1
|
Choi S, Cho N, Kim KK. The implications of alternative pre-mRNA splicing in cell signal transduction. Exp Mol Med 2023; 55:755-766. [PMID: 37009804 PMCID: PMC10167241 DOI: 10.1038/s12276-023-00981-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
Cells produce multiple mRNAs through alternative splicing, which ensures proteome diversity. Because most human genes undergo alternative splicing, key components of signal transduction pathways are no exception. Cells regulate various signal transduction pathways, including those associated with cell proliferation, development, differentiation, migration, and apoptosis. Since proteins produced through alternative splicing can exhibit diverse biological functions, splicing regulatory mechanisms affect all signal transduction pathways. Studies have demonstrated that proteins generated by the selective combination of exons encoding important domains can enhance or attenuate signal transduction and can stably and precisely regulate various signal transduction pathways. However, aberrant splicing regulation via genetic mutation or abnormal expression of splicing factors negatively affects signal transduction pathways and is associated with the onset and progression of various diseases, including cancer. In this review, we describe the effects of alternative splicing regulation on major signal transduction pathways and highlight the significance of alternative splicing.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
He Q, Hao X, Bao S, Wu X, Xu L, Hou Y, Huang Y, Peng L, Huang H, Ding Y, Zhao H. A392V and R945X mutations cause orofacial clefts via impairing PTCH1 function. Genomics 2022; 114:110507. [PMID: 36265746 DOI: 10.1016/j.ygeno.2022.110507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/30/2022] [Accepted: 10/16/2022] [Indexed: 01/15/2023]
Abstract
The Hedgehog (HH) signaling plays key roles in embryogenesis and organogenesis, and its dysfunction causes a variety of human birth defects. Orofacial cleft (OFC) is one of the most common congenital craniofacial defects, and its etiology is closely related to mutations in multiple components in the HH pathway, including the PTCH1 receptor. A quantity of PTCH1 variants have been associated with OFC, but the pathogenicity and underlying mechanism of these variants have not been functionally validated. In our previous studies, we identified two PTCH1 variants (A392V and R945X) in two families with hereditary OFC. Here we explore the functional consequences of these two variants. In zebrafish embryos, microinjection of wild type PTCH1 mRNA causes curved body axis and craniofacial anomalies. In contrast, microinjection of A392V and R945X PTCH1 mRNAs results in much milder phenotypes, suggesting these two variants are loss-of-function mutations. In mammalian cells, A392V and R945X mutations reverse the inhibitory effect of PTCH1 on HH signaling. Biochemically, the two mutants PTCH1 show lower expression levels and shortened half-life, indicting these mutations decrease the stability of PTCH1. A392V and R945X mutations also appear to cause PTCH1 to localize away from vesicles. Taken together, our findings indicate that A392V and R945X variants are loss-of-function mutations that disrupt the function of PTCH1 and thus cause dysregulation of HH signaling, leading to the pathogenesis of OFC.
Collapse
Affiliation(s)
- Qing He
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Xingke Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Shanying Bao
- Department of Stomatology, Affiliated Hospital of Qinghai University, Xining, Qinghai, PR China
| | - Xiantao Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yuxia Hou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Yingjia Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Leiyuan Peng
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, PR China.
| | - Yi Ding
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Huaxiang Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China; Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
3
|
Kuehn J, Espinoza-Sanchez NA, Teixeira FCOB, Pavão MSG, Kiesel L, Győrffy B, Greve B, Götte M. Prognostic significance of hedgehog signaling network-related gene expression in breast cancer patients. J Cell Biochem 2021; 122:577-597. [PMID: 33417295 DOI: 10.1002/jcb.29886] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022]
Abstract
Breast cancer continues to be a serious public health problem. The role of the hedgehog pathway in normal development of the mammary gland as well as in carcinogenesis and progression of breast cancer is the subject of intense investigation, revealing functional interactions with cell surface heparan sulfate. Nevertheless, its influence on breast cancer prognosis, and its relation to specific sulfation motifs in heparan sulfate have only been poorly studied in large patient cohorts. Using the public database KMplotter that includes gene expression and survival data of 3951 patients, we found that the higher expression of SHH, HHAT, PTCH1, GLI1, GLI2, and GLI3 positively influences breast cancer prognosis. Stratifying patients according to the expression of hormone receptors, histological grade, lymph node metastasis, and systemic therapy, we observed that GLI1, GLI2, and GLI3 expression, as well as co-expression of SHH and ELP1 were associated with worse relapse-free survival in patients with HER2-positive tumors. Moreover, GLI1 expression in progesterone receptor-negative tumors and GLI3 expression in grade 3 tumors correlated with poor prognosis. SHH, in a panel of cell lines representing different breast cancer subtypes, and HHAT, PTCH1, GLI1, GLI2, and GLI3 were mostly expressed in cell lines classified as HER2-positive and basal-like. Expression of SHH, HHAT, GLI2, and GLI3 was differentially affected by overexpression of the heparan sulfate sulfotransferases HS2ST1 and HS3ST2 in vitro. Although high HS2ST1 expression was associated with poor prognosis in KMplotter analysis, high levels of HS3ST2 were associated with a good prognosis, except for ER-positive breast cancer. We suggest the GLI transcription factors as possible markers for the diagnosis, treatment, and prognosis of breast cancer especially in HER2-positive tumors, but also in progesterone receptor-negative and grade-3 tumors. The pathway interaction and prognostic impact of specific heparan sulfate sulfotransferases provide novel perspectives regarding a therapeutical targeting of the hedgehog pathway in breast cancer.
Collapse
Affiliation(s)
- Julia Kuehn
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Felipe C O B Teixeira
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro S G Pavão
- Instituto de Bioquímica Médica Leopoldo de Meis, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, and Semmelweis University 2nd Department of Pediatrics, TTK Momentum Cancer Biomarker Research Group, Budapest, Hungary
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
4
|
A novel splicing mutation of PTCH1 in a Chinese family with nevoid basal cell carcinoma syndrome. Med Mol Morphol 2019; 52:235-237. [PMID: 30997576 DOI: 10.1007/s00795-019-00222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/30/2019] [Indexed: 10/27/2022]
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disease characterized by the development of multiple jaw keratocysts and basal cell carcinomas (BCC) and accompanied by diverse phenotypes. The establishment of diagnosis lies on the identification of a heterozygous germline pathogenic variant in the patched homolog 1 gene (PTCH1). PTCH1 has alternative splicing and selective initial coding exon, leading to three types of encoding proteins (PTCHL, PTCHM and PTCHS). The expression of each protein in NBCCS remains ambiguous, especially the importance of the first two exons in translation. Here, we report a Chinese NBCCS family of a novel PTCH1 heterozygous mutation (IVS 2, c.394+1G>T, g.10652G>T) identified by genomic sequencing and reverse-transcription-PCR as aberrant splicing. To the best of our knowledge, this is the first report of NBCCS with a splicing site mutation in intron 2 resulting in exon 2 skipping. Our finding suggests that exon 2 plays an important role in the development of NBCCS and further speculates that the role of longer isoforms PTCHL and PTCHM is crucial in NBCCS, while that of short isoform PTCHS might be dispensable.
Collapse
|
5
|
Gielen RJCAM, Reinders MGHC, Koillinen HK, Paulussen ADC, Mosterd K, van Geel M. PTCH1 isoform 1b is the major transcript in the development of basal cell nevus syndrome. J Hum Genet 2018; 63:965-969. [DOI: 10.1038/s10038-018-0485-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/05/2018] [Indexed: 01/07/2023]
|
6
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
7
|
Identification and characterization of two novel PTCH1 splice variants. Biochem Biophys Res Commun 2017; 487:68-75. [DOI: 10.1016/j.bbrc.2017.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/05/2017] [Indexed: 11/21/2022]
|
8
|
Ozretić P, Bisio A, Musani V, Trnski D, Sabol M, Levanat S, Inga A. Regulation of human PTCH1b expression by different 5' untranslated region cis-regulatory elements. RNA Biol 2015; 12:290-304. [PMID: 25826662 PMCID: PMC4615190 DOI: 10.1080/15476286.2015.1008929] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
PTCH1 gene codes for a 12-pass transmembrane receptor with a negative regulatory role in the Hedgehog-Gli signaling pathway. PTCH1 germline mutations cause Gorlin syndrome, a disorder characterized by developmental abnormalities and tumor susceptibility. The autosomal dominant inheritance, and the evidence for PTCH1 haploinsufficiency, suggests that fine-tuning systems of protein patched homolog 1 (PTC1) levels exist to properly regulate the pathway. Given the role of 5' untranslated region (5'UTR) in protein expression, our aim was to thoroughly explore cis-regulatory elements in the 5'UTR of PTCH1 transcript 1b. The (CGG)n polymorphism was the main potential regulatory element studied so far but with inconsistent results and no clear association between repeat number and disease risk. Using luciferase reporter constructs in human cell lines here we show that the number of CGG repeats has no strong impact on gene expression, both at mRNA and protein levels. We observed variability in the length of 5'UTR and changes in abundance of the associated transcripts after pathway activation. We show that upstream AUG codons (uAUGs) present only in longer 5'UTRs could negatively regulate the amount of PTC1 isoform L (PTC1-L). The existence of an internal ribosome entry site (IRES) observed using different approaches and mapped in the region comprising the CGG repeats, would counteract the effect of the uAUGs and enable synthesis of PTC1-L under stressful conditions, such as during hypoxia. Higher relative translation efficiency of PTCH1b mRNA in HEK 293T cultured hypoxia was observed by polysomal profiling and Western blot analyses. All our results point to an exceptionally complex and so far unexplored role of 5'UTR PTCH1b cis-element features in the regulation of the Hedgehog-Gli signaling pathway.
Collapse
Key Words
- 5'UTR
- 5′UTR, 5′ untranslated region
- CGG repeats
- Fluc, Firefly luciferase
- Hedgehog-Gli
- Hh-Gli, Hedgehog-Gli
- IRES
- IRES, internal ribosome entry site
- POL, polysome-associated
- PTC1-L, protein patched homolog 1
- PTCH1
- Rluc, Renilla luciferase
- SUB, subpolysomal
- isoform L PTCH1b, Patched 1 gene, transcript variant 1b
- uAUG
- uAUG, upstream AUG codon
- uORF
- uORF, upstream open reading frame
Collapse
Affiliation(s)
- Petar Ozretić
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Alessandra Bisio
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
| | - Vesna Musani
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Diana Trnski
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Maja Sabol
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
| | - Sonja Levanat
- Laboratory for Hereditary Cancer; Division of Molecular Medicine; Ruđer Bošković Institute; Zagreb, Croatia
- Correspondence to: Sonja Levanat; ; Alberto Inga;
| | - Alberto Inga
- Laboratory of Transcriptional Networks; Center for Integrative Biology; University of Trento; Mattarello, Trento, Italy
- Correspondence to: Sonja Levanat; ; Alberto Inga;
| |
Collapse
|
9
|
Aoto K, Trainor PA. Co-ordinated brain and craniofacial development depend upon Patched1/XIAP regulation of cell survival. Hum Mol Genet 2014; 24:698-713. [PMID: 25292199 DOI: 10.1093/hmg/ddu489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Congenital brain and craniofacial defects often occur together as a consequence of their developmental dependency on common progenitor tissue interactions and signaling pathways during embryogenesis. A classic example of this is perturbation of midline embryo development, and disruption of Hedgehog (Hh) signaling in the pathogenesis of holoprosencephaly. However, our understanding of how Hh signaling governs cell and tissue survival remains incomplete. Patched1 (Ptch1) is a well-known receptor for Hh ligands and Ptch1 overexpression is associated with cell and tissue-specific apoptosis. Here, we demonstrate that the X-linked inhibitory apoptosis protein (XIAP) associates with the C terminus of Ptch1 (Ptch1-C) in primary cilia to inhibit Ptch1-mediated cell death. Consistent with this observation, inhibition of XIAP suppresses cell proliferation, resulting in cell death and pathogenesis of an Hh loss-of-function phenotype. Thus, co-ordinated development of the brain and face is dependent in part upon XIAP mediation of Hh/Ptch1-regulated cell survival and apoptosis during embryogenesis.
Collapse
Affiliation(s)
- Kazushi Aoto
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and
| | - Paul A Trainor
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA and Department of Anatomy & Cell Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66202, USA
| |
Collapse
|
10
|
Yoon JW, Gallant M, Lamm MLG, Iannaccone S, Vieux KF, Proytcheva M, Hyjek E, Iannaccone P, Walterhouse D. Noncanonical regulation of the Hedgehog mediator GLI1 by c-MYC in Burkitt lymphoma. Mol Cancer Res 2013; 11:604-15. [PMID: 23525267 DOI: 10.1158/1541-7786.mcr-12-0441] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although Hedgehog signaling plays a major role in GLI1 transcription, there is now evidence suggesting that other pathways/genes, such as c-MYC, may also regulate GLI1 expression. We initiated studies in Burkitt lymphoma cells, which constitutively express c-MYC due to a chromosomal translocation, to determine whether Hedgehog or c-MYC regulates GLI1 expression. We show that all Burkitt lymphoma cell lines tested express GLI1, PTCH1, and SMO and that five of six Burkitt lymphomas express GLI1. Exposure to Sonic or Indian Hedgehog or cyclopamine (SMO inhibitor) does not modulate GLI1 expression, cell proliferation, or apoptosis in most Burkitt lymphoma cell lines. Sequence analysis of PTCH1, SMO, and SuFu failed to show mutations that might explain the lack of Hedgehog responsiveness, and we did not detect primary cilia, which may contribute to it. We show that c-MYC interacts with the 5'-regulatory region of GLI1, using chromatin immunoprecipitation (ChIP) assay, and E-box-dependent transcriptional activation of GLI1 by c-MYC in NIH3T3 and HeLa cells. The c-MYC small-molecule inhibitor 10058-F4 downregulates GLI1 mRNA and protein and reduces the viability of Burkitt lymphoma cells. Inhibition of GLI1 by GANT61 increases apoptosis and reduces viability of some Burkitt lymphoma cells. Collectively, our data provide evidence that c-MYC directly regulates GLI1 and support an antiapoptotic role for GLI1 in Burkitt lymphoma. Burkitt lymphoma cells do not seem to be Hedgehog responsive. These findings suggest a mechanism for resistance to SMO inhibitors and have implications for using SMO inhibitors to treat human cancers.
Collapse
Affiliation(s)
- Joon Won Yoon
- Developmental Biology Program, Ann & Robert H Lurie Children's Hospital of Chicago Research Center, Northwestern University Feinberg School of Medicine, Illinois 60614, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tostar U, Finta C, Rahman MFU, Shimokawa T, Zaphiropoulos PG. Novel mechanism of action on Hedgehog signaling by a suppressor of fused carboxy terminal variant. PLoS One 2012; 7:e37761. [PMID: 22666390 PMCID: PMC3362617 DOI: 10.1371/journal.pone.0037761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 04/24/2012] [Indexed: 11/18/2022] Open
Abstract
The Suppressor of Fused (SUFU) protein plays an essential role in the Hedgehog (HH) signaling pathway, by regulation of the GLI transcription factors. Two major isoforms of human SUFU are known, a full-length (SUFU-FL) and a carboxy-terminal truncated (SUFU- ΔC) variant. Even though SUFU- ΔC is expressed at an equivalent level as SUFU-FL in certain tissues, the function of SUFU-ΔC and its impact on HH signal transduction is still unclear. In two cell lines from rhabdomyosarcoma, a tumor type associated with deregulated HH signaling, SUFU-ΔC mRNA was expressed at comparable levels as SUFU-FL mRNA, but at the protein level only low amounts of SUFU-ΔC were detectable. Heterologous expression provided support to the notion that the SUFU-ΔC protein is less stable compared to SUFU-FL. Despite this, biochemical analysis revealed that SUFU-ΔC could repress GLI2 and GLI1ΔN, but not GLI1FL, transcriptional activity to the same extent as SUFU-FL. Moreover, under conditions of activated HH signaling SUFU-ΔC was more effective than SUFU-FL in inhibiting GLI1ΔN. Importantly, co-expression with GLI1FL indicated that SUFU-ΔC but not SUFU-FL reduced the protein levels of GLI1FL. Additionally, confocal microscopy revealed a co-localization of GLI1FL with SUFU-ΔC but not SUFU-FL in aggregate structures. Moreover, specific siRNA mediated knock-down of SUFU-ΔC resulted in up-regulation of the protein levels of GLI1FL and the HH signaling target genes PTCH1 and HHIP. Our results are therefore suggesting the presence of novel regulatory controls in the HH signaling pathway, which are elicited by the distinct mechanism of action of the two alternative spliced SUFU proteins.
Collapse
Affiliation(s)
- Ulrica Tostar
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Csaba Finta
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Takashi Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Peter G. Zaphiropoulos
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
12
|
Tostar U, Toftgård R, Zaphiropoulos PG, Shimokawa T. Reduction of human embryonal rhabdomyosarcoma tumor growth by inhibition of the hedgehog signaling pathway. Genes Cancer 2011; 1:941-51. [PMID: 21779473 DOI: 10.1177/1947601910385449] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 01/15/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most frequent soft-tissue sarcoma in children. Embryonal rhabdomyosarcoma (E-RMS) represents the most common RMS subtype, but the molecular events driving this tumor are still largely unknown. The hedgehog (HH) pathway, a major signal transduction cascade, is linked with many cancers, including RMS. As we previously have detected loss of heterozygosity of PTCH1 in E-RMS, we now examined 8 E-RMS tumor samples and 5 E-RMS cell lines for the presence of PTCH1 mutations, but none was detected. However, in the E-RMS cell lines, a variable pattern of up-regulated expression of certain HH signaling target genes, including HHIP, PTCH1, SFRP1, and GLI1, was observed. Moreover, treatment with the small molecule HH signaling inhibitors cyclopamine and GANT61 inhibited cell proliferation in all E-RMS cell lines analyzed. Interestingly, GANT61 was more effective, and this was accompanied by increased apoptosis, while cyclopamine promoted necrotic events. Specific knockdown of SMO had no effect on the proliferation of E-RMS cells, indicating the presence of an SMO-independent HH signaling pathway in the E-RMS cell lines. Furthermore, in an in vivo xenograft model, tumor growth was significantly reduced by GANT61 treatment of E-RMS cells. Additionally, siRNA experiments provided evidence that inhibition of GLI1 or GLI3 but not GLI2 was sufficient to reduce proliferation of these cell lines. As GANT61 is known to block GLI1/GLI2 transcriptional activity, the inhibition of E-RMS growth by GANT61 is likely to be mediated through GLI1. In conclusion, our findings implicate that GLI1 could constitute an effective therapeutic target in pediatric E-RMS.
Collapse
Affiliation(s)
- Ulrica Tostar
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-14183 Sweden
| | | | | | | |
Collapse
|
13
|
Lauth M, Bergström A, Shimokawa T, Tostar U, Jin Q, Fendrich V, Guerra C, Barbacid M, Toftgård R. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010; 17:718-25. [PMID: 20512148 DOI: 10.1038/nsmb.1833] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 03/16/2010] [Indexed: 02/07/2023]
Abstract
Synergism between the RAS and Hedgehog (HH) pathways has been suggested for carcinogenesis in the pancreas, lung and colon. We investigated the molecular cross-talk between RAS and HH signaling and found that, although mutant RAS induces or enhances SHH expression and favors paracrine HH signaling, it antagonizes autocrine HH signal transduction. Activated RAS can be found in primary cilia, the central organelle of HH signal transduction, but functions in a cilium-independent manner and interferes with Gli2 function and Gli3 processing. In addition, the cell-autonomous negative regulation of HH signal transduction involves the RAS effector molecule dual specificity tyrosine phosphorylated and regulated kinase 1B (DYRK1B). In line with a redirection of autocrine toward paracrine HH signaling by a KRAS-DYRK1B network, we find high levels of GLI1 expression restricted to the stromal compartment and not to SHH-expressing tumor cells in human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Matthias Lauth
- Karolinska Institutet, Center for Biosciences, Department of Biosciences and Nutrition, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Palaniswamy R, Teglund S, Lauth M, Zaphiropoulos PG, Shimokawa T. Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1. BMC Mol Biol 2010; 11:32. [PMID: 20433698 PMCID: PMC2880320 DOI: 10.1186/1471-2199-11-32] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 04/30/2010] [Indexed: 11/10/2022] Open
Abstract
Background Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs) of mRNAs, the understanding of the significance and the regulation of these variations is rather limited. Results We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional effector of the Hedgehog (HH) signaling pathway. In addition to identifying novel transcription start sites, we demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-skipped mRNA variants being most effective. Conclusions Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the mouse HH signaling cascade.
Collapse
Affiliation(s)
- Ramesh Palaniswamy
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-14157 Sweden
| | | | | | | | | |
Collapse
|
15
|
DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences. Proc Natl Acad Sci U S A 2009; 107:234-9. [PMID: 19966297 DOI: 10.1073/pnas.0907606106] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
DNA methylation might have a significant role in preventing normal differentiation in pediatric cancers. We used a genomewide method for detecting regions of CpG methylation on the basis of the increased melting temperature of methylated DNA, termed denaturation analysis of methylation differences (DAMD). Using the DAMD assay, we find common regions of cancer-specific methylation changes in primary medulloblastomas in critical developmental regulatory pathways, including Sonic hedgehog (Shh), Wingless (Wnt), retinoic acid receptor (RAR), and bone morphogenetic protein (BMP). One of the commonly methylated loci is the PTCH1-1C promoter, a negative regulator of the Shh pathway that is methylated in both primary patient samples and human medulloblastoma cell lines. Treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) increases the expression of PTCH1 and other methylated loci. Whereas genetic mutations in PTCH1 have previously been shown to lead to medulloblastoma, our study indicates that epigenetic silencing of PTCH1, and other critical developmental loci, by DNA methylation is a fundamental process of pediatric medulloblastoma formation. This finding warrants strong consideration for DNA demethylating agents in future clinical trials for children with this disease.
Collapse
|
16
|
Gomes CC, Diniz MG, Gomez RS. Review of the molecular pathogenesis of the odontogenic keratocyst. Oral Oncol 2009; 45:1011-4. [PMID: 19796981 DOI: 10.1016/j.oraloncology.2009.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 08/01/2009] [Accepted: 08/17/2009] [Indexed: 11/25/2022]
Abstract
The odontogenic keratocyst (keratocystic odontogenic tumour) (OKC) is one of the most prevalent odontogenic tumours. Since its initial description, a number of studies have focused on different aspects of this lesion, attempting to explain its distinctive biological behaviour. In this review the authors address the main genetic and epigenetic alterations reported on this tumour. Although most of the knowledge on this field is not being used in the clinical practice, some perspectives of translational studies are discussed.
Collapse
Affiliation(s)
- Carolina Cavaliéri Gomes
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | |
Collapse
|
17
|
Taniguchi E, Cho MJ, Arenkiel BR, Hansen MS, Rivera OJ, McCleish AT, Qualman SJ, Guttridge DC, Scott MP, Capecchi MR, Keller C. Bortezomib reverses a post-translational mechanism of tumorigenesis for patched1 haploinsufficiency in medulloblastoma. Pediatr Blood Cancer 2009; 53:136-44. [PMID: 19213072 PMCID: PMC2850215 DOI: 10.1002/pbc.21968] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Tumor initiation has been attributed to haploinsufficiency at a single locus for a large number of cancers. Patched1 (Ptc1) was one of the first such loci, and Ptc1 haploinsufficiency has been asserted to lead to medulloblastoma and rhabdomyosarcoma in mice. PROCEDURE To study the role of Ptc1 in cerebellar tumor development and to create a preclinical therapeutic platform, we have generated a conditional Ptc1 haploinsufficiency model of medulloblastoma by inactivating Ptc1 in Pax7-expressing cells of the cerebellum. RESULTS These mice developed exclusively medulloblastoma. We show that despite the presence of transcription of Ptc1, Ptc1 protein is nearly undetectable or absent in tumors. Our results suggest that Ptc1 loss of function is complete, but achieved at the protein level rather than by the classic genetic two-hit mechanism or a strict half-dosage genetic haploinsufficiency mechanism. Furthermore, we found that bortezomib, a 26S proteasome inhibitor, had a significant anti-tumor activity in vitro and in vivo, which was accompanied by restoration of Ptc1 protein and downregulation of the hedgehog signaling pathway. The same effect was seen for both human and mouse medulloblastoma tumor cell growth. CONCLUSIONS These results suggest that proteasome inhibition is a potential new therapeutic approach in medulloblastoma.
Collapse
Affiliation(s)
- Eri Taniguchi
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Min Jung Cho
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Benjamin R. Arenkiel
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Mark S. Hansen
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Omar J. Rivera
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Amanda T. McCleish
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA
| | - Stephen J. Qualman
- Children’s Research Institute, Department of Laboratory Medicine, Columbus Children’s Hospital, Columbus, OH 43205 USA
| | - Denis C. Guttridge
- Human Cancer Genetics Program, The Ohio State University College of Medicine, Columbus, OH 43210 USA
| | - Matthew P. Scott
- Howard Hughes Medical Institute and Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, California 94305 USA
| | - Mario R. Capecchi
- Howard Hughes Medical Institute and Department of Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Charles Keller
- Greehey Children’s Cancer Research Institute, Departments of Cellular & Structural Biology and Pediatrics, University of Texas Health Science Center, San Antonio, TX 78229 USA,Corresponding author: Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, 8403 Floyd Curl Drive, MC-7784, San Antonio, TX 78229-3900 USA, Tel: (210)562-9062, Fax: (210)562-9014,
| |
Collapse
|
18
|
PTCH1 isoforms in odontogenic keratocysts. Oral Oncol 2009; 45:291-5. [DOI: 10.1016/j.oraloncology.2008.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/05/2008] [Accepted: 05/30/2008] [Indexed: 01/03/2023]
|
19
|
Shimokawa T, Tostar U, Lauth M, Palaniswamy R, Kasper M, Toftgård R, Zaphiropoulos PG. Novel human glioma-associated oncogene 1 (GLI1) splice variants reveal distinct mechanisms in the terminal transduction of the hedgehog signal. J Biol Chem 2008; 283:14345-54. [PMID: 18378682 PMCID: PMC2386930 DOI: 10.1074/jbc.m800299200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/21/2008] [Indexed: 01/12/2023] Open
Abstract
Hedgehog (HH) signaling is one of the key pathways with major significance for embryogenesis, tumorigenesis, and stem cell maintenance. Glioma-associated oncogene 1 (GLI1) is a transcription factor that acts as the terminal signaling effector but also represents a pathway target gene. Here we report the identification and functional properties of novel GLI1 splice variants generated by skipping exons 2 and 3 and encoding an N-terminal truncated GLI1 protein (GLI1DeltaN). Analysis of the GLI1DeltaN mRNAs in adult human tissues revealed comparable expression levels to the full-length GLI1 (GLI1FL), whereas in tumor cell lines a generally lower and more variable expression pattern was observed. Furthermore, GLI1DeltaN is up-regulated by HH signaling to the same extent as GLI1FL but has a weaker capacity to activate transcription. However, in specific cellular contexts GLI1DeltaN may be more potent than GLI1FL in activating endogenous gene expression. Moreover, the dual-specificity tyrosine phosphorylation-regulated kinase 1 (Dyrk1) potentiates the transcriptional activity of GLI1FL but not GLI1DeltaN. Interestingly, GLI1FL, in contrast to GLI1DeltaN, is localized solely at the nucleus, in line with its increased transcriptional capacity. The negative regulator of the pathway, Suppressor of Fused (SUFU), elicits a cytoplasmic retention of the GLI1 isoforms, which is more pronounced for GLI1FL, as this contains an N-terminal SUFU binding domain. Collectively, our findings reveal that the activation mechanism of the terminal transducer of the pathway, GLI1, is mediated not only by GLI1FL but also by the GLI1DeltaN variant.
Collapse
Affiliation(s)
- Takashi Shimokawa
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
| | | | | | | | | | | | | |
Collapse
|