
|
37
|
Erben F, Michalik D, Feist H, Kleeblatt D, Hein M, Matin A, Iqbal J, Langer P. Synthesis and antiproliferative activity of (Z)-1-glycosyl-3-(5-oxo-2-thioxoimidazolidin-4-ylidene)indolin-2-ones and (Z)-3-(2-glycosylsulfanyl-4-oxo-4,5-dihydro-thiazol-5-ylidene)indolin-2-ones. RSC Adv 2014. [DOI: 10.1039/c3ra44362k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
A colorful history: the evolution of indigoids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2014; 99:69-145. [PMID: 25296438 DOI: 10.1007/978-3-319-04900-7_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Kleeblatt D, Cordes CA, Lebrenz P, Hein M, Feist H, Matin A, Raza R, Iqbal J, Munshi O, Rahman Q, Villinger A, Langer P. Synthesis and antiproliferative activity of N-glycosyl-3,3-diaryloxindoles. RSC Adv 2014. [DOI: 10.1039/c4ra02627f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Liu L, Gaboriaud N, Vougogianopoulou K, Tian Y, Wu J, Wen W, Skaltsounis L, Jove R. MLS-2384, a new 6-bromoindirubin derivative with dual JAK/Src kinase inhibitory activity, suppresses growth of diverse cancer cells. Cancer Biol Ther 2013; 15:178-84. [PMID: 24100507 DOI: 10.4161/cbt.26721] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Janus kinase (JAK) and Src kinase are the two major tyrosine kinase families upstream of signal transducer and activator of transcription (STAT). Among the seven STAT family proteins, STAT3 is constitutively activated in many diverse cancers. Upon activation, JAK and Src kinases phosphorylate STAT3, and thereby promote cell growth and survival. MLS-2384 is a novel 6-bromoindirubin derivative with a bromo-group at the 6-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. In this study, we investigated the kinase inhibitory activity and anticancer activity of MLS-2384. Our data from in vitro kinase assays, cell viability analyses, western blotting analyses, and animal model studies, demonstrate that MLS-2384 is a dual JAK/Src kinase inhibitor, and suppresses growth of various human cancer cells, such as prostate, breast, skin, ovarian, lung, and liver. Consistent with the inactivation of JAK and Src kinases, phosphorylation of STAT3 was inhibited in a dose-dependent manner in the cancer cells treated with MLS-2384. STAT3 downstream proteins involved in cell proliferation and survival, such as c-Myc and Mcl-1, are downregulated by MLS-2384 in prostate cancer cells, whereas survivin is downregulated in A2058 cells. In these two cancer cell lines, PARP is cleaved, indicating that MLS-2384 induces apoptosis in human melanoma and prostate cancer cells. Importantly, MLS-2384 suppresses tumor growth with low toxicity in a mouse xenograft model of human melanoma. Taken together, MLS-2384 demonstrates dual JAK/Src inhibitory activity and suppresses tumor cell growth both in vitro and in vivo. Our findings support further development of MLS-2384 as a potential small-molecule therapeutic agent that targets JAK, Src, and STAT3 signaling in multiple human cancer cells.
Collapse
Affiliation(s)
- Lucy Liu
- Beckman Research Institute; City of Hope Comprehensive Cancer Center; Duarte, CA USA
| | - Nicolas Gaboriaud
- Pharmacognosy and Natural Products Chemistry; University of Athens; Athens, Greece
| | | | - Yan Tian
- Beckman Research Institute; City of Hope Comprehensive Cancer Center; Duarte, CA USA
| | - Jun Wu
- Beckman Research Institute; City of Hope Comprehensive Cancer Center; Duarte, CA USA
| | - Wei Wen
- Beckman Research Institute; City of Hope Comprehensive Cancer Center; Duarte, CA USA
| | - Leandros Skaltsounis
- Pharmacognosy and Natural Products Chemistry; University of Athens; Athens, Greece
| | - Richard Jove
- Vaccine & Gene Therapy Institute of Florida; Port St. Lucie, FL USA
| |
Collapse
|
41
|
Robbins TJ, Wang Y, Yao QZ, Wang ZH, Cheng J, Li YS. Vibrational spectra, DFT calculations, and conformations of 5′-chloro-1-isopropyl-7-azaindirubin-3′-oxime. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Braig S, Kressirer CA, Liebl J, Bischoff F, Zahler S, Meijer L, Vollmar AM. Indirubin Derivative 6BIO Suppresses Metastasis. Cancer Res 2013; 73:6004-12. [DOI: 10.1158/0008-5472.can-12-4358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Fiore M, Mattiuzzo M, Mancuso G, Totta P, Degrassi F. The pesticide dichlorvos disrupts mitotic division by delocalizing the kinesin Kif2a from centrosomes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:250-60. [PMID: 23532982 DOI: 10.1002/em.21769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/07/2013] [Accepted: 02/07/2013] [Indexed: 05/25/2023]
Abstract
The molecular mechanism(s) mediating long-term adverse effects of dichlorvos, a widely used insecticide, are still unclear. Our work uncovered a new cellular effect of dichlorvos in cultured human cells, i.e. its capacity to induce extremely aberrant mitotic spindles with monopolar microtubule arrays that were associated with hypercondensed chromosomes and pyknotic chromatin masses. Monopolar spindles produced by dichlorvos treatment were characterized by the delocalization of the depolymerizing kinesin Kif2a from spindle poles. Dichlorvos-induced spindle monopolarity could be reversed by promoting microtubule stabilization through chemical treatment or by inhibiting the depolymerizing function of the kinesin MCAK at kinetochores. These findings demonstrate that dichlorvos inhibits the depolymerizing activity of Kif2a at centrosomes and thereby disrupts the balance of opposing centrosomal and kinetochore forces controlling spindle bipolarity during prometaphase. Dichlorvos-induced defects in spindle bipolarity may be responsible for the previously reported induction of aneuploidy by this chemical. Collectively, these results indicate that environmental chemicals, such as dichlorvos, may promote chromosome instability by interfering with the cell division machinery.
Collapse
Affiliation(s)
- Mario Fiore
- Institute of Molecular Biology and Pathology, CNR, National Research Council of Italy, c/o Sapienza University, Rome, Italy
| | | | | | | | | |
Collapse
|
44
|
LEE MINGYANG, LIU YIWEN, CHEN MINGHO, WU JINYI, HO HSINGYING, WANG QWAFUN, CHUANG JINGJING. Indirubin-3′-monoxime promotes autophagic and apoptotic death in JM1 human acute lymphoblastic leukemia cells and K562 human chronic myelogenous leukemia cells. Oncol Rep 2013; 29:2072-8. [DOI: 10.3892/or.2013.2334] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/08/2013] [Indexed: 11/05/2022] Open
|
45
|
Yan C, Oh JS, Yoo SH, Lee JS, Yoon YG, Oh YJ, Jang MS, Lee SY, Yang J, Lee SH, Kim HY, Yoo YH. The targeted inhibition of mitochondrial Hsp90 overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. Toxicol Appl Pharmacol 2012; 266:9-18. [PMID: 23147571 DOI: 10.1016/j.taap.2012.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
Abstract
Previous studies have reported that a Gamitrinib variant containing triphenylphosphonium (G-TPP) binds to mitochondrial Hsp90 and rapidly inhibits its activity, thus inducing the apoptotic pathway in the cells. Accordingly, G-TPP shows a potential as a promising drug for the treatment of cancer. A cell can die from different types of cell death such as apoptosis, necrosis, necroptosis, and autophagic cell death. In this study, we further investigated the mechanisms and modes of cell death in the G-TPP-treated Hep3B and U937 cell lines. We discovered that G-TPP kills the U937 cells through the apoptotic pathway and the overexpression of Bcl-2 significantly inhibits U937 cell death to G-TPP. We further discovered that G-TPP kills the Hep3B cells by activating necroptosis in combination with the partial activation of caspase-dependent apoptosis. Importantly, G-TPP overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. We also observed that G-TPP induces compensatory autophagy in the Hep3B cell line. We further found that whereas there is a Bcl-2-Beclin 1 interaction in response to G-TPP, silencing the beclin 1 gene failed to block LC3-II accumulation in the Hep3B cells, indicating that G-TPP triggers Beclin 1-independent protective autophagy in Hep3B cells. Taken together, these data reveal that G-TPP induces cell death through a combination of death pathways, including necroptosis and apoptosis, and overcomes the apoptosis resistance conferred by Bcl-2 in Hep3B cells via necroptosis. These findings are important for the therapeutic exploitation of necroptosis as an alternative cell death program to bypass the resistance to apoptosis.
Collapse
Affiliation(s)
- Chunlan Yan
- Department of Anatomy and Cell Biology, Dong-A University College of Medicine and Mitochondria Hub Regulation Center, Busan, 602-714, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Liao XM, Leung KN. Indirubin-3'-oxime induces mitochondrial dysfunction and triggers growth inhibition and cell cycle arrest in human neuroblastoma cells. Oncol Rep 2012; 29:371-9. [PMID: 23117445 DOI: 10.3892/or.2012.2094] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/20/2012] [Indexed: 11/06/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid tumor found in infancy and childhood. Current multimodal therapies such as surgery, chemotherapy, radiotherapy and stem cell transplantation often cause inevitable severe side-effects, therefore, it is necessary to develop novel drugs with higher efficacy on neuroblastoma cells and minimal side-effects on normal cells. Indirubin-3'-oxime (I3M), an indigo alkaloid, was found to exhibit potent antitumor activities on various types of cancer cells. However, its modulatory effects on human neuroblastoma and the underlying mechanisms remain poorly understood. As mitochondrial biogenesis and function play critical roles in cell growth and survival, in the present study the effects of I3M on mitochondrial functions and their correlation to the anticancer effect of I3M on human neuroblastoma cells were investigated. I3M was found to inhibit the growth of the human neuroblastoma LA-N-1, SH-SY5Y and SK-N-DZ cells in a dose- and time-dependent manner, but exhibited little, if any, direct cytotoxicity on normal cells. Mechanistic studies showed that I3M specifically decreased the expression of the mitochondrial regulators ERRγ and PGC-1β and resulted in decreased mitochondrial mass and altered mitochondrial function characterized by a reduction in mitochondrial membrane potential and elevation of reactive oxygen species levels in LA-N-1 cells. I3M also increased the level of CDK inhibitor p27Kip1 and reduced the levels of CDK2 and cyclin E in LA-N-1 cells, leading to cell cycle arrest at the G0/G1 phase. Collectively, these results suggest that mitochondrial dysfunction might be an important mechanism underlying the I3M-induced cell cycle arrest.
Collapse
Affiliation(s)
- Xue-Mei Liao
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, PR China
| | | |
Collapse
|
47
|
Ginzinger W, Egger A, Mühlgassner G, Arion VB, Jakupec MA, Galanski M, Berger W, Keppler BK. Water-Soluble Cationic Derivatives of Indirubin, the Active Anticancer Component fromIndigo naturalis. Chem Biodivers 2012; 9:2175-85. [DOI: 10.1002/cbdv.201200147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Liu L, Kritsanida M, Magiatis P, Gaboriaud N, Wang Y, Wu J, Buettner R, Yang F, Nam S, Skaltsounis L, Jove R. A novel 7-bromoindirubin with potent anticancer activity suppresses survival of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Cancer Biol Ther 2012; 13:1255-61. [PMID: 22895078 PMCID: PMC3493432 DOI: 10.4161/cbt.21781] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
STAT3 and Akt signaling have been validated as potential molecular targets for treatment of cancers including melanoma. These small molecule inhibitors of STAT3 or Akt signaling are promising for developing anti-melanoma therapeutic agents. MLS-2438, a novel 7-bromoindirubin, a derivative of the natural product indirubin, was synthesized with a bromo-group at the 7-position on one indole ring and a hydrophilic group at the 3'-position on the other indole ring. We tested the anticancer activity of MLS-2438 and investigated its mechanism of action in human melanoma cell lines. Here, we show that MLS-2438 inhibits viability and induces apoptosis of human melanoma cells associated with inhibition of STAT3 and Akt signaling. Several pro-apoptotic Bcl-2 family proteins are involved in the MLS-2438 mediated apoptosis. MLS-2438 inhibits Src kinase activity in vitro and phosphorylation of JAK2, Src, STAT3 and Akt in cultured cancer cells. In contrast to the decreased phosphorylation levels of JAK2, Src, STAT3 and Akt, phosphorylation levels of the MAPK (Erk1/2) signaling protein were not reduced in cells treated with MLS-2438. These results demonstrate that MLS-2438, a novel natural product derivative, is a Src inhibitor and potentially regulates kinase activity of JAK2 and Akt in cancer cells. Importantly, MLS-2438 suppressed tumor growth with low toxicity in a mouse xenograft model of human melanoma. Our findings support further development of MLS-2438 as a potential small-molecule therapeutic agent that targets both STAT3 and Akt signaling in human melanoma cells.
Collapse
Affiliation(s)
- Lucy Liu
- Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nicolaou KA, Liapis V, Evdokiou A, Constantinou C, Magiatis P, Skaltsounis AL, Koumas L, Costeas PA, Constantinou AI. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells. Biochem Biophys Res Commun 2012; 425:76-82. [PMID: 22820195 DOI: 10.1016/j.bbrc.2012.07.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
Abstract
Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3'-oxime (6BIO) and 7-bromoindirubin-3'-oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G(2)/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.
Collapse
|
50
|
Wee XK, Yang T, Go ML. Exploring the anticancer activity of functionalized isoindigos: synthesis, drug-like potential, mode of action and effect on tumor-induced xenografts. ChemMedChem 2012; 7:777-91. [PMID: 22416043 DOI: 10.1002/cmdc.201200018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Indexed: 01/12/2023]
Abstract
Meisoindigo has been used as an indirubin substitute for the treatment of chronic myeloid leukemia (CML) for several years. In view of its poor solubility and erratic absorption, several investigations have focused on developing analogues with more desirable physicochemical profiles. Here, we investigated the structure-activity relationship (SAR) of meisoindigo with respect to its antiproliferative activity on leukemic K562 cells and found that appending a phenalkyl side chain onto the lactam NH resulted in analogues that retained good activity. Furthermore, analogues in which the phenyl ring was substituted with a basic heterocycle were significantly more soluble than meisoindigo while retaining acceptable antiproliferative profiles. The most promising analogue (E)-1-(2-(4-methylpiperazin-1-yl)ethyl)-[3,3'-biindolinylidene]-2,2'-dione (5-4) is more potent than meisoindigo across a panel of malignant cells, with at least 40 times greater solubility than meisoindigo, little or no tendency to aggregate in solution and capable of significantly extending the lifespans of animals with K562 induced xenografts. Mechanistically, it induced apoptotic cell death and disrupted the progression of K562 cells from the G(1) to G(2) phase. Taken together, our findings highlighted the feasibility of addressing the physicochemical deficits of the isoindigo scaffold by systematic modifications which was achieved without overt loss of growth inhibitory activity.
Collapse
Affiliation(s)
- Xi Kai Wee
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | |
Collapse
|