1
|
Desiderio A, Pastorino M, Campitelli M, Prevenzano I, De Palma FDE, Spinelli R, Parrillo L, Longo M, Milone M, Miele C, Raciti GA, Beguinot F. Hypomethylation at PANDAR promoter progressively induces senescence in adipocyte precursor cells in subjects with obesity and type 2 diabetes. FASEB J 2024; 38:e70093. [PMID: 39373976 DOI: 10.1096/fj.202401470r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
The risk of developing type 2 diabetes (T2D) is heterogeneous among individuals with obesity. Functional decline of adipocyte precursor cells (APCs) and accumulation of senescent cells in the subcutaneous adipose tissue contributes to the progression toward T2D. LncRNAs regulate cell senescence and may be implicated in determining this abnormality in APCs. Here, we report that APCs from individuals with obesity show a gradual increase in multiple senescence markers, which worsens in parallel with the progression from normal glucose tolerance (NGT) to impaired glucose tolerance (IGT) or T2D. Transcriptomic analysis identified PANDAR as the top-ranked lncRNA differentially expressed in APCs from individuals with obesity and T2D and non-obese subjects. Q-PCR confirmed PANDAR up-regulation in APCs from individuals with obesity, at progressively increased levels in those who developed, respectively, IGT and T2D. Bisulfite sequencing and luciferase assays revealed that, in parallel with glucose tolerance deterioration, the -1317 CpG at the PANDAR promoter became hypo-methylated in obesity, resulting in enhanced PANDAR induction by p53. PANDAR silencing in senescent APCs from individuals with obesity and T2D caused repression of senescence programs and cell cycle re-entry. PANDAR transcription in white blood cells (WBCs) mirrored that in APCs. Also, individuals with obesity exhibited rescue of PANDAR transcription in WBCs following bariatric surgery, accompanied by enhanced methylation at the regulatory PANDAR -1317 CpG. In conclusion, PANDAR dysregulation is a newly identified mechanism determining the early senescence of APCs from individuals with obesity, which worsens along the progression toward T2D. In the future, PANDAR targeting may represent a valuable strategy to delay this progression.
Collapse
Affiliation(s)
- Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Monica Pastorino
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
- Department of Molecular Medicine and Biotechnology, Federico II University of Naples, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Immacolata Prevenzano
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | | | - Rosa Spinelli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Luca Parrillo
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Marco Milone
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
2
|
Josefson JL, Kuang A, Allard C, Bianco ME, Lowe W, Scholtens DM, Bouchard L, Hivert MF. Newborn adiposity is associated with cord blood DNA methylation at IGF1R and KLF7. Obesity (Silver Spring) 2024; 32:1923-1933. [PMID: 39165088 PMCID: PMC11421971 DOI: 10.1002/oby.24109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 08/22/2024]
Abstract
OBJECTIVE This study aimed to identify whether cord blood DNA methylation at specific loci is associated with neonatal adiposity, a key risk factor for childhood obesity. METHODS An epigenome-wide association study was conducted using the Hyperglycemia and Adverse Pregnancy Outcome (HAPO) Study as a discovery sample. Linear regression models adjusted for maternal and offspring covariates and cell counts were used to analyze associations between neonatal adiposity as measured by sum of three skinfold thicknesses and cord blood DNA methylation. Assays were performed with Illumina EPIC arrays (791,359 CpG sites after quality control). Replication was performed in an independent cohort, Genetics of Glucose regulation in Gestation and Growth (Gen3G). RESULTS In 2740 HAPO samples, significant associations were identified at 89 CpG sites after accounting for multiple testing (Bonferroni-adjusted p < 0.05). Replication analyses conducted in 139 Gen3G participants confirmed associations for seven CpG sites. These included IGF1R, which encodes a transmembrane receptor involved in cell growth and survival that binds insulin-like growth factor I and insulin, and KLF7, which encodes a regulator of cell proliferation and inhibitor of adipogenesis; both are key regulators of growth during fetal life. CONCLUSIONS These findings support epigenetic mechanisms in the developmental origins of neonatal adiposity and as potential biomarkers of metabolic disease risk.
Collapse
Affiliation(s)
- Jami L Josefson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Alan Kuang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Catherine Allard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Monica E Bianco
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Division of Endocrinology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - William Lowe
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luigi Bouchard
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School; Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Andreoli MF, Kruger AL, Sokolov AV, Rukh G, De Francesco PN, Perello M, Schiöth HB. LEAP2 is associated with impulsivity and reward sensitivity depending on the nutritional status and decreases with protein intake in humans. Diabetes Obes Metab 2024; 26:4734-4743. [PMID: 39140219 DOI: 10.1111/dom.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024]
Abstract
AIM Liver-expressed antimicrobial peptide 2 (LEAP2) dynamics in human plasma and its association with feeding behaviour remain poorly understood. Therefore, this study aims: (a) to investigate fasting LEAP2 in participants with normal weight or with overweight or mild obesity (OW/OB); (b) to study the association between fasting LEAP2 and anthropometric and metabolic traits, feeding behaviour, LEAP2 genetic variants and blood cell DNA methylation status; and (c) to ascertain postprandial changes in LEAP2 after high protein intake and the association with feeding behaviour and food intake. METHODS Anthropometric and behavioural measures, genotyping, methylation profiling, plasma glucose and LEAP2 concentrations were assessed in 327 females and males. A subgroup of 123 participants received an ad libitum high-protein meal, and postprandial LEAP2 concentration and behavioural measures were assessed. RESULTS LEAP2 concentration was higher in participants with OW/OB (p < 0.001) and in females (p < 0.001), and was associated with LEAP2 single nucleotide polymorphisms rs765760 (p = 0.012) and rs803223 (p = 0.019), but not with LEAP2 methylation status. LEAP2 concentration was directly related to glycaemia (p = 0.001) and fullness (p = 0.003) in participants with normal weight, whereas it was associated with body mass index (p = 0.018), waist circumference (p = 0.014) and motor impulsivity in participants with OW/OB (p = 0.005). A negative association with reward responsiveness was observed in participants with OW/OB (p = 0.023). LEAP2 concentration was inversely associated with food intake (p = 0.034) and decreased after a high-protein meal (p < 0.001), particularly in women (p = 0.002). CONCLUSION Increased LEAP2 in participants with OW/OB is associated with behavioural characteristics of obesity. Our results show sexual dimorphism in LEAP2 concentration before and after food intake and highlight the role of LEAP2 in feeding regulation.
Collapse
Affiliation(s)
- María F Andreoli
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), Children's Hospital HIAEP "Sor María Ludovica" La Plata-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- CONICET La Plata, La Plata, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Ana Luz Kruger
- Instituto de Desarrollo e Investigaciones Pediátricas (IDIP), Children's Hospital HIAEP "Sor María Ludovica" La Plata-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
- CONICET La Plata, La Plata, Argentina
| | - Aleksandr V Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Pablo N De Francesco
- Neurophysiology Group, Instituto Multidisciplinario de Biología Celular (IMBICE) (UNLP-CIC-PBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Mario Perello
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Neurophysiology Group, Instituto Multidisciplinario de Biología Celular (IMBICE) (UNLP-CIC-PBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)), La Plata, Argentina
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Katsanou A, Kostoulas C, Liberopoulos E, Tsatsoulis A, Georgiou I, Tigas S. Retrotransposons and Diabetes Mellitus. EPIGENOMES 2024; 8:35. [PMID: 39311137 PMCID: PMC11417941 DOI: 10.3390/epigenomes8030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Retrotransposons are invasive genetic elements, which replicate by copying and pasting themselves throughout the genome in a process called retrotransposition. The most abundant retrotransposons by number in the human genome are Alu and LINE-1 elements, which comprise approximately 40% of the human genome. The ability of retrotransposons to expand and colonize eukaryotic genomes has rendered them evolutionarily successful and is responsible for creating genetic alterations leading to significant impacts on their hosts. Previous research suggested that hypomethylation of Alu and LINE-1 elements is associated with global hypomethylation and genomic instability in several types of cancer and diseases, such as neurodegenerative diseases, obesity, osteoporosis, and diabetes mellitus (DM). With the advancement of sequencing technologies and computational tools, the study of the retrotransposon's association with physiology and diseases is becoming a hot topic among researchers. Quantifying Alu and LINE-1 methylation is thought to serve as a surrogate measurement of global DNA methylation level. Although Alu and LINE-1 hypomethylation appears to serve as a cellular senescence biomarker promoting genomic instability, there is sparse information available regarding their potential functional and biological significance in DM. This review article summarizes the current knowledge on the involvement of the main epigenetic alterations in the methylation status of Alu and LINE-1 retrotransposons and their potential role as epigenetic markers of global DNA methylation in the pathogenesis of DM.
Collapse
Affiliation(s)
- Andromachi Katsanou
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
- Department of Internal Medicine, Hatzikosta General Hospital, 45445 Ioannina, Greece
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Evangelos Liberopoulos
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, 11527 Athens, Greece;
| | - Agathocles Tsatsoulis
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Stelios Tigas
- Department of Endocrinology, University of Ioannina, 45110 Ioannina, Greece; (A.K.); (A.T.)
| |
Collapse
|
5
|
Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J. Effect of body mass index on semen quality, sperm chromatin integrity and sperm DNA methylation. Obes Res Clin Pract 2024; 18:380-387. [PMID: 39358131 DOI: 10.1016/j.orcp.2024.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Obesity represents a growing problem due to its impacts on human health and reproduction. In this study, we analysed semen quality, sperm DNA integrity and gene-specific CpG methylation in 116 healthy men from normal population. The men were divided into three groups according to their body mass index (BMI), and their ejaculates were analysed using standard methods, sperm chromatin structure assay (SCSA), methylation next generation sequencing (NGS) and amplicon sequencing. The sperm methylation NGS revealed six significantly differentially methylated regions (DMRs). Using subsequent targeted amplicon sequencing in 116 men, two of the DMRs were proved as differentially methylated in sperm of men with normal BMI vs. BMI ≥ 25. The DMRs were located in the EPHA8 and ANKRD11 gene. Also, we detected a significant decline in the EPHA8, ANKRD11 and CFAP46 gene methylation in association with increasing BMI values. The genes EPHA8 and ANKRD11 are involved in the nervous system and brain development; the CFAP46 gene plays a role in a flagellar assembly and is associated with sperm motility. Significantly lower rates of motile and progressive motile sperm were observed in men with BMI ≥ 30. Our results show that excess body weight can modify CpG methylation of specific genes, affect sperm motility, and compromise sperm chromatin integrity. These factors can stand behind the observed reduced fertility in men with obesity. The methylation changes might be transmitted to their offspring through sperm, and become a basis for possible developmental and reproductive issues in the next generation.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic.
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Vera Kopecka
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Sipek
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
6
|
Müller L, Hoffmann A, Bernhart SH, Ghosh A, Zhong J, Hagemann T, Sun W, Dong H, Noé F, Wolfrum C, Dietrich A, Stumvoll M, Massier L, Blüher M, Kovacs P, Chakaroun R, Keller M. Blood methylation pattern reflects epigenetic remodelling in adipose tissue after bariatric surgery. EBioMedicine 2024; 106:105242. [PMID: 39002385 PMCID: PMC11284569 DOI: 10.1016/j.ebiom.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Studies on DNA methylation following bariatric surgery have primarily focused on blood cells, while it is unclear to which extend it may reflect DNA methylation profiles in specific metabolically relevant organs such as adipose tissue. Here, we investigated whether adipose tissue depots specific methylation changes after bariatric surgery are mirrored in blood. METHODS Using Illumina 850K EPIC technology, we analysed genome-wide DNA methylation in paired blood, subcutaneous and omental visceral AT (SAT/OVAT) samples from nine individuals (N = 6 female) with severe obesity pre- and post-surgery. FINDINGS The numbers and effect sizes of differentially methylated regions (DMRs) post-bariatric surgery were more pronounced in AT (SAT: 12,865 DMRs from -11.5 to 10.8%; OVAT: 14,632 DMRs from -13.7 to 12.8%) than in blood (9267 DMRs from -8.8 to 7.7%). Cross-tissue DMRs implicated immune-related genes. Among them, 49 regions could be validated with similar methylation changes in blood from independent individuals. Fourteen DMRs correlated with differentially expressed genes in AT post bariatric surgery, including downregulation of PIK3AP1 in both SAT and OVAT. DNA methylation age acceleration was significantly higher in AT compared to blood, but remained unaffected after surgery. INTERPRETATION Concurrent methylation pattern changes in blood and AT, particularly in immune-related genes, suggest blood DNA methylation mirrors AT's inflammatory state post-bariatric surgery. FUNDING The funding sources are listed in the Acknowledgments section.
Collapse
Affiliation(s)
- Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany; Bioinformatics Group, Department of Computer, University of Leipzig, 04107, Leipzig, Germany; Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Arne Dietrich
- Leipzig University Hospital, Department of Visceral, Transplantation, Thoracic and Vascular Surgery, Section of Bariatric Surgery, 04103, Leipzig, Germany
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Lucas Massier
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, 141 83, Huddinge, Sweden
| | - Matthias Blüher
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Deutsches Zentrum für Diabetesforschung e.V., 85764, Neuherberg, Germany
| | - Rima Chakaroun
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, 04103, Germany.
| |
Collapse
|
7
|
Manjarres-Suarez A, Bozack A, Cardenas A, Olivero-Verbel J. DNA methylation is associated with hair trace elements in female adolescents from two vulnerable populations in the Colombian Caribbean. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae008. [PMID: 39525284 PMCID: PMC11548963 DOI: 10.1093/eep/dvae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024]
Abstract
Exposure to trace elements (TEs) influences DNA methylation patterns, which may be associated with disease development. Vulnerable populations, such as adolescents undergoing maturity, are susceptible to the effects of TE exposure. The aim of this study was to analyze the association of hair TE concentration with DNA methylation in a sample from female adolescents living in two communities in the Colombian Caribbean coast. Hair and blood samples were obtained from 45 females, between 13 and 16 years of age. Seventeen TEs were quantified in hair samples. DNA methylation was measured in leukocytes using the Infinium MethylationEPIC BeadChip. Linear models were employed to identify differentially methylated positions (DMPs) adjusting for age, body mass index, mother's education, and cell type composition. Among the tested elements, vanadium, chromium, nickel, copper, zinc, yttrium, tin, and barium were significantly associated with DMPs (false discovery rate < 0.05), registering 225, 1, 2, 184, 1, 209 189, and 104 hits, respectively. Most of the DMPs were positively associated with TEs and located in open sea regions. The greatest number of DMPs was annotated to the HOXA3 and FOXO3 genes, related to regulation of gene expression and oxidative stress, respectively. These findings suggest that DNA methylation may be involved in linking exposure to TEs among female adolescents to downstream health risks.
Collapse
Affiliation(s)
- Alejandra Manjarres-Suarez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| | - Anne Bozack
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA 94305, United States
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130015, Colombia
| |
Collapse
|
8
|
Vieira TDS, Freitas FV, Silva Neto LCB, Borçoi AR, Mendes SO, Olinda AS, Moreno IAA, Quaioto BR, de Souza MLM, Barbosa WM, Arpini JK, Sorroche BP, de Assis Pinheiro J, Archanjo AB, dos Santos JG, Arantes LMRB, de Oliveira DR, da Silva AMA. An industrialized diet as a determinant of methylation in the 1F region of the NR3C1 gene promoter. Front Nutr 2024; 11:1168715. [PMID: 38633601 PMCID: PMC11021719 DOI: 10.3389/fnut.2024.1168715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Background Dietary composition can modify gene expression, favoring the development of chronic diseases via epigenetic mechanisms. Objective Our study aimed to investigate the relationship between dietary patterns and NR3C1 gene methylation in users of the Brazilian Public Unified Health System (SUS). Methods We recruited 250 adult volunteers and evaluated their socioeconomic status, psychosocial characteristics, lifestyle, and anthropometrics. Peripheral blood was collected and evaluated for cortisol levels, glycemia, lipid profile, and insulin resistance; methylation of CpGs 40-47 of the 1F region of the NR3C1 gene was also measured. Factors associated with degree of methylation were evaluated using generalized linear models (p < 0.05). Lifestyle variables and health variables were included as confounding factors. Results The findings of our cross-sectional study indicated an association between NR3C1 DNA methylation and intake of processed foods. We also observed relevant associations of average NR3C1 DNA across the segment analyzed, methylation in component 1 (40-43), and methylation in component 2 (44-47) with a pattern of consumption of industrialized products in relation to BMI, serum cortisol levels, and lipid profile. These results may indicate a relationship between methylation and metabolic changes related to the stress response. Conclusion These findings suggest an association of methylation and metabolic alterations with stress response. In addition, the present study highlights the significant role of diet quality as a stress-inducing factor that influences NR3C1 methylation. This relationship is further linked to changes in psychosocial factors, lifestyle choices, and cardiometabolic variables, including glucose levels, insulin resistance, and hyperlipidemia.
Collapse
Affiliation(s)
- Tamires dos Santos Vieira
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | - Aline Ribeiro Borçoi
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Amanda Sgrancio Olinda
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Ivana Alece Arantes Moreno
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Bárbara Risse Quaioto
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | - Wagner Miranda Barbosa
- Department of Pharmacy and Nutrition, Federal University of Espírito Santo, Alegre, Brazil
| | | | | | - Julia de Assis Pinheiro
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | - Anderson Barros Archanjo
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
| | | | | | | | - Adriana Madeira Alvares da Silva
- Program of Post-Graduation in Biotechnology/Renorbio, Federal University of Espírito Santo, Vitória, Brazil
- Department of Morphology, Federal University of Espirito Santo, Vitória, Brazil
| |
Collapse
|
9
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Priyadarshini A, Madan R, Das S. Genetics and epigenetics of diabetes and its complications in India. Hum Genet 2024; 143:1-17. [PMID: 37999799 DOI: 10.1007/s00439-023-02616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Diabetes mellitus (DM) has become a significant health concern with an increasing rate of morbidity and mortality worldwide. India ranks second in the number of diabetes cases in the world. The increasing burden of DM can be explained by genetic predisposition of Indians to type 2 diabetes mellitus (T2DM) coupled with rapid urbanization and socio-economic development in the last 3 decades leading to drastic changes in lifestyle. Environment and lifestyle changes contribute to T2DM development by altering epigenetic processes such as DNA methylation, histone post-translational modifications, and long non-coding RNAs, all of which regulate chromatin structure and gene expression. Although the genetic predisposition of Indians to T2DM is well established, how environmental and genetic factors interact and lead to T2DM is not well understood. In this review, we discuss the prevalence of diabetes and its complications across different states in India and how various risk factors contribute to its pathogenesis. The review also highlights the role of genetic predisposition among the Indian population and epigenetic factors involved in the etiology of diabetes. Lastly, we review current treatments and emphasize the knowledge gap with respect to genetic and epigenetic factors in the Indian context. Further understanding of the genetic and epigenetic determinants will help in risk prediction and prevention as well as therapeutic interventions, which will improve the clinical management of diabetes and associated macro- and micro-vascular complications.
Collapse
Affiliation(s)
- Ankita Priyadarshini
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Riya Madan
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India
| | - Sadhan Das
- Diabetic Vascular Complications Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, Punjab, 140306, India.
| |
Collapse
|
11
|
Ricart W, Crujeiras AB, Mateos A, Castells-Nobau A, Fernández-Real JM. Is obesity the next step in evolution through brain changes? NEUROSCIENCE APPLIED 2024; 3:103927. [DOI: 10.1016/j.nsa.2023.103927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
García-Álvarez NC, Riezu-Boj JI, Martínez JA, García-Calzón S, Milagro FI. A Predictive Tool Based on DNA Methylation Data for Personalized Weight Loss through Different Dietary Strategies: A Pilot Study. Nutrients 2023; 15:5023. [PMID: 38140282 PMCID: PMC10746100 DOI: 10.3390/nu15245023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND AIMS Obesity is a public health problem. The usual treatment is a reduction in calorie intake and an increase in energy expenditure, but not all individuals respond equally to these treatments. Epigenetics could be a factor that contributes to this heterogeneity. The aim of this research was to determine the association between DNA methylation at baseline and the percentage of BMI loss (%BMIL) after two dietary interventions, in order to design a prediction model to evaluate %BMIL based on methylation data. METHODS AND RESULTS Spanish participants with overweight or obesity (n = 306) were randomly assigned to two lifestyle interventions with hypocaloric diets: one moderately high in protein (MHP) and the other low in fat (LF) for 4 months (Obekit study; ClinicalTrials.gov ID: NCT02737267). Basal DNA methylation was analyzed in white blood cells using the Infinium MethylationEPIC array. After identifying those methylation sites associated with %BMIL (p < 0.05 and SD > 0.1), two weighted methylation sub-scores were constructed for each diet: 15 CpGs were used for the MHP diet and 11 CpGs for the LF diet. Afterwards, a total methylation score was made by subtracting the previous sub-scores. These data were used to design a prediction model for %BMIL through a linear mixed effect model with the interaction between diet and total score. CONCLUSION Overall, DNA methylation predicts the %BMIL of two 4-month hypocaloric diets and was able to determine which type of diet is the most appropriate for each individual. The results of this pioneer study confirm that epigenetic biomarkers may be further used for precision nutrition and the design of personalized dietary strategies against obesity.
Collapse
Affiliation(s)
- Nereyda Carolina García-Álvarez
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
| | - José Ignacio Riezu-Boj
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - J. Alfredo Martínez
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
| | - Sonia García-Calzón
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Fermín I. Milagro
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, Faculty of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (N.C.G.-Á.); (J.I.R.-B.); (J.A.M.); (S.G.-C.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
13
|
Ponce D, Rodríguez F, Miranda JP, Binder AM, Santos JL, Michels KB, Cutler GB, Pereira A, Iñiguez G, Mericq V. Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche. Epigenetics 2023; 18:2200366. [PMID: 37053179 PMCID: PMC10114989 DOI: 10.1080/15592294.2023.2200366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Biochemical premature adrenarche is defined by elevated serum DHEAS [≥40 μg/dL] before age 8 y in girls. This condition is receiving more attention due to its association with obesity, hyperinsulinemia, dyslipidemia, and polycystic ovary syndrome. Nevertheless, the link between early androgen excess and these risk factors remains unknown. Epigenetic modifications, and specifically DNA methylation, have been associated with the initiation and progression of numerous disorders, including obesity and insulin resistance. The aim of this study was to determine if prepubertal androgen exposure is associated with a different methylation profile in pubertal girls. Eighty-six healthy girls were studied. At age 7 y, anthropometric measurements were begun and DHEAS levels were determined. Girls were classified into Low DHEAS (LD) [<42 μg/dL] and High DHEAS (HD) [≥42 μg/dL] groups. At Tanner stages 2 and 4 a DNA methylation microarray was performed to identify differentially methylated CpG positions (DMPs) between HD and LD groups. We observed a differential methylation pattern between pubertal girls with and without biochemical PA. Moreover, a set of DNA methylation markers, selected by the LASSO method, successfully distinguished between HD and LD girls regardless of Tanner stage. Additionally, a subset of these markers were significantly associated with glucose-related measures such as insulin level, HOMA-IR, and glycaemia. This pilot study provides evidence consistent with the hypothesis that high DHEAS concentration, or its hormonally active metabolites, may induce a unique blood methylation signature in pubertal girls, and that this methylation pattern is associated with altered glucose metabolism.
Collapse
Affiliation(s)
- Diana Ponce
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernando Rodríguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - José P Miranda
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile & Universidad de Chile, Santiago, Chile
| | - Alexandra M Binder
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Population Sciences in the Pacific Program (Cancer Epidemiology), University of Hawaii Cancer Center, University of Hawaii, Honolulu, HI, USA
| | - José L Santos
- Department of Nutrition, Diabetes, and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karin B Michels
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, CA, USA
| | | | - Ana Pereira
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Germán Iñiguez
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| | - Verónica Mericq
- Institute of Maternal and Child Research, School of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Keller M, Svensson SIA, Rohde-Zimmermann K, Kovacs P, Böttcher Y. Genetics and Epigenetics in Obesity: What Do We Know so Far? Curr Obes Rep 2023; 12:482-501. [PMID: 37819541 DOI: 10.1007/s13679-023-00526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE OF REVIEW Enormous progress has been made in understanding the genetic architecture of obesity and the correlation of epigenetic marks with obesity and related traits. This review highlights current research and its challenges in genetics and epigenetics of obesity. RECENT FINDINGS Recent progress in genetics of polygenic traits, particularly represented by genome-wide association studies, led to the discovery of hundreds of genetic variants associated with obesity, which allows constructing polygenic risk scores (PGS). In addition, epigenome-wide association studies helped identifying novel targets and methylation sites being important in the pathophysiology of obesity and which are essential for the generation of methylation risk scores (MRS). Despite their great potential for predicting the individual risk for obesity, the use of PGS and MRS remains challenging. Future research will likely discover more loci being involved in obesity, which will contribute to better understanding of the complex etiology of human obesity. The ultimate goal from a clinical perspective will be generating highly robust and accurate prediction scores allowing clinicians to predict obesity as well as individual responses to body weight loss-specific life-style interventions.
Collapse
Affiliation(s)
- Maria Keller
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Stina Ingrid Alice Svensson
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
| | - Kerstin Rohde-Zimmermann
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III-Endocrinology, Nephrology, Rheumatology, Medical Center, University of Leipzig, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- EpiGen, Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway.
- EpiGen, Medical Division, Akershus University Hospital, 1478, Lørenskog, Norway.
| |
Collapse
|
15
|
Aurich S, Müller L, Kovacs P, Keller M. Implication of DNA methylation during lifestyle mediated weight loss. Front Endocrinol (Lausanne) 2023; 14:1181002. [PMID: 37614712 PMCID: PMC10442821 DOI: 10.3389/fendo.2023.1181002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Over the past 50 years, the number of overweight/obese people increased significantly, making obesity a global public health challenge. Apart from rare monogenic forms, obesity is a multifactorial disease, most likely resulting from a concerted interaction of genetic, epigenetic and environmental factors. Although recent studies opened new avenues in elucidating the complex genetics behind obesity, the biological mechanisms contributing to individual's risk to become obese are not yet fully understood. Non-genetic factors such as eating behaviour or physical activity are strong contributing factors for the onset of obesity. These factors may interact with genetic predispositions most likely via epigenetic mechanisms. Epigenome-wide association studies or methylome-wide association studies are measuring DNA methylation at single CpGs across thousands of genes and capture associations to obesity phenotypes such as BMI. However, they only represent a snapshot in the complex biological network and cannot distinguish between causes and consequences. Intervention studies are therefore a suitable method to control for confounding factors and to avoid possible sources of bias. In particular, intervention studies documenting changes in obesity-associated epigenetic markers during lifestyle driven weight loss, make an important contribution to a better understanding of epigenetic reprogramming in obesity. To investigate the impact of lifestyle in obesity state specific DNA methylation, especially concerning the development of new strategies for prevention and individual therapy, we reviewed 19 most recent human intervention studies. In summary, this review highlights the huge potential of targeted interventions to alter disease-associated epigenetic patterns. However, there is an urgent need for further robust and larger studies to identify the specific DNA methylation biomarkers which influence obesity.
Collapse
Affiliation(s)
- Samantha Aurich
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung e.V., Neuherberg, Germany
| | - Maria Keller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
García-Calzón S, Schrader S, Perfilyev A, Martinell M, Ahlqvist E, Ling C. DNA methylation partially mediates antidiabetic effects of metformin on HbA1c levels in individuals with type 2 diabetes. Diabetes Res Clin Pract 2023:110807. [PMID: 37356726 DOI: 10.1016/j.diabres.2023.110807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
AIMS Despite metformin being used as first-line pharmacological therapy for type 2 diabetes, its underlying mechanisms remain unclear. We aimed to determine whether metformin altered DNA methylation in newly-diagnosed individuals with type 2 diabetes. METHODS AND RESULTS We found that metformin therapy is associated with altered methylation of 26 sites in blood from Scandinavian discovery and replication cohorts (FDR<0.05), using MethylationEPIC arrays. The majority (88%) of these 26 sites were hypermethylated in patients taking metformin for ∼3 months compared to controls, who had diabetes but had not taken any diabetes medication. Two of these blood-based methylation markers mirrored the epigenetic pattern in muscle and adipose tissue (FDR<0.05). Four type 2 diabetes-associated SNPs were annotated to genes with differential methylation between metformin cases and controls, e.g., GRB10, RPTOR, SLC22A18AS and TH2LCRR. Methylation correlated with expression in human islets for two of these genes. Three metformin-associated methylation sites (PKNOX2, WDTC1 and MICB) partially mediate effects of metformin on follow-up HbA1c levels. When combining methylation of these three sites into a score, which was used in a causal mediation analysis, methylation was suggested to mediate up to 32% of metformin's effects on HbA1c. CONCLUSION Metformin-associated alterations in DNA methylation partially mediates metformin's antidiabetic effects on HbA1c in newly-diagnosed individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Sonia García-Calzón
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden; Department of Food Sciences and Physiology, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.
| | - Silja Schrader
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| | - Mats Martinell
- Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Emma Ahlqvist
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, 205 02 Malmö, Sweden
| |
Collapse
|
17
|
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023; 15:2840. [PMID: 37447167 DOI: 10.3390/nu15132840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The occurrence of obesity stems from both genetic and external influences. Despite thorough research and attempts to address it through various means such as dietary changes, physical activity, education, and medications, a lasting solution to this widespread problem remains elusive. Nutrients play a crucial role in various cellular processes, including the regulation of gene expression. One of the mechanisms by which nutrients can affect gene expression is through DNA methylation. This modification can alter the accessibility of DNA to transcription factors and other regulatory proteins, thereby influencing gene expression. Nutrients such as folate and vitamin B12 are involved in the one-carbon metabolism pathway, which provides the methyl groups necessary for DNA methylation. Studies have shown that the inadequate intake of these nutrients can lead to alterations in DNA methylation patterns. For this study, we aim to understand the differences in the association of the dietary intake between normal weight and overweight/obese children and between European American and African American children with the DNA methylation of the three genes NRF1, FTO, and LEPR. The research discovered a significant association between the nutritional intake of 6-10-years-old children, particularly the methyl donors present in their diet, and the methylation of the NRF1, FTO, and LEPR genes. Additionally, the study emphasizes the significance of considering health inequalities, particularly family income and maternal education, when investigating the epigenetic impact of methyl donors in diet and gene methylation.
Collapse
Affiliation(s)
- Priyadarshni Patel
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
| | | | - Jeganathan Ramesh Babu
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| | - Thangiah Geetha
- Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA
- Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Xu Y, Wang Y, Jiang Y, Liu M, Zhong W, Ge Z, Sun Z, Shen X. Relationship between cognitive dysfunction and the promoter methylation of PER1 and CRY1 in patients with cerebral small vessel disease. Front Aging Neurosci 2023; 15:1174541. [PMID: 37293664 PMCID: PMC10244731 DOI: 10.3389/fnagi.2023.1174541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/08/2023] [Indexed: 06/10/2023] Open
Abstract
Background and purpose The prevalence of cerebral small vessel disease (CSVD) is increasing due to the accelerating global aging process, resulting in a substantial burden on all countries, as cognitive dysfunction associated with CSVD is also on the rise. Clock genes have a significant impact on cognitive decline and dementia. Furthermore, the pattern of DNA methylation in clock genes is strongly associated with cognitive impairment. Thus, the aim of this study was to explore the connection between DNA promoter methylation of PER1 and CRY1 and cognitive dysfunction in patients with CSVD. Methods We recruited patients with CSVD admitted to the Geriatrics Department of the Lianyungang Second People's Hospital between March 2021 and June 2022. Based on their Mini-Mental State Examination score, patients were categorized into two groups: 65 cases with cognitive dysfunction and 36 cases with normal cognitive function. Clinical data, 24-h ambulatory blood pressure monitoring parameters, and CSVD total load scores were collected. Moreover, we employed methylation-specific PCR to analyze the peripheral blood promoter methylation levels of clock genes PER1 and CRY1 in all CSVD patients who were enrolled. Finally, we used binary logistic regression models to assess the association between the promoter methylation of clock genes (PER1 and CRY1) and cognitive dysfunction in patients with CSVD. Results (1) A total of 101 individuals with CSVD were included in this study. There were no statistical differences between the two groups in baseline clinical data except MMSE and AD8 scores. (2) After B/H correction, the promoter methylation rate of PER1 was higher in the cognitive dysfunction group than that in the normal group, and the difference was statistically significant (adjusted p < 0.001). (3) There was no significant correlation between the promoter methylation rates of PER1 and CRY1 in peripheral blood and circadian rhythm of blood pressure (p > 0.05). (4) Binary logistic regression models showed that the influence of promoter methylation of PER1 and CRY1 on cognitive dysfunction were statistically significant in Model 1 (p < 0.001; p = 0.025), and it still existed after adjusting for confounding factors in Model 2. Patients with the promoter methylation of PER1 gene (OR = 16.565, 95%CI, 4.057-67.628; p < 0.001) and the promoter methylation of CRY1 gene (OR = 6.017, 95%CI, 1.290-28.069; p = 0.022) were at greater risk of cognitive dysfunction compared with those with unmethylated promoters of corresponding genes in Model 2. Conclusion The promoter methylation rate of PER1 gene was higher in the cognitive dysfunction group among CSVD patients. And the hypermethylation of the promoters of clock genes PER1 and CRY1 may be involved in affecting cognitive dysfunction in patients with CSVD.
Collapse
Affiliation(s)
- Yiwen Xu
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Yugang Wang
- Department of Neurology, The First People’s Hospital of XianYang, XianYang, China
| | - Yi Jiang
- Department of Geriatrics, Lianyungang Hospital Affiliated to Bengbu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Mengqian Liu
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Wen Zhong
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Zhonglin Ge
- Department of Neurology, Lianyungang Second People′s Hospital, Lianyungang, China
| | - Zhichao Sun
- Department of Pathology, Lianyungang Second People′s Hospital, Lianyungang, China
| | - Xiaozhu Shen
- Department of Geriatrics, Lianyungang Hospital Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| |
Collapse
|
19
|
McAllan L, Baranasic D, Villicaña S, Brown S, Zhang W, Lehne B, Adamo M, Jenkinson A, Elkalaawy M, Mohammadi B, Hashemi M, Fernandes N, Lambie N, Williams R, Christiansen C, Yang Y, Zudina L, Lagou V, Tan S, Castillo-Fernandez J, King JWD, Soong R, Elliott P, Scott J, Prokopenko I, Cebola I, Loh M, Lenhard B, Batterham RL, Bell JT, Chambers JC, Kooner JS, Scott WR. Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes. Nat Commun 2023; 14:2784. [PMID: 37188674 PMCID: PMC10185556 DOI: 10.1038/s41467-023-38439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
DNA methylation variations are prevalent in human obesity but evidence of a causative role in disease pathogenesis is limited. Here, we combine epigenome-wide association and integrative genomics to investigate the impact of adipocyte DNA methylation variations in human obesity. We discover extensive DNA methylation changes that are robustly associated with obesity (N = 190 samples, 691 loci in subcutaneous and 173 loci in visceral adipocytes, P < 1 × 10-7). We connect obesity-associated methylation variations to transcriptomic changes at >500 target genes, and identify putative methylation-transcription factor interactions. Through Mendelian Randomisation, we infer causal effects of methylation on obesity and obesity-induced metabolic disturbances at 59 independent loci. Targeted methylation sequencing, CRISPR-activation and gene silencing in adipocytes, further identifies regional methylation variations, underlying regulatory elements and novel cellular metabolic effects. Our results indicate DNA methylation is an important determinant of human obesity and its metabolic complications, and reveal mechanisms through which altered methylation may impact adipocyte functions.
Collapse
Affiliation(s)
- Liam McAllan
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Damir Baranasic
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Sergio Villicaña
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scarlett Brown
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Weihua Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Marco Adamo
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Andrew Jenkinson
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Mohamed Elkalaawy
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Borzoueh Mohammadi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Majid Hashemi
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
| | - Nadia Fernandes
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Nathalie Lambie
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Richard Williams
- Imperial BRC Genomics Facility, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Colette Christiansen
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, UK
| | - Youwen Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London British Heart Foundation Centre of Excellence, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Liudmila Zudina
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
| | - Vasiliki Lagou
- Department of Microbiology and Immunology, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
- VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Sili Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - James W D King
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Institute for Health Research Biomedical Research Centre, Imperial College London, London, UK
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - Inga Prokopenko
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, UK
- People-Centred Artificial Intelligence Institute, University of Surrey, Guildford, UK
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre Russian Academy of Sciences, Ufa, Russian Federation
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Level 5, Singapore, 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | - Rachel L Batterham
- UCLH Bariatric Centre for Weight Loss, Weight Management and Metabolic and Endocrine Surgery, University College London Hospitals, Ground Floor West Wing, 250 Euston Road, London, NW1 2PG, UK
- Centre for Obesity Research, Rayne Institute, Department of Medicine, University College, London, WC1E 6JJ, UK
- National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, W1T 7DN, UK
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, London North West University Healthcare NHS Trust, Middlesex, UB1 3HW, UK
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK
| | - William R Scott
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, W2 1PG, UK.
- Imperial College Healthcare NHS Trust, London, W12 0HS, UK.
| |
Collapse
|
20
|
Taylor JY, Huang Y, Zhao W, Wright ML, Wang Z, Hui Q, Potts‐Thompson S, Barcelona V, Prescott L, Yao Y, Crusto C, Kardia SLR, Smith JA, Sun YV. Epigenome-wide association study of BMI in Black populations from InterGEN and GENOA. Obesity (Silver Spring) 2023; 31:243-255. [PMID: 36479596 PMCID: PMC10107734 DOI: 10.1002/oby.23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Obesity is a significant public health concern across the globe. Research investigating epigenetic mechanisms related to obesity and obesity-associated conditions has identified differences that may contribute to cellular dysregulation that accelerates the development of disease. However, few studies include Black women, who experience the highest incidence of obesity and early onset of cardiometabolic disorders. METHODS The association of BMI with epigenome-wide DNA methylation (DNAm) was examined using the 850K Illumina EPIC BeadChip in two Black populations (Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure [InterGEN], n = 239; and The Genetic Epidemiology Network of Arteriopathy [GENOA] study, n = 961) using linear mixed-effects regression models adjusted for batch effects, cell type heterogeneity, population stratification, and confounding factors. RESULTS Cross-sectional analysis of the InterGEN discovery cohort identified 28 DNAm sites significantly associated with BMI, 24 of which had not been previously reported. Of these, 17 were replicated using the GENOA study. In addition, a meta-analysis, including both the InterGEN and GENOA cohorts, identified 658 DNAm sites associated with BMI with false discovery rate < 0.05. In a meta-analysis of Black women, we identified 628 DNAm sites significantly associated with BMI. Using a more stringent significance threshold of Bonferroni-corrected p value 0.05, 65 and 61 DNAm sites associated with BMI were identified from the combined sex and female-only meta-analyses, respectively. CONCLUSIONS This study suggests that BMI is associated with differences in DNAm among women that can be identified with DNA extracted from salivary (discovery) and peripheral blood (replication) samples among Black populations across two cohorts.
Collapse
Affiliation(s)
- Jacquelyn Y. Taylor
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Yunfeng Huang
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Wei Zhao
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | | | - Zeyuan Wang
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Qin Hui
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | | | - Veronica Barcelona
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Laura Prescott
- Center for Research on People of ColorColumbia University School of NursingNew YorkNew YorkUSA
| | - Yutong Yao
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
| | - Cindy Crusto
- Department of PsychiatryYale School of MedicineNew HavenConnecticutUSA
| | - Sharon L. R. Kardia
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
- Survey Research CenterInstitute for Social Research, University of MichiganAnn ArborMichiganUSA
| | - Yan V. Sun
- Department of EpidemiologyEmory University Rollins School of Public HealthAtlantaGeorgiaUSA
- Atlanta VA Healthcare SystemDecaturGeorgiaUSA
| |
Collapse
|
21
|
Hasegawa M, Taniguchi J, Ueda H, Watanabe M. Twin Study: Genetic and Epigenetic Factors Affecting Circulating Adiponectin Levels. J Clin Endocrinol Metab 2022; 108:144-154. [PMID: 36082629 DOI: 10.1210/clinem/dgac532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/28/2022] [Indexed: 02/03/2023]
Abstract
CONTEXT Clarification of the association among phenotypes, genetic, and environmental factors with clinical laboratory traits can reveal the cause of diseases and assist in developing methods for the prediction and prevention of diseases. It is difficult to investigate the environmental effect on phenotypes using individual samples because their genetic and environmental factors differ, but we can easily investigate the influence of environmental factors using monozygotic (MZ) twins because they have the same genetic factors. OBJECTIVE We aimed to examine the methylation level of CpG sites as an environmental factor affecting adiponectin levels on the basis of the same genetic background using MZ twins and to identify the epigenetic factors related to adiponectin levels and the genetic factors associated with sensitivity to acquired changes in adiponectin. METHODS Using 2 groups built from each twin of 232 MZ twin pairs, we performed a replicated epigenome-wide association study to clarify the epigenetic factors affecting adiponectin levels adjusted by genetic risk score. Moreover, we divided twin pairs into concordant and discordant for adiponectin levels. We conducted a genome-wide association study to identify a genetic background specific for discordance. RESULTS Methylation levels at 38 CpG sites were reproducibly associated with adjusted adiponectin levels, and some of these CpG sites were in genes related to adiponectin, including CDH13. Some genes related to adiponectin or insulin resistance were found to be genetic factors specific for discordance. CONCLUSION We clarified specific epigenetic factors affecting adiponectin levels and genetic factors associated with sensitivity to acquired changes in adiponectin.
Collapse
Affiliation(s)
- Mika Hasegawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jumpei Taniguchi
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiromichi Ueda
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mikio Watanabe
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Graduate School of Medicine, Center for Twin Research, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
22
|
Li S, Wang Y, Li Z, Long C, Zhou Q, Chen Q. The links between adipose tissue DNA methylation, obesity, and insulin resistance: A protocol for systematic review. Medicine (Baltimore) 2022; 101:e31261. [PMID: 36451420 PMCID: PMC9704914 DOI: 10.1097/md.0000000000031261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND RATIONALE Obesity is a metabolic condition brought on by the interplay of hereditary and environmental factors, making it one of the most common diseases in the world. Insulin resistance (IR) and obesity have a close connection and can both be advantageous. One of the main methods of epigenetic regulation is DNA methylation modification. Studies have demonstrated over the past few years that DNA methylation is crucial to the emergence of obesity and DNA methylation can lead to IR. Adipose tissue participates in the physiopathological processes of obesity and IR and functions as an endocrine organ controlling the body's balanced metabolism, thus, adipose tissue-associated gene DNA methylation affects the development of obesity and IR by influencing the function of adipose tissue. Hence, an explanation of current research on DNA methylation, IR, and obesity, following the most recent developments, exploring changes in DNA methylation in different types of adipose tissue in insulin-resistant patients and obese patients may enable the identification of novel targets in clinical obesity prevention and treatment. METHOD AND ANALYSIS The following electronic bibliographic databases will be searched from inception for peer-reviewed original research published: MEDLINE (through PubMed), Scopus, and EMBASE. Cochrane Library, Cochrane Clinical Trials Registry, the National Institutes for Health Clinical Trials Registry, and the WHO International Clinical Trials Registry Platform from inception to December 31, 2021 will be conducted. Systematic reviews will adhere to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses reporting guidelines. The development of search strategies will make use of medical issue phrases and keywords associated with DNA methylation, Adipose tissue DNA methylation, obesity, and IR. Identified citations will be independently reviewed by two authors to determine eligibility at the title and abstract level, and then at the full text and data extraction phases. Disagreements and conflicts will be resolved through discussion with a third author. Two authors will extract the necessary data from the included studies independently, and The Cochrane Risk of Bias Assessment Tool will be used to assess the bias of randomized controlled studies, and the Newcastle-Ottawa scale for nonrandomized controlled studies. If the interventions and outcomes evaluated are sufficiently homogeneous, results from subgroups of studies will be pooled together in a meta-analysis.
Collapse
Affiliation(s)
- Suwen Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yan Wang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zinan Li
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cong Long
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhou
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan, China
- * Correspondence: Qiu Chen Department of Endocrinology, Hospital of Chengdu University of Traditional Chines-e Medicine, Chengdu 610072, China ()
| |
Collapse
|
23
|
Abstract
Nowadays, obesity is one of the largest public health problems worldwide. In the last few decades, there has been a marked increase in the obesity epidemic and its related comorbidities. Worldwide, more than 2.2 billion people (33%) are affected by overweight or obesity (712 million, 10%) and its associated metabolic complications. Although a high heritability of obesity has been estimated, the genetic variants conducted from genetic association studies only partially explain the variation of body mass index. This has led to a growing interest in understanding the potential role of epigenetics as a key regulator of gene-environment interactions on the development of obesity and its associated complications. Rapid advances in epigenetic research methods and reduced costs of epigenome-wide association studies have led to a great expansion of population-based studies. The field of epigenetics and metabolic diseases such as obesity has advanced rapidly in a short period of time. The main epigenetic mechanisms include DNA methylation, histone modifications, microRNA (miRNA)-mediated regulation and so on. DNA methylation is the most investigated epigenetic mechanism. Preliminary evidence from animal and human studies supports the effect of epigenetics on obesity. Studies of epigenome-wide association studies and genome-wide histone modifications from different biological specimens such as blood samples (newborn, children, adolescent, youth, woman, man, twin, race, and meta-analysis), adipose tissues, skeletal muscle cells, placenta, and saliva have reported the differential expression status of multiple genes before and after obesity interventions and have identified multiple candidate genes and biological markers. These findings may improve the understanding of the complex etiology of obesity and its related comorbidities, and help to predict an individual's risk of obesity at a young age and open possibilities for introducing targeted prevention and treatment strategies.
Collapse
Affiliation(s)
- Feng-Yao Wu
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
| | - Rui-Xing Yin
- Department of Comprehensive Internal Medicine, Affiliated Infectious Disease Hospital of Nanning (The Fourth People’s Hospital of Nanning), Guangxi Medical University, No. 1 Erli, Changgang Road, Nanning, 530023 Guangxi People’s Republic of China
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
24
|
Epigenome Modulation Induced by Ketogenic Diets. Nutrients 2022; 14:nu14153245. [PMID: 35956421 PMCID: PMC9370515 DOI: 10.3390/nu14153245] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ketogenic diets (KD) are dietary strategies low in carbohydrates, normal in protein, and high, normal, or reduced in fat with or without (Very Low-Calories Ketogenic Diet, VLCKD) a reduced caloric intake. KDs have been shown to be useful in the treatment of obesity, metabolic diseases and related disorders, neurological diseases, and various pathological conditions such as cancer, nonalcoholic liver disease, and chronic pain. Several studies have investigated the intracellular metabolic pathways that contribute to the beneficial effects of these diets. Although epigenetic changes are among the most important determinants of an organism’s ability to adapt to environmental changes, data on the epigenetic changes associated with these dietary pathways are still limited. This review provides an overview of the major epigenetic changes associated with KDs.
Collapse
|
25
|
Lorenzo PM, Izquierdo AG, Rodriguez-Carnero G, Fernández-Pombo A, Iglesias A, Carreira MC, Tejera C, Bellido D, Martinez-Olmos MA, Leis R, Casanueva FF, Crujeiras AB. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv Nutr 2022; 13:1725-1747. [PMID: 35421213 PMCID: PMC9526853 DOI: 10.1093/advances/nmac038] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 01/28/2023] Open
Abstract
Recent scientific evidence has shown the importance of diet and lifestyle habits for the proper functioning of the human body. A balanced and healthy diet, physical activity, and psychological well-being have a direct beneficial effect on health and can have a crucial role in the development and prognosis of certain diseases. The Southern European Atlantic diet, also named the Atlantic diet, is a unique dietary pattern that occurs in regions that present higher life expectancy, suggesting that this specific dietary pattern is associated with positive health effects. In fact, it is enriched with nutrients of high biological value, which, together with its cooking methods, physical activity promotion, reduction in carbon footprint, and promoting of family meals, promote these positive effects on health. The latest scientific advances in the field of nutri-epigenetics have revealed that epigenetic markers associated with food or nutrients and environmental factors modulate gene expression and, therefore, are involved with both health and disease. Thus, in this review, we evaluated the main aspects that define the Southern European Atlantic diet and the potential epigenetic changes associated with them based on recent studies regarding the main components of these dietary patterns. In conclusion, based on the information existing in the literature, we postulate that the Southern European Atlantic diet could promote healthy aging by means of epigenetic mechanisms. This review highlights the necessity of performing longitudinal studies to demonstrate this proposal.
Collapse
Affiliation(s)
- Paula M Lorenzo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Gemma Rodriguez-Carnero
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Antía Fernández-Pombo
- Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Alba Iglesias
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Marcos C Carreira
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Cristina Tejera
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Diego Bellido
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,Endocrinology and Nutrition Unit, Complejo Hospitalario Universitario de Ferrol (CHUF/SERGAS), Ferrol, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Endocrinology and Nutrition Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain
| | - Rosaura Leis
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Department of Pediatrics, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS); Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | - Felipe F Casanueva
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain,Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain,Fundacion Dieta Atlántica, Santiago de Compostela, Spain
| | | |
Collapse
|
26
|
Noronha NY, Barato M, Sae-Lee C, Pinhel MADS, Watanabe LM, Pereira VAB, Rodrigues GDS, Morais DA, de Sousa WT, Souza VCDO, Plaça JR, Salgado W, Barbosa F, Plösch T, Nonino CB. Novel Zinc-Related Differentially Methylated Regions in Leukocytes of Women With and Without Obesity. Front Nutr 2022; 9:785281. [PMID: 35369101 PMCID: PMC8967318 DOI: 10.3389/fnut.2022.785281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/02/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction Nutriepigenetic markers are predictive responses associated with changes in “surrounding” environmental conditions of humans, which may influence metabolic diseases. Although rich in calories, Western diets could be linked with the deficiency of micronutrients, resulting in the downstream of epigenetic and metabolic effects and consequently in obesity. Zinc (Zn) is an essential nutrient associated with distinct biological roles in human health. Despite the importance of Zn in metabolic processes, little is known about the relationship between Zn and epigenetic. Thus, the present study aimed to identify the epigenetic variables associated with Zn daily ingestion (ZnDI) and serum Zinc (ZnS) levels in women with and without obesity. Materials and Methods This is a case-control, non-randomized, single-center study conducted with 21 women allocated into two groups: control group (CG), composed of 11 women without obesity, and study group (SG), composed of 10 women with obesity. Anthropometric measurements, ZnDI, and ZnS levels were evaluated. Also, leukocyte DNA was extracted for DNA methylation analysis using 450 k Illumina BeadChips. The epigenetic clock was calculated by Horvath method. The chip analysis methylation pipeline (ChAMP) package selected the differentially methylated regions (DMRs). Results The SG had lower ZnS levels than the CG. Moreover, in SG, the ZnS levels were negatively associated with the epigenetic age acceleration. The DMR analysis revealed 37 DMRs associated with ZnDI and ZnS levels. The DMR of PM20D1 gene was commonly associated with ZnDI and ZnS levels and was hypomethylated in the SG. Conclusion Our findings provide new information on Zn's modulation of DNA methylation patterns and bring new perspectives for understanding the nutriepigenetic mechanisms in obesity.
Collapse
Affiliation(s)
- Natália Yumi Noronha
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mariana Barato
- Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Molecular Biology, São José do Rio Preto Medical School, São Paulo, Brazil
| | - Lígia Moriguchi Watanabe
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | | | - Déborah Araújo Morais
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Wellington Tavares de Sousa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Vanessa Cristina de Oliveira Souza
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell-Based Therapy, São Paulo, Brazil
| | - Wilson Salgado
- Department of Surgery and Anatomy, Ribeirao Preto Medical School, SãoPaulo, Brazil
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carla Barbosa Nonino
- Department of Internal Medicine, Ribeirao Preto Medical School, University of São Paulo, São Paulo, Brazil
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
- *Correspondence: Carla Barbosa Nonino
| |
Collapse
|
27
|
Dekker PM, Boeren S, van Goudoever JB, Vervoort JJM, Hettinga KA. Exploring Human Milk Dynamics: Interindividual Variation in Milk Proteome, Peptidome, and Metabolome. J Proteome Res 2022; 21:1002-1016. [PMID: 35104145 PMCID: PMC8981310 DOI: 10.1021/acs.jproteome.1c00879] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Human milk is a dynamic
biofluid, and its detailed composition
receives increasing attention. While most studies focus on changes
over time or differences between maternal characteristics, interindividual
variation receives little attention. Nevertheless, a comprehensive
insight into this can help interpret human milk studies and help human
milk banks provide targeted milk for recipients. This study aimed
to map interindividual variation in the human milk proteome, peptidome,
and metabolome and to investigate possible explanations for this variation.
A set of 286 milk samples was collected from 29 mothers in the third
month postpartum. Samples were pooled per mother, and proteins, peptides,
and metabolites were analyzed. A substantial coefficient of variation
(>100%) was observed for 4.6% and 36.2% of the proteins and peptides,
respectively. In addition, using weighted correlation network analysis
(WGCNA), 5 protein and 11 peptide clusters were obtained, showing
distinct characteristics. With this, several associations were found
between the different data sets and with specific sample characteristics.
This study provides insight into the dynamics of human milk protein,
peptide, and metabolite composition. In addition, it will support
future studies that evaluate the effect size of a parameter of interest
by enabling a comparison with natural variability.
Collapse
Affiliation(s)
- Pieter M Dekker
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.,Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Johannes B van Goudoever
- Department of Pediatrics, Amsterdam UMC Vrije Universiteit Emma Children's Hospital, 1081 Amsterdam, The Netherlands
| | - Jacques J M Vervoort
- Laboratory of Biochemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Kasper A Hettinga
- Food Quality and Design Group, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
28
|
Izquierdo AG, Carreira MC, Boughanem H, Moreno-Navarrete JM, Nicoletti CF, Oliver P, de Luis D, Nonino CB, Portillo MP, Martinez-Olmos MA, Fernandez-Real JM, Tinahones FJ, Martinez JA, Macias-González M, Casanueva FF, Crujeiras AB. Adipose tissue and blood leukocytes ACE2 DNA methylation in obesity and after weight loss. Eur J Clin Invest 2022; 52:e13685. [PMID: 34582564 DOI: 10.1111/eci.13685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Obesity was consistently associated with a poor prognosis in patients with COVID-19. Epigenetic mechanisms were proposed as the link between obesity and comorbidities risk. AIM To evaluate the methylation levels of angiotensin-converting enzyme 2 (ACE2) gene, the main entry receptor of SARS-CoV-2, in different depots of adipose tissue (AT) and leukocytes (PBMCs) in obesity and after weight loss therapy based on a very-low-calorie ketogenic diet (VLCKD), a balanced hypocaloric diet (HCD) or bariatric surgery (BS). MATERIALS AND METHODS DNA methylation levels of ACE2 were extracted from our data sets generated by the hybridization of subcutaneous (SAT) (n = 32) or visceral (VAT; n = 32) adipose tissue, and PBMCs (n = 34) samples in Infinium HumanMethylation450 BeadChips. Data were compared based on the degree of obesity and after 4-6 months of weight loss either by following a nutritional or surgical treatment and correlated with ACE2 transcript levels. RESULTS As compared with normal weight, VAT from patients with obesity showed higher ACE2 methylation levels. These differences were mirrored in PBMCs but not in SAT. The observed obesity-associated methylation of ACE2 was reversed after VLCKD and HCD but not after BS. Among the studied CpG sites, cg16734967 and cg21598868, located at the promoter, were the most affected and correlated with BMI. The observed DNA methylation pattern was inversely correlated with ACE2 expression. CONCLUSION Obesity-related VAT shows hypermethylation and downregulation of the ACE2 gene that is mirrored in PBMCs and is restored after nutritional weight reduction therapy. The results warrant the necessity to further evaluate its implication for COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain.,Endocrine Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Marcos C Carreira
- Endocrine Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Hatim Boughanem
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), Malaga, Spain
| | - Jose M Moreno-Navarrete
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi) and Universitat de Girona, Girona, Spain
| | - Carolina F Nicoletti
- Department of Internal Medicine, Laboratory of Nutrigenomic Studies, Ribeirao Preto Medical School (FMRP) University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Paula Oliver
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Nutrigenomics and Obesity Group, University of the Balearic Islands and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Carla B Nonino
- Department of Internal Medicine, Laboratory of Nutrigenomic Studies, Ribeirao Preto Medical School (FMRP) University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Maria P Portillo
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Nutrition and Obesity Group, Department of Nutrition and Food Science, Lucio Lascaray Research Institute and Bioaraba Health Research Institute, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain.,Endocrine Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| | - Jose M Fernandez-Real
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi) and Universitat de Girona, Girona, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), Malaga, Spain
| | - J Alfredo Martinez
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, Navarra Institute for Health Research, University of Navarra (UNAV) and IdiSNA, Pamplona, Spain.,Nutritional Genomics and Epigenomics Group, IMDEA Food, CEI UAM + CSIC, Madrid, Spain
| | - Manuel Macias-González
- CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, University of Malaga (IBIMA), Malaga, Spain
| | - Felipe F Casanueva
- Endocrine Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain.,Molecular Endocrinology Group, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain.,Endocrine Division, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain.,CIBER Fisiopatologia de la Obesidad y Nutricion (CIBERobn), Madrid, Spain
| |
Collapse
|
29
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
30
|
Alfano R, Robinson O, Handakas E, Nawrot TS, Vineis P, Plusquin M. Perspectives and challenges of epigenetic determinants of childhood obesity: A systematic review. Obes Rev 2022; 23 Suppl 1:e13389. [PMID: 34816569 DOI: 10.1111/obr.13389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022]
Abstract
The tremendous increase in childhood obesity prevalence over the last few decades cannot merely be explained by genetics and evolutionary changes in the genome, implying that gene-environment interactions, such as epigenetic modifications, likely play a major role. This systematic review aims to summarize the evidence of the association between epigenetics and childhood obesity. A literature search was performed via PubMed and Scopus engines using a combination of terms related to epigenetics and pediatric obesity. Articles studying the association between epigenetic mechanisms (including DNA methylation and hydroxymethylation, non-coding RNAs, and chromatin and histones modification) and obesity and/or overweight (or any related anthropometric parameters) in children (0-18 years) were included. The risk of bias was assessed with a modified Newcastle-Ottawa scale for non-randomized studies. One hundred twenty-one studies explored epigenetic changes related to childhood obesity. DNA methylation was the most widely investigated mechanism (N = 101 studies), followed by non-coding RNAs (N = 19 studies) with evidence suggestive of an association with childhood obesity for DNA methylation of specific genes and microRNAs (miRNAs). One study, focusing on histones modification, was identified. Heterogeneity of findings may have hindered more insights into the epigenetic changes related to childhood obesity. Gaps and challenges that future research should face are herein described.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Oliver Robinson
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Evangelos Handakas
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, UK.,Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK.,Unit of Molecular and Genetic Epidemiology, Human Genetic Foundation (HuGeF), Turin, Italy
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
31
|
Li C, Cao M, Zhou X. Role of epigenetics in parturition and preterm birth. Biol Rev Camb Philos Soc 2021; 97:851-873. [PMID: 34939297 DOI: 10.1111/brv.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022]
Abstract
Preterm birth occurs worldwide and is associated with high morbidity, mortality, and economic cost. Although several risk factors associated with parturition and preterm birth have been identified, mechanisms underlying this syndrome remain unclear, thereby limiting the implementation of interventions for prevention and management. Known triggers of preterm birth include conditions related to inflammatory and immunological pathways, as well as genetics and maternal history. Importantly, epigenetics, which is the study of heritable phenotypic changes that occur without alterations in the DNA sequence, may play a role in linking social and environmental risk factors for preterm birth. Epigenetic approaches to the study of preterm birth, including analyses of the effects of microRNAs, long non-coding RNAs, DNA methylation, and histone modification, have contributed to an improved understanding of the molecular bases of both term and preterm birth. Additionally, epigenetic modifications have been linked to factors already associated with preterm birth, including obesity and smoking. The prevention and management of preterm birth remains a challenge worldwide. Although epigenetic analysis provides valuable insights into the causes and risk factors associated with this syndrome, further studies are necessary to determine whether epigenetic approaches can be used routinely for the diagnosis, prevention, and management of preterm birth.
Collapse
Affiliation(s)
- Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Maosheng Cao
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, Jilin, 130062, China
| |
Collapse
|
32
|
Hidalgo BA, Minniefield B, Patki A, Tanner R, Bagheri M, Tiwari HK, Arnett DK, Irvin MR. A 6-CpG validated methylation risk score model for metabolic syndrome: The HyperGEN and GOLDN studies. PLoS One 2021; 16:e0259836. [PMID: 34780523 PMCID: PMC8592434 DOI: 10.1371/journal.pone.0259836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022] Open
Abstract
There has been great interest in genetic risk prediction using risk scores in recent years, however, the utility of scores developed in European populations and later applied to non-European populations has not been successful. The goal of this study was to create a methylation risk score (MRS) for metabolic syndrome (MetS), demonstrating the utility of MRS across race groups using cross-sectional data from the Hypertension Genetic Epidemiology Network (HyperGEN, N = 614 African Americans (AA)) and the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN, N = 995 European Americans (EA)). To demonstrate this, we first selected cytosine-guanine dinucleotides (CpG) sites measured on Illumina Methyl450 arrays previously reported to be significantly associated with MetS and/or component conditions in more than one race/ethnic group (CPT1A cg00574958, PHOSPHO1 cg02650017, ABCG1 cg06500161, SREBF1 cg11024682, SOCS3 cg18181703, TXNIP cg19693031). Second, we calculated the parameter estimates for the 6 CpGs in the HyperGEN data (AA) and used the beta estimates as weights to construct a MRS in HyperGEN (AA), which was validated in GOLDN (EA). We performed association analyses using logistic mixed models to test the association between the MRS and MetS, adjusting for covariates. Results showed the MRS was significantly associated with MetS in both populations. In summary, a MRS for MetS was a strong predictor for the condition across two race groups, suggesting MRS may be useful to examine metabolic disease risk or related complications across race/ethnic groups.
Collapse
Affiliation(s)
- Bertha A. Hidalgo
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Bre Minniefield
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amit Patki
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Rikki Tanner
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Minoo Bagheri
- Center for Precision Medicine, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Hemant K. Tiwari
- Department of Biostatistics, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, United States of America
| | - Marguerite Ryan Irvin
- Department of Epidemiology, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL, United States of America
| |
Collapse
|
33
|
Demerdash HM. Weight regain after bariatric surgery: Promoters and potential predictors. World J Meta-Anal 2021; 9:438-454. [DOI: 10.13105/wjma.v9.i5.438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is globally viewed as chronic relapsing disease. Bariatric surgery offers the most efficient and durable weight loss approach. However, weight regain after surgery is a distressing issue as obesity can revert. Surgical procedures were originally designed to reduce food intake and catalyze weight loss, provided that its role is marginalized in long-term weight maintenance. Consequently, it is essential to establish a scientifically standardized applicable definitions for weight regain, which necessitates enhanced comprehension of the clinical situation, as well as have realistic expectations concerning weight loss. Moreover, several factors are proposed to influence weight regain as psychological, behavioral factors, hormonal, metabolic, anatomical lapses, as well as genetic predisposition. Recently, there is a growing evidence of utilization of scoring system to anticipate excess body weight loss, along with characterizing certain biomarkers that identify subjects at risk of suboptimal weight loss after surgery. Furthermore, personalized counseling is warranted to help select bariatric procedure, reinforce self-monitoring skills, motivate patient, encourage mindful eating practices, to avoid recidivism.
Collapse
Affiliation(s)
- Hala Mourad Demerdash
- Department of Clinical Pathology, Alexandria University Hospitals, Alexandria 21311, Egypt
| |
Collapse
|
34
|
Do WL, Gohar J, McCullough LE, Galaviz KI, Conneely KN, Narayan KMV. Examining the association between adiposity and DNA methylation: A systematic review and meta-analysis. Obes Rev 2021; 22:e13319. [PMID: 34278703 DOI: 10.1111/obr.13319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022]
Abstract
Obesity is associated with widespread differential DNA methylation (DNAm) patterns, though there have been limited overlap in the obesity-associated cytosine-guanine nucleotide pair (CpG) sites that have been identified in the literature. We systematically searched four databases for studies published until January 2020. Eligible studies included cross-sectional, longitudinal, or intervention studies examining adiposity and genome-wide DNAm in non-pregnant adults aged 18-75 in all tissue types. Study design and results were extracted in the descriptive review. Blood-based DNAm results in body mass index (BMI) and waist circumference (WC) were meta-analyzed using weighted sum of Z-score meta-analysis. Of the 10,548 studies identified, 46 studies were included in the systematic review with 18 and nine studies included in the meta-analysis of BMI and WC, respectively. In the blood, 77 and four CpG sites were significant in three or more studies of BMI and WC, respectively. Using a genome-wide threshold for significance, 52 blood-based CpG sites were significantly associated with BMI. These sites have previously been associated with many obesity-related diseases including type 2 diabetes, cardiovascular disease, Crohn's disease, and depression. Our study shows that DNAm at 52 CpG sites represent potential mediators of obesity-associated chronic diseases and may be novel intervention or therapeutic targets to protect against obesity-associated chronic diseases.
Collapse
Affiliation(s)
- Whitney L Do
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Jazib Gohar
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Lauren E McCullough
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Karla I Galaviz
- Department of Applied Health Science, School of Public Health, Indiana University Bloomington, Bloomington, Indiana, USA
| | - Karen N Conneely
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - K M Venkat Narayan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
35
|
Kang H, Zhao D, Xiang H, Li J, Zhao G, Li H. Large-scale transcriptome sequencing in broiler chickens to identify candidate genes for breast muscle weight and intramuscular fat content. Genet Sel Evol 2021; 53:66. [PMID: 34399688 PMCID: PMC8369645 DOI: 10.1186/s12711-021-00656-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/15/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In broiler production, breast muscle weight and intramuscular fat (IMF) content are important economic traits. Understanding the genetic mechanisms that underlie these traits is essential to implement effective genetic improvement programs. To date, genome-wide association studies (GWAS) and gene expression analyses have been performed to identify candidate genes for these traits. However, GWAS mainly detect associations at the DNA level, while differential expression analyses usually have low power because they are typically based on small sample sizes. To detect candidate genes for breast muscle weight and IMF contents (intramuscular fat percentage and relative content of triglycerides, cholesterol, and phospholipids), we performed association analyses based on breast muscle transcriptomic data on approximately 400 Tiannong partridge chickens at slaughter age. RESULTS First, by performing an extensive simulation study, we evaluated the statistical properties of association analyses of gene expression levels and traits based on the linear mixed model (LMM) and three regularized linear regression models, i.e., least absolute shrinkage and selection operator (LASSO), ridge regression (RR), and elastic net (EN). The results show that LMM, LASSO and EN with tuning parameters that are determined based on the one standard error rule exhibited the lowest type I error rates. Using results from all three models, we detected 43 candidate genes with expression levels that were associated with breast muscle weight. In addition, candidate genes were detected for intramuscular fat percentage (1), triglyceride content (2), cholesterol content (1), and phospholipid content (1). Many of the identified genes have been demonstrated to play roles in the development and metabolism of skeletal muscle or adipocyte. Moreover, weighted gene co-expression network analyses revealed that many candidate genes were harbored by gene co-expression modules, which were also significantly correlated with the traits of interest. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these modules are involved in muscle development and contraction, and in lipid metabolism. CONCLUSIONS Our study provides valuable insight into the transcriptomic bases of breast muscle weight and IMF contents in Chinese indigenous yellow broilers. Our findings could be useful for the genetic improvement of these traits in broiler chickens.
Collapse
Affiliation(s)
- Huimin Kang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Di Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China
| | - Guiping Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, People's Republic of China.
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding; Key Laboratory of Animal Molecular Design and Precise Breeding of Guangdong Higher Education Institutes; School of Life Science and Engineering, Foshan University, #33 Guang-yun-lu, Shishan, Nanhai, Foshan, 528231, Guangdong, People's Republic of China. .,Guangdong Tinoo's Foods Group Co., Ltd, Jiangkou, Feilaixia, Qingcheng, Qingyuan, 511827, Guangdong, People's Republic of China.
| |
Collapse
|
36
|
Jhun MA, Mendelson M, Wilson R, Gondalia R, Joehanes R, Salfati E, Zhao X, Braun KVE, Do AN, Hedman ÅK, Zhang T, Carnero-Montoro E, Shen J, Bartz TM, Brody JA, Montasser ME, O'Connell JR, Yao C, Xia R, Boerwinkle E, Grove M, Guan W, Liliane P, Singmann P, Müller-Nurasyid M, Meitinger T, Gieger C, Peters A, Zhao W, Ware EB, Smith JA, Dhana K, van Meurs J, Uitterlinden A, Ikram MA, Ghanbari M, Zhi D, Gustafsson S, Lind L, Li S, Sun D, Spector TD, Chen YDI, Damcott C, Shuldiner AR, Absher DM, Horvath S, Tsao PS, Kardia S, Psaty BM, Sotoodehnia N, Bell JT, Ingelsson E, Chen W, Dehghan A, Arnett DK, Waldenberger M, Hou L, Whitsel EA, Baccarelli A, Levy D, Fornage M, Irvin MR, Assimes TL. A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids. Nat Commun 2021; 12:3987. [PMID: 34183656 PMCID: PMC8238961 DOI: 10.1038/s41467-021-23899-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Here we examine the association between DNA methylation in circulating leukocytes and blood lipids in a multi-ethnic sample of 16,265 subjects. We identify 148, 35, and 4 novel associations among Europeans, African Americans, and Hispanics, respectively, and an additional 186 novel associations through a trans-ethnic meta-analysis. We observe a high concordance in the direction of effects across racial/ethnic groups, a high correlation of effect sizes between high-density lipoprotein and triglycerides, a modest overlap of associations with epigenome-wide association studies of other cardio-metabolic traits, and a largely non-overlap with lipid loci identified to date through genome-wide association studies. Thirty CpGs reached significance in at least 2 racial/ethnic groups including 7 that showed association with the expression of an annotated gene. CpGs annotated to CPT1A showed evidence of being influenced by triglycerides levels. DNA methylation levels of circulating leukocytes show robust and consistent association with blood lipid levels across multiple racial/ethnic groups.
Collapse
Affiliation(s)
- Min-A Jhun
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael Mendelson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA
| | - Rory Wilson
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Rahul Gondalia
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Roby Joehanes
- Hebrew SeniorLife, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Elias Salfati
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoping Zhao
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | - Anh Nguyet Do
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Åsa K Hedman
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tao Zhang
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Elena Carnero-Montoro
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- GENYO, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Jincheng Shen
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Traci M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - May E Montasser
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeff R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chen Yao
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rui Xia
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eric Boerwinkle
- School of Public Health, University of Texas Health Science Center at Houston, Huston, TX, USA
| | - Megan Grove
- School of Public Health, University of Texas Health Science Center at Houston, Huston, TX, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Pfeiffer Liliane
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Paula Singmann
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- IBE, Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Meitinger
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Human Genetics, Technical University Munich, Munich, Germany
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Wei Zhao
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Erin B Ware
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, Ann Arbor, MI, USA
| | - Klodian Dhana
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Joyce van Meurs
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Andre Uitterlinden
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohammad Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Deugi Zhi
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lars Lind
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shengxu Li
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Dianjianyi Sun
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Yii-der Ida Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Coleen Damcott
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan R Shuldiner
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Devin M Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Philip S Tsao
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Sharon Kardia
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine, and Health Services, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Erik Ingelsson
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics and Epidemiology, MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Donna K Arnett
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eric A Whitsel
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Myriam Fornage
- The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- VA Palo Alto Healthcare System, Palo Alto, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Crujeiras AB, Izquierdo AG, Primo D, Milagro FI, Sajoux I, Jácome A, Fernandez-Quintela A, Portillo MP, Martínez JA, Martinez-Olmos MA, de Luis D, Casanueva FF. Epigenetic landscape in blood leukocytes following ketosis and weight loss induced by a very low calorie ketogenic diet (VLCKD) in patients with obesity. Clin Nutr 2021; 40:3959-3972. [PMID: 34139469 DOI: 10.1016/j.clnu.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the potential health benefits of a ketogenic diet are unknown and could be mediated by epigenetic mechanisms. OBJECTIVE To identify the changes in the obesity-related methylome that are mediated by the induced weight loss or are dependent on ketosis in subjects with obesity underwent a very-low calorie ketogenic diet (VLCKD). METHODS Twenty-one patients with obesity (n = 12 women, 47.9 ± 1.02 yr, 33.0 ± 0.2 kg/m2) after 6 months on a VLCKD and 12 normal weight volunteers (n = 6 women, 50.3 ± 6.2 yrs, 22.7 ± 1.5 kg/m2) were studied. Data from the Infinium MethylationEPIC BeadChip methylomes of blood leukocytes were obtained at time points of ketotic phases (basal, maximum ketosis, and out of ketosis) during VLCKD (n = 10) and at baseline in volunteers (n = 12). Results were further validated by pyrosequencing in representative cohort of patients on a VLCKD (n = 18) and correlated with gene expression. RESULTS After weight reduction by VLCKD, differences were found at 988 CpG sites (786 unique genes). The VLCKD altered methylation levels in patients with obesity had high resemblance with those from normal weight volunteers and was concomitant with a downregulation of DNA methyltransferases (DNMT)1, 3a and 3b. Most of the encoded genes were involved in metabolic processes, protein metabolism, and muscle, organ, and skeletal system development. Novel genes representing the top scoring associated events were identified, including ZNF331, FGFRL1 (VLCKD-induced weight loss) and CBFA2T3, C3orf38, JSRP1, and LRFN4 (VLCKD-induced ketosis). Interestingly, ZNF331 and FGFRL1 were validated in an independent cohort and inversely correlated with gene expression. CONCLUSIONS The beneficial effects of VLCKD therapy on obesity involve a methylome more suggestive of normal weight that could be mainly mediated by the VLCKD-induced ketosis rather than weight loss.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain.
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - David Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Ignacio Sajoux
- Medical Department Pronokal Group, PronokalGroup, Barcelona, Spain
| | - Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - Alfredo Fernandez-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| |
Collapse
|
38
|
Salas-Pérez F, Cuevas-Sierra A, Cuervo M, Goni L, Milagro FI, Martínez JA, Riezu-Boj JI. Differentially methylated regions (DMRs) in PON3 gene between responders and non-responders to a weight loss dietary intervention: a new tool for precision management of obesity. Epigenetics 2021; 17:81-92. [PMID: 33427034 DOI: 10.1080/15592294.2021.1873629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Differentially methylated regions (DMR) are genomic regions with different methylation status. The aim of this research was to identify DMRs in subjects with obesity that predict the response to a weight-loss dietary intervention and its association with metabolic variables. Based on the change in body mass index (BMI), 201 subjects with overweight and obesity were categorized in tertiles according to their response to a hypocaloric diet: Responders (R; n = 64) and Non-Responders (NR; n = 63). The R group lost 4.55 ± 0.91 BMI units (kg/m2) and the NR group lost 1.95 ± 0.73 kg/m2 (p < 0.001). DNA methylation was analysed in buffy coat through a methylation array at baseline. DMRs were analysed using a function of ChAMP (Chip Analysis Methylation Pipeline) in R software. Baseline DNA methylation analysis between R and NR exhibited a DMR located at paraoxonase 3 gene (PON3) consisting of 13 CpG sites, eleven of them significantly hypermethylated in R. To analyse the implication of these 11 CpGs on weight loss, a z-score was performed as a measure of DMR methylation. This analysis showed a correlation between PON3 DNA methylation and BMI loss. This z-score negatively correlated with PON3 protein serum levels. Total paraoxonase activity in serum was not different between groups, but PON enzymatic activity positively correlated with oxidized LDL levels. The present study identified a DMR within PON3 gene that is related to PON3 protein levels in serum, and that could be used as a potential biomarker to predict the response to weight-loss dietary interventions.
Collapse
Affiliation(s)
- Francisca Salas-Pérez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Amanda Cuevas-Sierra
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Marta Cuervo
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Leticia Goni
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (Ciberobn), Instituto de Salud Carlos III, Madrid, Spain.,Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
| | - Fermín I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (Ciberobn), Instituto de Salud Carlos III, Madrid, Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (Ciberobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Ignacio Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (Ciberobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
|
40
|
Miles FL, Mashchak A, Filippov V, Orlich MJ, Duerksen-Hughes P, Chen X, Wang C, Siegmund K, Fraser GE. DNA Methylation Profiles of Vegans and Non-Vegetarians in the Adventist Health Study-2 Cohort. Nutrients 2020; 12:E3697. [PMID: 33266012 PMCID: PMC7761449 DOI: 10.3390/nu12123697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
We sought to determine if DNA methylation patterns differed between vegans and non-vegetarians in the Adventist Health Study-2 cohort. Genome-wide DNA methylation derived from buffy coat was profiled in 62 vegans and 142 non-vegetarians. Using linear regression, methylation of CpG sites and genes was categorized or summarized according to various genic/intergenic regions and CpG island-related regions, as well as the promoter. Methylation of genes was measured as the average methylation of available CpG's annotated to the nominated region of the respective gene. A permutation method defining the null distribution adapted from Storey et al. was used to adjust for false discovery. Differences in methylation of several CpG sites and genes were detected at a false discovery rate < 0.05 in region-specific and overall analyses. A vegan diet was associated predominantly with hypomethylation of genes, most notably methyltransferase-like 1 (METTL1). Although a limited number of differentially methylated features were detected in the current study, the false discovery method revealed that a much larger proportion of differentially methylated genes and sites exist, and could be detected with a larger sample size. Our findings suggest modest differences in DNA methylation in vegans and non-vegetarians, with a much greater number of detectable significant differences expected with a larger sample.
Collapse
Affiliation(s)
- Fayth L. Miles
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Preventive Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Andrew Mashchak
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
| | - Valery Filippov
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Michael J. Orlich
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Penelope Duerksen-Hughes
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
| | - Xin Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA; (V.F.); (P.D.-H.); (X.C.); (C.W.)
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Kimberly Siegmund
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA;
| | - Gary E. Fraser
- Adventist Health Study, Loma Linda University, Loma Linda, CA 92350, USA; (F.L.M.); (A.M.); (M.J.O.)
- Center for Nutrition, Healthy Lifestyle, and Disease Prevention, School of Public Health, Loma Linda University, Loma Linda, CA 92350, USA
- Department of Medicine, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
41
|
Płatek T, Polus A, Góralska J, Raźny U, Gruca A, Kieć-Wilk B, Zabielski P, Kapusta M, Słowińska-Solnica K, Solnica B, Malczewska-Malec M, Dembińska-Kieć A. DNA methylation microarrays identify epigenetically regulated lipid related genes in obese patients with hypercholesterolemia. Mol Med 2020; 26:93. [PMID: 33028190 PMCID: PMC7539457 DOI: 10.1186/s10020-020-00220-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epigenetics can contribute to lipid disorders in obesity. The DNA methylation pattern can be the cause or consequence of high blood lipids. The aim of the study was to investigate the DNA methylation profile in peripheral leukocytes associated with elevated LDL-cholesterol level in overweight and obese individuals. METHODS To identify the differentially methylated genes, genome-wide DNA methylation microarray analysis was performed in leukocytes of obese individuals with high LDL-cholesterol (LDL-CH, ≥ 3.4 mmol/L) versus control obese individuals with LDL-CH, < 3.4 mmol/L. Biochemical tests such as serum glucose, total cholesterol, HDL cholesterol, triglycerides, insulin, leptin, adiponectin, FGF19, FGF21, GIP and total plasma fatty acids content have been determined. Oral glucose and lipid tolerance tests were also performed. Human DNA Methylation Microarray (from Agilent Technologies) containing 27,627 probes for CpG islands was used for screening of DNA methylation status in 10 selected samples. Unpaired t-test and Mann-Whitney U-test were used for biochemical and anthropometric parameters statistics. For microarrays analysis, fold of change was calculated comparing hypercholesterolemic vs control group. The q-value threshold was calculated using moderated Student's t-test followed by Benjamini-Hochberg multiple test correction FDR. RESULTS In this preliminary study we identified 190 lipid related CpG loci differentially methylated in hypercholesterolemic versus control individuals. Analysis of DNA methylation profiles revealed several loci engaged in plasma lipoprotein formation and metabolism, cholesterol efflux and reverse transport, triglycerides degradation and fatty acids transport and β-oxidation. Hypermethylation of CpG loci located in promoters of genes regulating cholesterol metabolism: PCSK9, LRP1, ABCG1, ANGPTL4, SREBF1 and NR1H2 in hypercholesterolemic patients has been found. Novel epigenetically regulated CpG sites include ABCG4, ANGPTL4, AP2A2, AP2M1, AP2S1, CLTC, FGF19, FGF1R, HDLBP, LIPA, LMF1, LRP5, LSR, NR1H2 and ZDHHC8 genes. CONCLUSIONS Our results indicate that obese individuals with hypercholesterolemia present specific DNA methylation profile in genes related to lipids transport and metabolism. Detailed knowledge of epigenetic regulation of genes, important for lipid disorders in obesity, underlies the possibility to influence target genes by changing diet and lifestyle, as DNA methylation is reversible and depends on environmental factors. These findings give rise for further studies on factors that targets methylation of revealed genes.
Collapse
Affiliation(s)
- Teresa Płatek
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland.
| | - Anna Polus
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Joanna Góralska
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Urszula Raźny
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Anna Gruca
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Beata Kieć-Wilk
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
- Department of Metabolic Diseases, University Hospital in Krakow, Jakubowskiego 2, 30-688, Kraków, Poland
| | - Piotr Zabielski
- Department of Physiology, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Maria Kapusta
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Krystyna Słowińska-Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Bogdan Solnica
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Małgorzata Malczewska-Malec
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| | - Aldona Dembińska-Kieć
- Department of Clinical Biochemistry, Jagiellonian University Medical College, Kopernika 15a, 31-501, Kraków, Poland
| |
Collapse
|
42
|
Solomon WL, Hector SBE, Raghubeer S, Erasmus RT, Kengne AP, Matsha TE. Genome-Wide DNA Methylation and LncRNA-Associated DNA Methylation in Metformin-Treated and -Untreated Diabetes. EPIGENOMES 2020; 4:epigenomes4030019. [PMID: 34968291 PMCID: PMC8594715 DOI: 10.3390/epigenomes4030019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin, which is used as a first line treatment for type 2 diabetes mellitus (T2DM), has been shown to affect epigenetic patterns. In this study, we investigated the DNA methylation and potential lncRNA modifications in metformin-treated and newly diagnosed adults with T2DM. Genome-wide DNA methylation and lncRNA analysis were performed from the peripheral blood of 12 screen-detected and 12 metformin-treated T2DM individuals followed by gene ontology (GO) and KEGG pathway analysis. Differentially methylated regions (DMRs) observed showed 22 hypermethylated and 11 hypomethylated DMRs between individuals on metformin compared to screen-detected subjects. Amongst the hypomethylated DMR regions were the SLC gene family, specifically, SLC25A35 and SLC28A1. Fifty-seven lncRNA-associated DNA methylation regions included the mitochondrial ATP synthase-coupling factor 6 (ATP5J). Functional gene mapping and pathway analysis identified regions in the axon initial segment (AIS), node of Ranvier, cell periphery, cleavage furrow, cell surface furrow, and stress fiber. In conclusion, our study has identified a number of DMRs and lncRNA-associated DNA methylation regions in metformin-treated T2DM that are potential targets for therapeutic monitoring in patients with diabetes.
Collapse
Affiliation(s)
- Wendy L. Solomon
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Stanton B. E. Hector
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Shanel Raghubeer
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
| | - Rajiv T. Erasmus
- Division of Chemical Pathology, Faculty of Health Sciences, National Health Laboratory Service (NHLS) and University of Stellenbosch, Cape Town 7505, South Africa;
| | - Andre P. Kengne
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Cape Town 7505, South Africa;
- Department of Medicine, University of Cape Town, Cape Town 7700, South Africa
| | - Tandi E. Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Science, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, Cape Town 7530, South Africa; (W.L.S.); (S.B.E.H.); (S.R.)
- Correspondence: ; Tel.: +27-21-959-6366; Fax: +27-21-959-6760
| |
Collapse
|
43
|
Liu Y, Shen Y, Guo T, Parnell LD, Westerman KE, Smith CE, Ordovas JM, Lai CQ. Statin Use Associates With Risk of Type 2 Diabetes via Epigenetic Patterns at ABCG1. Front Genet 2020; 11:622. [PMID: 32612641 PMCID: PMC7308584 DOI: 10.3389/fgene.2020.00622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Statin is the medication most widely prescribed to reduce plasma cholesterol levels. Yet, how the medication contributes to diabetes risk and impaired glucose metabolism is not clear. This study aims to examine the epigenetic mechanisms of ABCG1 through which statin use associates with risk of type 2 diabetes. We determined the association between the statin use, DNA methylation at ABCG1 and type 2 diabetes/glycemic traits in the Framingham Heart Study Offspring (FHS, n = 2741), with validation in the Women’s Health Initiative Study (WHI, n = 2020). The causal effect of statin use on the risk of type 2 diabetes was examined using a two-step Mendelian randomization approach. Next, based on transcriptome analysis, we determined the links between the medication-associated epigenetic status of ABCG1 and biological pathways on the pathogenesis of type 2 diabetes. Our results showed that DNA methylation levels at cg06500161 of ABCG1 were positively associated with the use of statin, type 2 diabetes and related traits (fasting glucose and insulin) in FHS and WHI. Two-step Mendelian randomization suggested a causal effect of statin use on type 2 diabetes and related traits through epigenetic mechanisms, specifically, DNA methylation at cg06500161. Our results highlighted that gene expression of ABCG1, ABCA1 and ACSL3, involved in both cholesterol metabolism and glycemic pathways, was inversely associated with statin use, CpG methylation, and diabetic signatures. We concluded that DNA methylation site cg06500161 at ABCG1 is a mediator of the association between statins and risk of type 2 diabetes.
Collapse
Affiliation(s)
- Yuwei Liu
- School of Public Health, Fudan University, Shanghai, China.,Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Yu Shen
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Tao Guo
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Laurence D Parnell
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Kenneth E Westerman
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Chao-Qiang Lai
- USDA Agricultural Research Service, Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States
| |
Collapse
|
44
|
Parrillo L, Spinelli R, Longo M, Desiderio A, Mirra P, Nigro C, Fiory F, Hedjazifar S, Mutarelli M, Carissimo A, Formisano P, Miele C, Smith U, Raciti GA, Beguinot F. Altered PTPRD DNA methylation associates with restricted adipogenesis in healthy first-degree relatives of Type 2 diabetes subjects. Epigenomics 2020; 12:873-888. [PMID: 32483983 DOI: 10.2217/epi-2019-0267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: First-degree relatives (FDR) of individuals with Type 2 diabetes (T2D) feature restricted adipogenesis, which render them more vulnerable to T2D. Epigenetics may contribute to these abnormalities. Methods: FDR pre-adipocyte Methylome and Transcriptome were investigated by MeDIP- and RNA-Seq, respectively. Results: Methylome analysis revealed 2841 differentially methylated regions (DMR) in FDR. Most DMR localized into gene-body and were hypomethylated. The strongest hypomethylation signal was identified in an intronic-DMR at the PTPRD gene. PTPRD hypomethylation in FDR was confirmed by bisulphite sequencing and was responsible for its upregulation. Interestingly, Ptprd-overexpression in 3T3-L1 pre-adipocytes inhibited adipogenesis. Notably, the validated PTPRD-associated DMR was significantly hypomethylated in peripheral blood leukocytes from the same FDR individuals. Finally, PTPRD methylation pattern was also replicated in obese individuals. Conclusion: Our findings indicated a previously unrecognized role of PTPRD in restraining adipogenesis. This abnormality may contribute to increase FDR proclivity toward T2D.
Collapse
Affiliation(s)
- Luca Parrillo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Rosa Spinelli
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Michele Longo
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Antonella Desiderio
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Paola Mirra
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Cecilia Nigro
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Francesca Fiory
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Shahram Hedjazifar
- Lundberg Laboratory for Diabetes Research, Department of Molecular & Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | | | | | - Pietro Formisano
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Claudia Miele
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular & Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 41345, Sweden
| | - Gregory Alexander Raciti
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| | - Francesco Beguinot
- URT Genomics of Diabetes-IEOS, CNR & Department of Translational Medicine - Federico II University of Naples, 80131, Italy
| |
Collapse
|
45
|
Nicoletti CF, Cortes-Oliveira C, Noronha NY, Pinhel MAS, Dantas WS, Jácome A, Marchini JS, Gualano B, Crujeiras AB, Nonino CB. DNA methylation pattern changes following a short-term hypocaloric diet in women with obesity. Eur J Clin Nutr 2020; 74:1345-1353. [PMID: 32404903 DOI: 10.1038/s41430-020-0660-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/20/2020] [Accepted: 05/01/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND/OBJECTIVES We aimed to investigate the effects of short-term hypocaloric diet-induced weight loss on DNA methylation profile in leukocytes from women with severe obesity. METHODS Eleven women with morbid obesity (age: 36.9 ± 10.3 years; BMI: 58.5 ± 10.5 kg/m2) were assessed before and after 6 weeks of a hypocaloric dietary intervention. The participants were compared with women of average weight and the same age (age: 36.9 ± 11.8 years; BMI: 22.5 ± 1.6 kg/m2). Genome-wide DNA methylation analysis was performed in DNA extracted from peripheral blood leukocytes using the Infinium Human Methylation 450 BeadChip assay. Changes (Δβ) in the methylation level of each CpGs were calculated. A threshold with a minimum value of 10%, p < 0.001, for the significant CpG sites based on Δβ and a false discovery rate of <0.05 was set. RESULTS Dietary intervention changed the methylation levels at 16,064 CpG sites. These CpGs sites were related to cancer, cell cycle-related, MAPK, Rap1, and Ras signaling pathways. However, regardless of hypocaloric intervention, a group of 878 CpGs (related to 649 genes) remained significantly altered in obese women when compared with normal-weight women. Pathway enrichment analysis identified genes related to the cadherin and Wnt pathway, angiogenesis signaling, and p53 pathways by glucose deprivation. CONCLUSION A short-term hypocaloric intervention in patients with severe obesity partially restored the obesity-related DNA methylation pattern. Thus, the full change of obesity-related DNA methylation patterns could be proportional to the weight-loss rate in these patients after dietary interventions.
Collapse
Affiliation(s)
- C F Nicoletti
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - C Cortes-Oliveira
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - N Y Noronha
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - M A S Pinhel
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.,Laboratory of Studies in Biochemistry and Molecular Biology, Department of Molecular Biology, São José do Rio Preto Medical School, Sao Paulo, Brazil
| | - W S Dantas
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A Jácome
- Department of Mathematics, MODES group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - J S Marchini
- Department of Internal Medicine, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - B Gualano
- Applied Physiology & Nutrition Research Group, School of Physical Educaton and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - A B Crujeiras
- Epigenomics in Endocrinology and Nutrition, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS), Santiago de Compostela University (USC), Santiago de Compostela, Spain. .,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Madrid, Spain.
| | - C B Nonino
- Laboratory of Nutrigenomics Studies, Department of Health Science, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
46
|
Altered pathways in methylome and transcriptome longitudinal analysis of normal weight and bariatric surgery women. Sci Rep 2020; 10:6515. [PMID: 32296077 PMCID: PMC7160100 DOI: 10.1038/s41598-020-60814-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
DNA methylation could provide a link between environmental, genetic factors and weight control and can modify gene expression pattern. This study aimed to identify genes, which are differentially expressed and methylated depending on adiposity state by evaluating normal weight women and obese women before and after bariatric surgery (BS). We enrolled 24 normal weight (BMI: 22.5 ± 1.6 kg/m2) and 24 obese women (BMI: 43.3 ± 5.7 kg/m2) submitted to BS. Genome-wide methylation analysis was conducted using Infinium Human Methylation 450 BeadChip (threshold for significant CpG sites based on delta methylation level with a minimum value of 5%, a false discovery rate correction (FDR) of q < 0.05 was applied). Expression levels were measured using HumanHT-12v4 Expression BeadChip (cutoff of p ≤ 0.05 and fold change ≥2.0 was used to detect differentially expressed probes). The integrative analysis of both array data identified four genes (i.e. TPP2, PSMG6, ARL6IP1 and FAM49B) with higher methylation and lower expression level in pre-surgery women compared to normal weight women: and two genes (i.e. ZFP36L1 and USP32) that were differentially methylated after BS. These methylation changes were in promoter region and gene body. All genes are related to MAPK cascade, NIK/NF-kappaB signaling, cellular response to insulin stimulus, proteolysis and others. Integrating analysis of DNA methylation and gene expression evidenced that there is a set of genes relevant to obesity that changed after BS. A gene ontology analysis showed that these genes were enriched in biological functions related to adipogenesis, orexigenic, oxidative stress and insulin metabolism pathways. Also, our results suggest that although methylation plays a role in gene silencing, the majority of effects were not correlated.
Collapse
|
47
|
Serena C, Millan M, Ejarque M, Saera-Vila A, Maymó-Masip E, Núñez-Roa C, Monfort-Ferré D, Terrón-Puig M, Bautista M, Menacho M, Martí M, Espin E, Vendrell J, Fernández-Veledo S. Adipose stem cells from patients with Crohn's disease show a distinctive DNA methylation pattern. Clin Epigenetics 2020; 12:53. [PMID: 32252817 PMCID: PMC7137346 DOI: 10.1186/s13148-020-00843-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Crohn’s disease (CD) is characterized by persistent inflammation and ulceration of the small or large bowel, and expansion of mesenteric adipose tissue, termed creeping fat (CF). We previously demonstrated that human adipose-derived stem cells (hASCs) from CF of patients with CD exhibit dysfunctional phenotypes, including a pro-inflammatory profile, high phagocytic capacity, and weak immunosuppressive properties. Importantly, these phenotypes persist in patients in remission and are found in all adipose depots explored including subcutaneous fat. We hypothesized that changes in hASCs are a consequence of epigenetic modifications. Methods We applied epigenome-wide profiling with a methylation array (Illumina EPIC/850k array) and gene expression analysis to explore the impact of CD on the methylation signature of hASCs isolated from the subcutaneous fat of patients with CD and healthy controls (n = 7 and 5, respectively; cohort I). Differentially methylated positions (p value cutoff < 1 × 10−4 and ten or more DMPs per gene) and regions (inclusion threshold 0.2, p value cutoff < 1 × 10−2 and more than 2 DMRs per gene) were identified using dmpfinder and Bumphunter (minfi), respectively. Changes in the expression of differentially methylated genes in hASCs were validated in a second cohort (n = 10/10 inactive and active CD and 10 controls; including patients from cohort I) and also in peripheral blood mononuclear cells (PBMCs) of patients with active/inactive CD and of healthy controls (cohort III; n = 30 independent subjects). Results We found a distinct DNA methylation landscape in hASCs from patients with CD, leading to changes in the expression of differentially methylated genes involved in immune response, metabolic, cell differentiation, and development processes. Notably, the expression of several of these genes in hASCs and PBMCs such as tumor necrosis factor alpha (TNFA) and PR domain zinc finger protein 16 (PRDM16) were not restored to normal (healthy) levels after disease remission. Conclusions hASCs of patients with CD exhibit a unique DNA methylation and gene expression profile, but the expression of several genes are only partially restored in patients with inactive CD, both in hASCs and PBMCs. Understanding how CD shapes the functionality of hASCs is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies. Graphical abstract Human adipose-stem cells isolated from subcutaneous fat of patients with Crohn’s disease exhibit an altered DNA methylation pattern and gene expression profile compared with those isolated from healthy individuals, with immune system, cell differentiation, metabolic and development processes identified as the main pathways affected. Interestingly, the gene expression of several genes involved in these pathways is only partially restored to control levels in patients with inactive Crohn’s disease, both in human adipose-stem cells and peripheral blood mononuclear cells. Understanding how Crohn’s disease shapes the functionality of human adipose-stem cells is critical for investigating the complex pathophysiology of this disease, as well as for the success of cell-based therapies.
![]()
Collapse
Affiliation(s)
- Carolina Serena
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain
| | - Monica Millan
- Colorectal Surgery Unit, Hospital Universitari Joan XXIII, 43007, Tarragona, Spain.,Colorectal Surgery Unit, Hospital Universitari La Fe, Valencia, Spain
| | - Miriam Ejarque
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain
| | - Alfonso Saera-Vila
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Elsa Maymó-Masip
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain
| | - Catalina Núñez-Roa
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain
| | - Diandra Monfort-Ferré
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain
| | - Margarida Terrón-Puig
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain
| | - Michelle Bautista
- Digestive Unit, Hospital Universitari Joan XXIII, 43007, Tarragona, Spain
| | - Margarita Menacho
- Digestive Unit, Hospital Universitari Joan XXIII, 43007, Tarragona, Spain
| | - Marc Martí
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Eloy Espin
- Colorectal Surgery Unit, General Surgery Service, Hospital Valle de Hebron, Universitat Autonoma de Barcelona, 08035, Barcelona, Spain
| | - Joan Vendrell
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain. .,Universitat Rovira i Virgili, Tarragona, Spain.
| | - Sonia Fernández-Veledo
- Institut d´Investigació Sanitària Pere Virgili, Hospital Universitari Joan XXIII, Dr Mallafré Guasch, 4, 43007, Tarragona, Spain. .,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28014, Madrid, Spain.
| |
Collapse
|
48
|
Zhang E, Hou X, Hou B, Zhang M, Song Y. A risk prediction model of DNA methylation improves prognosis evaluation and indicates gene targets in prostate cancer. Epigenomics 2020; 12:333-352. [PMID: 32027524 DOI: 10.2217/epi-2019-0349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Prostate cancer (PCa) is the most common malignancy found in males worldwide. Although it is mostly indolent, PCa still poses a serious threat to long-term health. Materials & methods: The Cancer Genome Atlas data were randomly divided into training and validation groups. Least absolute shrinkage and selection operator regression on DNA methylation data in the training group was conducted to build the model, which was validated in the validation group. Weighted correlation network analysis was conducted on RNA-seq data to identify the therapy target. Functional validation (western blot, quantitative real-time PCR, cell transfection, Cell Counting Kit-8 assay, colony formation assay, wound healing assay and transwell invasion assay) for the target was conducted. Results: The model is an independent predictor of prognosis. The knockdown of FOXD1 inhibits cell proliferation, migration and invasion of PCa. Conclusion: The risk of patients could be evaluated by the model, which revealed that FOXD1 might promote poor prognosis.
Collapse
Affiliation(s)
- Enchong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.,School of Postgraduate, China Medical University, Shenyang 110122, Liaoning, People's Republic of China
| | - Xueying Hou
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, People's Republic of China.,School of Postgraduate, China Medical University, Shenyang 110122, Liaoning, People's Republic of China
| | - Baoxian Hou
- Department of Orthopedic Surgery, Shenyang Orthopaedics Hospital, Shenyang 110044, Liaoning, People's Republic of China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yongsheng Song
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| |
Collapse
|
49
|
Nicoletti CF, Pinhel MS, Noronha NY, Jácome A, Crujeiras AB, Nonino CB. Association of MFSD3 promoter methylation level and weight regain after gastric bypass: Assessment for 3 y after surgery. Nutrition 2020; 70:110499. [DOI: 10.1016/j.nut.2019.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/07/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
|
50
|
Liang F, Quan Y, Wu A, Chen Y, Xu R, Zhu Y, Xiong J. Insulin-resistance and depression cohort data mining to identify nutraceutical related DNA methylation biomarker for type 2 diabetes. Genes Dis 2020; 8:669-676. [PMID: 34291138 PMCID: PMC8278533 DOI: 10.1016/j.gendis.2020.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/29/2022] Open
Abstract
Insulin-resistance (IR) is one of the most important precursors of type 2 diabetes (T2D). Recent evidence suggests an association of depression with the onset of T2D. Accumulating evidence shows that depression and T2D share common biological origins, and DNA methylation examination might reveal the link between lifestyle, disease risk, and potential therapeutic targets for T2D. Here we hypothesize that integrative mining of IR and depression cohort data will facilitate predictive biomarkers identification for T2D. We utilized a newly proposed method to extract gene-level information from probe level data on genome-wide DNA methylation array. We identified a set of genes associated with IR and depression in clinical cohorts. By overlapping the IR-related nutraceutical-gene network with depression networks, we identified a common subnetwork centered with Vitamin D Receptor (VDR) gene. Preliminary clinical validation of gene methylation set in a small cohort of T2D patients and controls was established using the Sequenome matrix-assisted laser desorption ionization-time flight mass spectrometry. A set of sites in the promoter regions of VDR showed a significant difference between T2D patients and controls. Using a logistic regression model, the optimal prediction performance of these sites was AUC = 0.902,and an odds ratio = 19.76. Thus, monitoring the methylation status of specific VDR promoter region might help stratify the high-risk individuals who could potentially benefit from vitamin D dietary supplementation. Our results highlight the link between IR and depression, and the DNA methylation analysis might facilitate the search for their shared mechanisms in the etiology of T2D.
Collapse
Affiliation(s)
- Fengji Liang
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, PR China
| | - Yuan Quan
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China.,School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong Province, 518055, PR China
| | - Andong Wu
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China
| | - Ying Chen
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China
| | - Ruifeng Xu
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong Province, 518055, PR China
| | - Yuexing Zhu
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China
| | - Jianghui Xiong
- Lab of Epigenetics and Advanced Health Technology, SPACEnter Space Science and Technology Institute, Shenzhen, Guangdong Province, 518117, PR China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, PR China
| |
Collapse
|