1
|
Varna D, Geromichalos G, Gioftsidou DK, Tzimopoulos D, Hatzidimitriou AG, Dalezis P, Papi R, Trafalis D, Angaridis PA. N-heterocyclic-carbene vs diphosphine auxiliary ligands in thioamidato Cu(I) and Ag(I) complexes towards the development of potent and dual-activity antibacterial and apoptosis-inducing anticancer agents. J Inorg Biochem 2024; 252:112472. [PMID: 38215535 DOI: 10.1016/j.jinorgbio.2023.112472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Group 11 metal complexes exhibit promising antibacterial and anticancer properties which can be further enhanced by appropriate ligands. Herein, a series of mononuclear thioamidato Cu(I) and Ag(I) complexes bearing either a diphosphine (P^P) or a N-heterocyclic carbene (NHC) auxiliary ligand (L) was synthesized, and the impact of the co-ligand L on the in vitro antibacterial and anticancer properties of their complexes was assessed. All complexes effectively inhibited the growth of various bacterial strains, with the NHC-Cu(I) complex found to be particularly effective against the Gram (+) bacteria (IC50 = 1-4 μg mL-1). Cytotoxicity studies against various human cancer cells revealed their high anticancer potency and the superior activity of the NHC-Ag(I) complex (IC50 = 0.95-4.5 μΜ). Flow cytometric analysis on lung and breast cancer cells treated with the NHC-Ag(I) complex suggested an apoptotic cell-death pathway; molecular docking calculations provided mechanistic insights, proving the capacity of the complex to bind on apoptosis-regulating proteins and affect their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Geromichalos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra K Gioftsidou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demetrios Tzimopoulos
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
2
|
Bensalah D, Gurbuz N, Özdemir I, Gatri R, Mansour L, Hamdi N. Synthesis, Characterization, Antimicrobial Properties, and Antioxidant Activities of Silver-N-Heterocyclic Carbene Complexes. Bioinorg Chem Appl 2023; 2023:3066299. [PMID: 37274082 PMCID: PMC10238139 DOI: 10.1155/2023/3066299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 04/20/2023] [Indexed: 06/06/2023] Open
Abstract
The emergence of antimicrobial resistance has become a major handicap in the fight against bacterial infections, prompting researchers to develop new, more effective, and multimodal alternatives. Silver and its complexes have long been used as antimicrobial agents in medicine because of their lack of resistance to silver, their low potency at low concentrations, and their low toxicity compared to most commonly used antibiotics. N-Heterocyclic carbenes (NHCs) are widely used for coordination of transition metals, mainly in catalytic chemistry. In this study, several N-alkylated benzimidazolium salts 2a-j were synthesized. Then, the N-heterocyclic carbene (NHC) precursor was treated with Ag2O to give silver (I) NHC complexes (3a-j) at room temperature in dichloromethane for 48 h. Ten new silver-NHC complexes were fully characterized by nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), elemental analysis, and LC-MSMS (for complexes) techniques. The antibacterial and antioxidant activities of salt 2 and its silver complex 3 were evaluated. All of these complexes were more effective against bacterial strains than comparable ligands. With MIC values ranging from 6.25 to 100 g/ml, the Ag-NHC complex effectively showed strong antibacterial activity. Antioxidant activity was also tested using conventional techniques, such as 2, 2-diphenyl-1-picrylhydrazine (DPPH) and hydrogen peroxide scavenging assays. In DPPH and ABTS experiments, compounds 3a, 3b, 3c, 3e, 3g, and 3i showed significant clearance.
Collapse
Affiliation(s)
- Donia Bensalah
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia
| | - Nevin Gurbuz
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya 44280, Turkey
| | - Ismail Özdemir
- İnönü University, Faculty of Science and Art, Department of Chemistry, Malatya 44280, Turkey
- İnönü University, Catalysis Research and Application Center, Malatya 44280, Turkey
| | - Rafik Gatri
- Laboratory of Selective and Heterocyclic Organic Synthesis Biological Evaluation (LR17ES01), Faculty of Sciences of Tunis, University of Tunis El Manar Campus, Tunis 1092, Tunisia
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naceur Hamdi
- Department of Chemistry, College of Science and Arts at Arras, Qassim University, P.O. Box 53, Arras 51921, Saudi Arabia
| |
Collapse
|
3
|
Deshmukh R. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. J Mol Graph Model 2023; 122:108497. [PMID: 37149980 DOI: 10.1016/j.jmgm.2023.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
Malaria is a life-threatening parasitic disease that affects millions of people worldwide, especially in developing countries. Despite advances in conventional therapies, drug resistance in malaria parasites has become a significant concern. Hence, there is a need for a new therapeutic approach. To combat the disease effectively means eliminating vectors and discovering potent treatments. The nanotechnology research efforts in nanomedicine show promise by exploring the potential use of nanomaterials that can surmount these limitations occurring with antimalarial drugs, which include multidrug resistance or lack of specificity when targeting parasites directly. Utilizing nanomaterials would possess unique advantages over conventional chemotherapy systems by increasing the efficacy levels while reducing side effects significantly by delivering medications precisely within the diseased area. It also provides cheap yet safe measures against Malaria infections worldwide-ultimately improving treatment efficiency holistically without reinventing new methods therapeutically. This review is an effort to provide an overview of the various stages of malaria parasites, pathogenesis, and conventional therapies, as well as the treatment gap existing with available formulations. It explores different types of nanocarriers, such as liposomes, ethosomal cataplasm, solid lipid nanoparticles, nanostructured lipid carriers, polymeric nanocarriers, and metallic nanoparticles, which are frequently employed to boost the efficiency of antimalarial drugs to overcome the challenges and develop effective and safe therapies. The study also highlights the improved pharmacokinetics, enhanced drug bioavailability, and reduced toxicity associated with nanocarriers, making them a promising therapeutic approach for treating malaria.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| |
Collapse
|
4
|
Sharma B, Shukla S, Rattan R, Fatima M, Goel M, Bhat M, Dutta S, Ranjan RK, Sharma M. Antimicrobial Agents Based on Metal Complexes: Present Situation and Future Prospects. Int J Biomater 2022; 2022:6819080. [PMID: 36531969 PMCID: PMC9754840 DOI: 10.1155/2022/6819080] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/27/2023] Open
Abstract
The rise in antimicrobial resistance is a cause of serious concern since the ages. Therefore, a dire need to explore new antimicrobial entities that can combat against the increasing threat of antibiotic resistance is realized. Studies have shown that the activity of the strongest antibiotics has reduced drastically against many microbes such as microfungi and bacteria (Gram-positive and Gram-negative). A ray of hope, however, was witnessed in early 1940s with the development of new drug discovery and use of metal complexes as antibiotics. Many new metal-based drugs were developed from the metal complexes which are potentially active against a number of ailments such as cancer, malaria, and neurodegenerative diseases. Therefore, this review is an attempt to describe the present scenario and future development of metal complexes as antibiotics against wide array of microbes.
Collapse
Affiliation(s)
- Bharti Sharma
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Sudeep Shukla
- Environment Pollution Analysis Lab, Bhiwadi, Alwar, Rajasthan 301019, India
| | - Rohit Rattan
- WWF-India Field Office, ITI Road, Rajouri, Jammu and Kashmir 185132, India
| | - Musarrat Fatima
- Department of Botany, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Mayurika Goel
- TERI Deakin Nanobiotechnology Centre, Sustainable Agriculture Program, The Energy and Resource Institute, Gurugram, Haryana, India
| | - Mamta Bhat
- School of Biosciences and Biotechnology, BGSB University, Rajouri, Jammu and Kashmir 185234, India
| | - Shruti Dutta
- Amity School of Earth and Environmental Sciences, Amity University Haryana, Haryana, India
| | | | - Mamta Sharma
- Aditi Mahavidyalaya, University of Delhi, New Delhi, India
| |
Collapse
|
5
|
Nadeem RY, Yaqoob M, Yam W, Haque RA, Iqbal MA. Synthesis, characterization and biological evaluation of Bis-benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
7
|
Varna D, Christodoulou E, Gounari E, Apostolidou CP, Landrou G, Papi R, Koliakos G, Coutsolelos AG, Bikiaris DN, Angaridis PA. Pegylated-polycaprolactone nano-sized drug delivery platforms loaded with biocompatible silver(i) complexes for anticancer therapeutics. RSC Med Chem 2022; 13:857-872. [PMID: 35923721 PMCID: PMC9298185 DOI: 10.1039/d2md00046f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 09/02/2024] Open
Abstract
Cytotoxic potential of Ag(i) coordination compounds against cancer cells is widely recognized, but their frequently low water solubility and potential adverse interactions of Ag(i) ions in biological media require their incorporation into suitable platforms to ensure effective transport and delivery at target sites. Herein, we developed and evaluated the in vitro cytotoxic activity of a biodegradable copolymer-based nano-sized drug delivery system for three cytotoxically active and lipophillic Ag(i) compounds. In particular, polymer-based nanoparticles of the newly synthesized amphiphilic methoxy-poly(ethylene glycol)-poly(caprolactone) (mPEG-PCL) copolymer were prepared as carriers for [Ag(dmp2SH)(PPh3)2]NO3 (1), [Ag(dmp2SH)(xantphos)]NO3 (2) and [Ag(dmp2S)(xantphos)] (3) (dmP2SH = 4,6-dimethylpyrimidine-2-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene) which exhibit high cytotoxicity against HeLa cancer cells, while they maintain low toxicity against HDFa normal cells. Taking advantage of the favorable donor-acceptor Lewis acid-base and electrostatic interactions between functional groups of 1-3 and mPEG-PCL copolymer, the formation of [X]@mPEG-PCL (X = 1,2,3) nanoparticles with nearly spherical shape was achieved. Satisfactory loading capacities and encapsulation efficiencies were obtained (13-15% and 80-88%, respectively). Differences in their mean size diameters were observed, revealing a dependence on the individual structural characteristics of the Ag(i) compounds. In vitro release profiles of the nanoparticles showed an initial burst stage, followed by a prolonged release stage extending over 15 days, with their release rates being determined by the mean size of the nanoparticles, as well as the type and crystallinity of the encapsulated Ag(i) compounds. In vitro cytotoxicity studies revealed an increased cytotoxic activity of compounds 1-3 after their encapsulation in mPEG-PCL copolymer against HeLa cells, with the actual concentrations of the loaded compounds responsible for the inhibition of cell viability being reduced by 8 times compared to the compounds in free form. Therefore, the current drug delivery system improves the pharmacokinetic properties of the three cytotoxic and biocompatible Ag(i) compounds, and may be beneficial for future in vivo anticancer treatment.
Collapse
Affiliation(s)
- Despoina Varna
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Evi Christodoulou
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Eleni Gounari
- Biohellenika Biotechnology Company Leoforos Georgikis Scholis 65 57001 Thessaloniki Greece
| | - Chrysanthi Pinelopi Apostolidou
- Department of Materials Science and Technology and Institute of Electronic Structure and Laser (I.E.S.L.), Foundation for Research and Technology - Hellas (FO.R.T.H.), University of Crete Vassilika Vouton 70013 Heraklion Greece
| | - Georgios Landrou
- Department of Chemistry, Voutes Campus, University of Crete 70013 Heraklion Greece
| | - Rigini Papi
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - George Koliakos
- Biohellenika Biotechnology Company Leoforos Georgikis Scholis 65 57001 Thessaloniki Greece
| | | | - Dimitrios N Bikiaris
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| | - Panagiotis A Angaridis
- Aristotle University of Thessaloniki, Department of Chemistry, University Campus 54124 Thessaloniki Greece
| |
Collapse
|
8
|
Varna D, Geromichalou E, Hatzidimitriou AG, Papi R, Psomas G, Dalezis P, Aslanidis P, Choli-Papadopoulou T, Trafalis DT, Angaridis PA. Silver(I) complexes bearing heterocyclic thioamide ligands with NH 2 and CF 3 substituents: effect of ligand group substitution on antibacterial and anticancer properties. Dalton Trans 2022; 51:9412-9431. [PMID: 35674362 DOI: 10.1039/d2dt00793b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been an increasing interest in the study of Ag(I) coordination compounds as potent antibacterial and anticancer agents. Herein, a series of Ag(I) complexes bearing phosphines and heterocyclic thioamide ligands with highly electronegative NH2- and CF3-group substituents, i.e. [AgCl(atdztH)(xantphos)] (1), [Ag(μ-atdztH)(DPEphos)]2(NO3)2 (2), [Ag(atdzt)(PPh3)3] (3), [Ag(μ-atdzt)(DPEphos)]2 (4), and [Ag(μ-mtft)(DPEphos)]2 (5), where atdztH = 5-amino-1,3,4-thiadiazole-2-thiol, mtftH = 4-methyl-5-(trifluoromethyl)-1,2,4-triazol-3-thiol, xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, and DPEphos = bis(2-diphenylphosphino-phenyl)ether, were synthesized, and their in vitro antibacterial and anticancer properties were evaluated. Complexes 1-4 bearing the NH2-substituted thioamide exhibited moderate-to-high activity against S. aureus, B. subtilis, B. cereus and E. coli bacterial strains. A high antiproliferative activity was also observed for 1-3 against SKOV-3, Hup-T3, DMS114 and PC3 cancer cell lines (IC50 = 4.0-11.7 μM), as well as some degree of selectivity against MRC-5 normal cells. Interestingly, 5 bearing the CF3-substituted thioamide is completely inactive in all bioactivity studies. Binding of 1-3 to drug-carrier proteins BSA and HSA is reasonably strong for their uptake and subsequent release to possible target sites. The three complexes show a significant in vitro antioxidant ability for scavenging free radicals, suggesting likely implication of this property in the mechanism of their bioactivity, but a low potential to destroy the double-strand structure of CT-DNA by intercalation. Complementary insights into possible bioactivity mechanisms were provided by molecular docking calculations, exploring the ability of complexes to bind to bacterial DNA gyrase, and to the overexpressed in the aforementioned cancer cells Fibroblast Growth Factor Receptor 1, affecting their functionalities.
Collapse
Affiliation(s)
- Despoina Varna
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Panagiotis Dalezis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Paraskevas Aslanidis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Theodora Choli-Papadopoulou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece.
| | - Panagiotis A Angaridis
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
9
|
A low cost yet highly sensitive silver nanoprobe for naked eye detection and determination of bisulphate (HSO4-) in a few real samples. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Türker D, Üstün E, Günal S, Yıldız H, D Düşünceli S, Özdemir İ. Cyanopropyl functionalized benzimidazolium salts and their silver N-heterocyclic carbene complexes: Synthesis, antimicrobial activity, and theoretical analysis. Arch Pharm (Weinheim) 2022; 355:e2200041. [PMID: 35352839 DOI: 10.1002/ardp.202200041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
The reaction of N-substituted benzimidazole with 4-bromobutyronitrile gives the corresponding benzimidazolium salts as N-heterocyclic carbene (NHC) precursors. Silver(I) carbene complexes are synthesized by the reaction of the corresponding benzimidazolium salts with Ag2 O in dichloromethane. These new NHC precursors and Ag-NHC complexes were characterized by spectroscopy techniques and also screened for their antibacterial activities against the standard bacterial strains Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Enterococcus faecalis, and the standard fungal strains Candida albicans and Candida glabrata, and promising results were achieved. The compounds were also analyzed by density functional theory (DFT)/time-dependent DFT and docking methods.
Collapse
Affiliation(s)
- Dilek Türker
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Elvan Üstün
- Inorganic Chemistry, Department of Chemistry, Faculty of Science and Art, Ordu University, Ordu, Turkey
| | - Selami Günal
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Hatice Yıldız
- Pharmaceutical Chemistry, Department of Microbiology, Faculty of Medicine, İnonu University, Malatya, Turkey
| | - Serpil D Düşünceli
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| | - İsmail Özdemir
- Inorganic Chemistry, Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Inorganic Chemistry, Department of Chemistry, Faculty of Science and Arts, İnönü University, Malatya, Turkey.,Drug Application and Research Center, İnönü University, Malatya, Turkey
| |
Collapse
|
11
|
Narayana BK, Keri RS, Hanumantharayudu ND, Budagumpi S. Metal‐Metal Interactions in Bi‐, Tri‐ and Multinuclear Fe, Ru and Os N‐Heterocyclic Carbene Complexes and their Catalytic Applications. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brinda Kadur Narayana
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| | | | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences Jain University, Jain Global Campus, Kanakapura, Ramanagaram Bangalore 562 112 Karnataka India
| |
Collapse
|
12
|
Rabie EM, Khalil MMH, Elaasser MM, Ismail EH. Macro‐ and nano‐oligomers ternary metal complexes preparation, structural elucidation: Antimicrobial, anticancer activities, and mechanistic study of Cu nanocomplexes on liver carcinoma. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eman M. Rabie
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | | | - Mahmoud M. Elaasser
- The Regional Center for Mycology and Biotechnology Al‐Azhar University Cairo Egypt
| | - Eman H. Ismail
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
13
|
New silver Nheterocyclic carbenes complexes: Synthesis, molecular docking study and biological activities evaluation as cholinesterase inhibitors and antimicrobials. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Mnasri A, Mejri A, Al-Hazmy SM, Arfaoui Y, Özdemir I, Gürbüz N, Hamdi N. Silver-N-heterocyclic carbene complexes-catalyzed multicomponent reactions: Synthesis, spectroscopic characterization, density functional theory calculations, and antibacterial study. Arch Pharm (Weinheim) 2021; 354:e2100111. [PMID: 34128256 DOI: 10.1002/ardp.202100111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
Nowadays, silver-N-heterocyclic carbene (silver-NHCs) complexes are widely used in medicinal chemistry due to their low toxic nature toward humans. Due to the success of silver-NHCs in medicinal applications, interest in these compounds is rapidly increasing. Therefore, the interaction of N,N-disubstituted benzimidazolium salts with Ag2 O in dichloromethane to prepare novel Ag(I)-NHCs complexes was carried out at room temperature for 120 h in the absence of light. The obtained complexes were identified and characterized by 1 H and 13 C nuclear magnetic resonance, Fourier-transform infrared, UV-Vis, and elemental analysis techniques. Then, the silver complexes were applied for three-component coupling reactions of aldehydes, amines, and alkynes. The effect of changing the alkyl substituent on the NHCs ligand on the catalytic performance was investigated. In addition, it has been found that the complexes are antimicrobially active and show higher activity than the free ligand. The silver-carbene complexes showed antimicrobial activity against specified microorganisms with MIC values between 0.24 and 62.5 μg/ml. These results showed that the silver-NHC complexes exhibit an effective antimicrobial activity against bacterial and fungal strains. A density functional theory calculation study was performed to identify the stability of the obtained complexes. All geometries were optimized employing an effective core potential basis, such as LANL2DZ for the Ag atom and 6-311+G(d,p) for all the other atoms in the gas phase. Electrostatic potential surfaces and LUMO-HOMO energy were computed. Transition energies and excited-state structures were obtained from the time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Aziza Mnasri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Catalysis Research and Application Center, İnönü University, Malatya, Turkey
| | - Amal Mejri
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia
| | - Sadeq M Al-Hazmy
- Department of Chemistry, College of Science, Qassim University, Buraidah, Saudi Arabia
| | - Youssef Arfaoui
- Laboratory of Characterizations, Applications & Modeling of Materials (LR18ES08), Department of Chemistry, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Ismail Özdemir
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Nevin Gürbüz
- Catalysis Research and Application Center, İnönü University, Malatya, Turkey.,Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - Naceur Hamdi
- Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Tunis, Tunisia.,Department of Chemistry, College of Science and Arts, Qassim University, Ar Rass, Saudi Arabia
| |
Collapse
|
15
|
Şahin-Bölükbaşı S, Cantürk-Kılıçkaya P, Kılıçkaya O. Silver(I)-N-heterocyclic carbene complexes challenge cancer; evaluation of their anticancer properties and in silico studies. Drug Dev Res 2021; 82:907-926. [PMID: 33978961 DOI: 10.1002/ddr.21822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Because of the continuous need for efficient therapeutic agents against various kinds of cancers and infectious diseases, the pharmaceutical industry has to find new candidates and strategies to develop novel and efficient drugs. They increasingly use computational tools in R&D stages for screening extensive sets of drug candidates before starting pre-clinical and clinical trials. N-Heterocyclic carbenes (NHCs) can be evaluated as good drug candidates because they offer both anti-cancer and anti-inflammatory features with their general low-toxicity profiles. To date, different kinds of NHCs (Cu, Co, Ni, Au, Ag, Ru, etc.) have been synthesized and their therapeutic uses has been shown. Here, we have reviewed the recent studies focused on Ag(I)-NHC complexes and their anti-cancer activities. Also, existing examples of the usage of density functional theory and structure-activity relationship have been evaluated.
Collapse
Affiliation(s)
- Serap Şahin-Bölükbaşı
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Pakize Cantürk-Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ozan Kılıçkaya
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
16
|
Neves Borgheti-Cardoso L, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, Fernàndez-Busquets X, Sierra T. Promising nanomaterials in the fight against malaria. J Mater Chem B 2021; 8:9428-9448. [PMID: 32955067 DOI: 10.1039/d0tb01398f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For more than one hundred years, several treatments against malaria have been proposed but they have systematically failed, mainly due to the occurrence of drug resistance in part resulting from the exposure of the parasite to low drug doses. Several factors are behind this problem, including (i) the formidable barrier imposed by the Plasmodium life cycle with intracellular localization of parasites in hepatocytes and red blood cells, (ii) the adverse fluidic conditions encountered in the blood circulation that affect the interaction of molecular components with target cells, and (iii) the unfavorable physicochemical characteristics of most antimalarial drugs, which have an amphiphilic character and can be widely distributed into body tissues after administration and rapidly metabolized in the liver. To surpass these drawbacks, rather than focusing all efforts on discovering new drugs whose efficacy is quickly decreased by the parasite's evolution of resistance, the development of effective drug delivery carriers is a promising strategy. Nanomaterials have been investigated for their capacity to effectively deliver antimalarial drugs at local doses sufficiently high to kill the parasites and avoid drug resistance evolution, while maintaining a low overall dose to prevent undesirable toxic side effects. In recent years, several nanostructured systems such as liposomes, polymeric nanoparticles or dendrimers have been shown to be capable of improving the efficacy of antimalarial therapies. In this respect, nanomaterials are a promising drug delivery vehicle and can be used in therapeutic strategies designed to fight the parasite both in humans and in the mosquito vector of the disease. The chemical analyses of these nanomaterials are essential for the proposal and development of effective anti-malaria therapies. This review is intended to analyze the application of nanomaterials to improve the drug efficacy on different stages of the malaria parasites in both the human and mosquito hosts.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - María San Anselmo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Alexandre Lancelot
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - José Luis Serrano
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. and ARAID Foundation, Government of Aragón, Zaragoza 50018, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
17
|
Piersanti A, Juganson K, Mozzicafreddo M, Wei W, Zhang J, Zhao K, Ballarini P, Mortimer M, Pucciarelli S, Miao W, Miceli C. Transcriptomic responses to silver nanoparticles in the freshwater unicellular eukaryote Tetrahymena thermophila. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:115965. [PMID: 33213949 DOI: 10.1016/j.envpol.2020.115965] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
Currently, silver nanoparticles (AgNPs) are being increasingly used as biocides in various consumer products and if released in the environment they can affect non-target organisms. Therefore, understanding the toxicity mechanism is crucial for both the design of more efficient nano-antimicrobials and for the design of nanomaterials that are biologically and environmentally benign throughout their life-cycle. Here, the ciliate Tetrahymena thermophila was used to elucidate the mechanisms of action of AgNPs by analysing the gene expression profile by RNA-seq and the transcriptomic effects of AgNPs were compared to those induced by soluble silver salt, AgNO3. Exposure to AgNPs at sublethal concentrations for 24 h induced phagocytosis, transport pathways, response to oxidative stress, glutathione peroxidase activity, response to stimulus, oxidation-reduction, proteolysis, and nitrogen metabolism process. Based on gene set enrichment analysis (GSEA), some biological processes appeared targets of both toxicants. In addition to many similarities in affected genes, some effects were triggered only by NPs, like phagocytosis, glutathione peroxidase activity, response to stimulus, protein phosphorylation and nitrogen metabolism process. This research provides evidence that AgNPs compared to AgNO3 at the same concentration of dissolved silver ions dysregulate a higher number of cellular pathways. These findings confirm that AgNPs can induce toxicity not only due to soluble silver ions released from the particles but also to particle intrinsic features.
Collapse
Affiliation(s)
- Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Katre Juganson
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | | | - Wei Wei
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Kangping Zhao
- College of Life Science, Northwest Normal University, Lanzhou, China
| | - Patrizia Ballarini
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Monika Mortimer
- China Jiliang University, Institute of Environmental and Health Sciences, College of Quality and Safety Engineering, Hangzhou, Zhejiang, 310018, China
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, Italy.
| |
Collapse
|
18
|
Rezaeivala M, Ahmadi M, Captain B, Bayat M, Saeidirad M, Şahin-Bölükbaşı S, Yıldız B, Gable RW. Some new morpholine-based Schiff-base complexes; Synthesis, characterization, anticancer activities and theoretical studies. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119935] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Kordestani N, Rudbari HA, Fateminia Z, Caljon G, Maes L, Mineo PG, Cordaro A, Mazzaglia A, Scala A, Micale N. Antimicrobial and antiprotozoal activities of silver coordination polymers derived from the asymmetric halogenated Schiff base ligands. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH) University of Antwerp Antwerp Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH) University of Antwerp Antwerp Belgium
| | - Placido G. Mineo
- Department of Chemical Sciences University of Catania Catania Italy
- Institute of Polymers, Composites and Biomaterials (CNR‐IPCB) Catania Italy
| | - Annalaura Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
- CNR‐ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Antonino Mazzaglia
- CNR‐ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina Messina Italy
| |
Collapse
|
20
|
Abstract
Traditional organic antimicrobials mainly act on specific biochemical processes such as replication, transcription and translation. However, the emergence and wide spread of microbial resistance is a growing threat for human beings. Therefore, it is highly necessary to design strategies for the development of new drugs in order to target multiple cellular processes that should improve their efficiency against several microorganisms, including bacteria, viruses or fungi. The present review is focused on recent advances and findings of new antimicrobial strategies based on metal complexes. Recent studies indicate that some metal ions cause different types of damages to microbial cells as a result of membrane degradation, protein dysfunction and oxidative stress. These unique modes of action, combined with the wide range of three-dimensional geometries that metal complexes can adopt, make them suitable for the development of new antimicrobial drugs.
Collapse
|
21
|
Chen C, Zhou L, Xie B, Wang Y, Ren L, Chen X, Cen B, Lv H, Wang H. Novel fast-acting pyrazole/pyridine-functionalized N-heterocyclic carbene silver complexes assembled with nanoparticles show enhanced safety and efficacy as anticancer therapeutics. Dalton Trans 2020; 49:2505-2516. [PMID: 32022055 DOI: 10.1039/c9dt04751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized four novel multi-nuclear silver complexes (1-4) coordinated with pyrazole- or pyridine-functionalized N-heterocyclic carbene (NHC) ligands. The crystal structures of the silver-NHC complexes were confirmed by X-ray diffraction analysis. In vitro assays showed that the silver-NHC complexes effectively killed a broad range of cancer cells after short-term drug exposure, serving as fast-acting cytotoxic agents. Of note, in cisplatin-resistant A549 cancer cells, the silver complexes were not cross-resistant with the clinically used cisplatin agent. Detailed mechanistic studies revealed that complex 2 triggered caspase-independent cell necrosis associated with intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) depletion. By exploiting a facile nano-assembly process, silver-NHC complexes 1, 2 and 4 were successfully integrated into the hydrophobic cores of amphiphilic matrices (DSPE-PEG2K), enabling systemic injection. The silver complex-loaded nanotherapeutics (1-NPs, 2-NPs, and 4-NPs) showed high safety margins with reduced systemic drug toxicities relative to cisplatin in animals. Furthermore, in a xenograft model of human colorectal cancer, the administration of the nanotherapeutics resulted in a marked inhibition of tumor progression.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China. and College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Beini Cen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
22
|
Bui TQ, Phuong Loan HT, Ai My TT, Quang DT, Phuong Thuy BT, Nhan VD, Quy PT, Van Tat P, Dao DQ, Trung NT, Huynh LK, Ai Nhung NT. A density functional theory study on silver and bis-silver complexes with lighter tetrylene: are silver and bis-silver carbenes candidates for SARS-CoV-2 inhibition? Insight from molecular docking simulation. RSC Adv 2020; 10:30961-30974. [PMID: 35516033 PMCID: PMC9056359 DOI: 10.1039/d0ra05159d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Ribavirin and remdesivir have been preclinically reported as potential drugs for the treatment of SARS-CoV-2 infection, while light silver tetrylene complexes (NHEPh-AgCl and (NHEPh-AgCl)2 with E = C, Si, and Ge) have gained significant interest due to their promising applicability on the cytological scale. Firstly, the structures and bonding states of silver-tetrylene complexes (NHE-Ag) and bis-silver-tetrylene complexes (NHE-Ag-bis) were investigated using density functional theory (DFT) at the BP86 level with the def2-SVP and def2-TZVPP basis sets. Secondly, the inhibitory capabilities of the carbene complexes (NHC-Ag and NHC-Ag-bis) and the two potential drugs (ribavirin and remdesivir) on human-protein ACE2 and SARS-CoV-2 protease PDB6LU7 were evaluated using molecular docking simulation. The carbene ligand NHC bonds in a head-on configuration with AgCl and (AgCl)2, whereas, the other NHE (E = Si and Ge) tetrylene ligands bond in a side-on mode to the metal fragments. The bond dissociation energy (BDE) of the NHE-Ag bond in the complex families follows the order of NHC-Ag > NHSi-Ag > NHGe-Ag and NHSi-Ag-bis > NHGe-Ag-bis > NHC-Ag-bis. The natural bond orbital analysis implies that the [NHEPh→AgCl] and [(NHEPh)2→(AgCl)2] donations are derived mainly from the σ- and π-contributions of the ligands. The docking results indicate that both the ACE2 and PDB6LU7 proteins are strongly inhibited by silver-carbene NHC-Ag, bis-silver-carbene NHC-Ag-bis, ribavirin, and remdesivir with the docking score energy values varying from -17.5 to -16.5 kcal mol-1 and -16.9 to -16.6 kcal mol-1, respectively. The root-mean-square deviation values were recorded to be less than 2 Å in all the calculated systems. Thus, the present study suggests that silver-carbene NHC-Ag and bis-silver-carbene NHC-Ag-bis complexes are potential candidates to inhibit ACE2 and PDB6LU7, and thus potentially conducive to prevent infection caused by the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Huynh Thi Phuong Loan
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Tran Thi Ai My
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| | - Duong Tuan Quang
- Department of Chemistry, University of Education, Hue University Hue City 530000 Vietnam
| | - Bui Thi Phuong Thuy
- Faculty of Fundamental Science, Van Lang University Ho Chi Minh City 700000 Vietnam
| | - Vo Duy Nhan
- Faculty of Pharmacy, Nam Can Tho University 94000 Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University Buon Ma Thuot City 630000 Vietnam
| | - Pham Van Tat
- Institute of Development and Applied Economics, Hoa Sen University Ho Chi Minh City 700000 Vietnam
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen Tien Trung
- Laboratory of Computational Chemistry and Modeling, Faculty of Natural Sciences, Quy Nhon University Quy Nhon City 590000 Vietnam
| | - Lam K Huynh
- Department of Chemical Engineering, International University Ho Chi Minh City 700000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University Hue City 530000 Vietnam
| |
Collapse
|
23
|
Rogovoy MI, Frolova TS, Samsonenko DG, Berezin AS, Bagryanskaya IY, Nedolya NA, Tarasova OA, Fedin VP, Artem'ev AV. 0D to 3D Coordination Assemblies Engineered on Silver(I) Salts and 2‐(Alkylsulfanyl)azine Ligands: Crystal Structures, Dual Luminescence, and Cytotoxic Activity. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maxim I. Rogovoy
- Nikolaev Institute of Inorganic Chemistry SB RAS 3, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Tatiana S. Frolova
- Novosibirsk State University 2, Pirogova Str. 630090 Novosibirsk Russian Federation
- Institute of Cytology and Genetics SB RAS 10, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS 3, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexey S. Berezin
- Nikolaev Institute of Inorganic Chemistry SB RAS 3, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Irina Yu. Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS 9, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Nina A. Nedolya
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS 1, Favorsky st. 664033 Irkutsk Russian Federation
| | - Olga A. Tarasova
- A. E. Favorsky Irkutsk Institute of Chemistry SB RAS 1, Favorsky st. 664033 Irkutsk Russian Federation
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS 3, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| | - Alexander V. Artem'ev
- Nikolaev Institute of Inorganic Chemistry SB RAS 3, Acad. Lavrentiev Ave. 630090 Novosibirsk Russian Federation
| |
Collapse
|
24
|
Shanmuganathan R, Karuppusamy I, Saravanan M, Muthukumar H, Ponnuchamy K, Ramkumar VS, Pugazhendhi A. Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review. Curr Pharm Des 2020; 25:2650-2660. [PMID: 31298154 DOI: 10.2174/1381612825666190708185506] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022]
Abstract
Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.
Collapse
Affiliation(s)
| | - Indira Karuppusamy
- Corrosion Science and Technology Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
| | - Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, Institute of Biomedical Sciences, College of Health Science, Mekelle University, Ethiopia
| | - Harshiny Muthukumar
- Applied and Industrial Microbiology Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai - 600 036, India
| | - Kumar Ponnuchamy
- Food Chemistry and Molecular Cancer Biology Lab, Department of Animal Health and Management, Alagappa University, Karaikudi - 630 003, India
| | - Vijayan Sri Ramkumar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
25
|
Mohamed HA, Shepherd S, William N, Blundell HA, Das M, Pask CM, Lake BRM, Phillips RM, Nelson A, Willans CE. Silver(I) N-Heterocyclic Carbene Complexes Derived from Clotrimazole: Antiproliferative Activity and Interaction with an Artificial Membrane-Based Biosensor. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heba A. Mohamed
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Samantha Shepherd
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Nicola William
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Helen A. Blundell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Madhurima Das
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Christopher M. Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Benjamin R. M. Lake
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Roger M. Phillips
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Andrew Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | | |
Collapse
|
26
|
Osorio Yáñez RN, Hepp A, Tan TTY, Hahn FE. Synthesis of RhIII and IrIII Complexes Bearing Chelating Di-NHC Ligands Obtained from N9-Imidazolium-Substituted Adenine. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebeca Nayely Osorio Yáñez
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - Tristan Tsai Yuan Tan
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| | - F. Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| |
Collapse
|
27
|
|
28
|
Mottais A, Berchel M, Le Gall T, Sibiril Y, d'Arbonneau F, Laurent V, Jaffrès PA, Montier T. Antibacterial and transfection activities of nebulized formulations incorporating long n-alkyl chain silver N-heterocyclic carbene complexes. Int J Pharm 2019; 567:118500. [DOI: 10.1016/j.ijpharm.2019.118500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 01/16/2023]
|
29
|
Selvakumar J, Miles MH, Grossie DA, Arumugam K. Synthesis and molecular structure of biologically significant bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) complexes with chloride and dichloridoaurate counter-ions. Acta Crystallogr C Struct Chem 2019; 75:462-468. [PMID: 30957792 PMCID: PMC6452777 DOI: 10.1107/s2053229619003292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022] Open
Abstract
Diffraction-quality single crystals of two gold(I) complexes, namely bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) chloride benzene monosolvate, [Au(C29H26N2O2)2]Cl·C6H6 or [(NQMes)2Au]Cl·C6H6, 2, and bis(1,3-dimesityl-4,5-naphthoquinoimidazol-2-ylidene)gold(I) dichloridoaurate(I) dichloromethane disolvate, [Au(C29H26N2O2)2][AuCl2]·2CH2Cl2 or [(NQMes)2Au][AuCl2]·2CH2Cl2, 4, were isolated and studied with the aid of single-crystal X-ray diffraction analysis. Compound 2 crystallizes in a monoclinic space group C2/c with eight molecules in the unit cell, while compound 4 crystallizes in the triclinic space group P-1 with two molecules in the unit cell. The crystal lattice of compound 2 reveals C-H...Cl- interactions that are present throughout the entire structure representing head-to-tail contacts between the aromatic (C-H) hydrogens of naphthoquinone and Cl- counter-ions. Compound 4 stacks with the aid of short interactions between a naphthoquinone O atom of one molecule and the mesityl methyl group of another molecule along the a axis, leading to a one-dimensional strand that is held together by strong π-η2 interactions between the imidazolium backbone and the [AuCl2]- counter-ion. The bond angles defined by the AuI atom and two carbene C atoms [C(carbene)-Au-C(carbene)] in compounds 2 and 4 are nearly rectilinear, with an average value of ∼174.1 [2]°. Though 2 and 4 share the same cation, they differ in their counter-anion, which alters the crystal lattice of the two compounds. The knowledge gleaned from these studies is expected to be useful in understanding the molecular interactions of 2 and 4 under physiological conditions.
Collapse
Affiliation(s)
- Jayaraman Selvakumar
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Meredith H. Miles
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - David A. Grossie
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA
| |
Collapse
|
30
|
Zhang J, Shan C, Zhang T, Song J, Liu T, Lan Y. Computational advances aiding mechanistic understanding of silver-catalyzed carbene/nitrene/silylene transfer reactions. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Hussaini SY, Haque RA, Fatima T, Agha MT, Abdul Majid AMS, Razali MR. Palladium(II) N-heterocyclic carbene complexes: synthesis, structures and cytotoxicity potential studies against breast cancer cell line. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1485901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Sunusi Y. Hussaini
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
- Department of Chemistry, Kano University of Science and Technology Wudil, Kano, Nigeria
| | - Rosenani A. Haque
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Tabinda Fatima
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - M. Taleb Agha
- Department of Chemistry, Kano University of Science and Technology Wudil, Kano, Nigeria
| | - A. M. S. Abdul Majid
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Penang, Malaysia
| | - Mohd. R. Razali
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
32
|
Liang X, Luan S, Yin Z, He M, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, Lv C, Zhang W. Recent advances in the medical use of silver complex. Eur J Med Chem 2018; 157:62-80. [DOI: 10.1016/j.ejmech.2018.07.057] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 11/28/2022]
|
33
|
Dinuclear rectangular-shaped assemblies of bis-benzimidazolydine salt coordinated to Ag(I) and Cu(I) N-heterocyclic carbene complexes and their biological applications. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0538-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Achar G, Shahini CR, Patil SA, Małecki JG, Pan SH, Lan A, Chen XR, Budagumpi S. Sterically modulated silver(I) complexes of coumarin substituted benzimidazol-2-ylidenes: Synthesis, crystal structures and evaluation of their antimicrobial and antilung cancer potentials. J Inorg Biochem 2018. [PMID: 29529471 DOI: 10.1016/j.jinorgbio.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this contribution, a series of sterically-encumbered coumarin substituted benzimidazole-based N-heterocyclic carbene (NHC) precursors (1-12) and their silver(I)-NHC complexes (13-24) are reported. Molecular structure of NHC precursors 8 and 12 and cationic complexes 15 and 16 was established by single crystal X-ray diffraction method. The silver(I) complexes demonstrated various significant intramolecular agostic-like interactions operating between the metal center and the hydrogen atoms of the substituents alongside a variety of feeble π-π stacking interactions. A distorted linear coordination geometry is documented at the silver(I) center with the anti-arrangement of the ligands. Further, the complexes demonstrated promising antibacterial properties against Gram positive and Gram negative bacterial strains, especially complex 18 displayed a minimum inhibitory concentration (MIC) of 2 and 4 μg/mL against S. aureus and E. coli, and P. aeruginosa, respectively. Furthermore, complexes 14, 15, 16 and 18 were found cytotoxic against the human lung cancer cell lines A549 and H1975 with the IC50 (concentration of the test sample required to kill 50% of the cell population) value under 10 μM, while mono-NHC complex 20 displayed a potential drug window with the IC50 of 13.7 ± 2.70 and 14.5 ± 1.20 μM against the cancer cell lines H1975 and A549, respectively. Notably, these complexes displayed relatively lesser cytotoxic behaviour against the normal skin fibroblast cell line, Hs68. All the NHC precursors displayed significantly lower biological activities compared with their respective complexes, indicating the utility of silver(I) ions in antimicrobial and antilung cancer applications.
Collapse
Affiliation(s)
- Gautam Achar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - C R Shahini
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 9th Szkolna St., 40-006 Katowice, Poland
| | - Szu-Hua Pan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Albert Lan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Xuan-Ren Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagaram, Bangalore 562112, India.
| |
Collapse
|
35
|
Hussaini SY, Haque RA, Fatima T, Agha TM, Abdul Majid AMS, Abdallah HH, Razali MR. Nitrile functionalized silver(I) N-heterocyclic carbene complexes: DFT calculations and antitumor studies. TRANSIT METAL CHEM 2018. [DOI: 10.1007/s11243-018-0216-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Mohamed HA, Khuphe M, Boardman SJ, Shepherd S, Phillips RM, Thornton PD, Willans CE. Polymer encapsulation of anticancer silver–N-heterocyclic carbene complexes. RSC Adv 2018; 8:10474-10477. [PMID: 35540495 PMCID: PMC9078921 DOI: 10.1039/c8ra00450a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 11/23/2022] Open
Abstract
Amphiphilic block copolymers have been developed for the encapsulation of organometallic drugs. silver–N-heterocyclic carbene complexes have shown significant promise as anticancer and antibacterial compounds, and have been studied as the payload in these carriers. Simple modification of the N-heterocyclic carbene ligand structure enables solubility properties and interaction with the polymer to be tuned. Amphiphilic block copolymers have been developed for the encapsulation of silver anticancer drugs.![]()
Collapse
Affiliation(s)
| | - M. Khuphe
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | | | - S. Shepherd
- Department of Pharmacy
- University of Huddersfield
- Huddersfield
- UK
| | - R. M. Phillips
- Department of Pharmacy
- University of Huddersfield
- Huddersfield
- UK
| | | | | |
Collapse
|
37
|
Mottais A, Berchel M, Sibiril Y, Laurent V, Gill D, Hyde S, Jaffrès PA, Montier T, Le Gall T. Antibacterial effect and DNA delivery using a combination of an arsonium-containing lipophosphoramide with an N-heterocyclic carbene-silver complex - Potential benefits for cystic fibrosis lung gene therapy. Int J Pharm 2017; 536:29-41. [PMID: 29138047 DOI: 10.1016/j.ijpharm.2017.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/01/2017] [Accepted: 11/10/2017] [Indexed: 01/05/2023]
Abstract
Cystic Fibrosis (CF), the most common chronic genetic disorder among the Caucasian population, is a life-threatening disease mainly due to respiratory failures resulting from chronic infections and inflammation. Although research in the pharmacological field has recently made significant progress, gene therapy still remains a promising strategy to cure CF, especially because it should be applicable to any patient whatever the mutation profile. Until now, little attention has been paid to bacterial lung infections with regard to gene delivery to the airways; yet, this could greatly impact on the success of gene therapy. Previously, we have reported arsonium-containing lipophosphoramides as poly-functional nanocarriers capable of simultaneous antibacterial action against Gram-positive bacteria and gene transfer into eukaryotic cells. In the present work, we show that such nanoparticles can also be combined with an N-heterocyclic carbene-silver complex in order to extend the spectrum of antibacterial activity, including towards the Gram-negative Pseudomonas aeruginosa. Importantly, this is demonstrated not only using standard in vitro protocols but also a clinically-relevant aerosol delivery method. Furthermore, antibacterial effects are compatible with efficient and safe gene delivery into human bronchial epithelial cells. The poly-functionality of combinations of such chemical compounds may thus show benefits for CF lung gene therapy.
Collapse
Affiliation(s)
- Angélique Mottais
- "Gene Transfer and Gene Therapy Team", INSERM UMR 1078, IBSAM, Laboratoire de Génétique Moléculaire et Histocompatibilité, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 Avenue Camille Desmoulins, 29238 Brest, France
| | - Mathieu Berchel
- CEMCA, UMR CNRS 6521, IBSAM, UFR Sciences, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Yann Sibiril
- "Gene Transfer and Gene Therapy Team", INSERM UMR 1078, IBSAM, Laboratoire de Génétique Moléculaire et Histocompatibilité, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 Avenue Camille Desmoulins, 29238 Brest, France
| | - Véronique Laurent
- "Gene Transfer and Gene Therapy Team", INSERM UMR 1078, IBSAM, Laboratoire de Génétique Moléculaire et Histocompatibilité, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 Avenue Camille Desmoulins, 29238 Brest, France
| | - Deborah Gill
- "Gene Medicine Group", Radcliffe Department of Medicine (Clinical Laboratory Sciences), John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Stephen Hyde
- "Gene Medicine Group", Radcliffe Department of Medicine (Clinical Laboratory Sciences), John Radcliffe Hospital, University of Oxford, OX3 9DU, United Kingdom
| | - Paul-Alain Jaffrès
- CEMCA, UMR CNRS 6521, IBSAM, UFR Sciences, 6 Avenue Victor Le Gorgeu, 29238 Brest, France
| | - Tristan Montier
- "Gene Transfer and Gene Therapy Team", INSERM UMR 1078, IBSAM, Laboratoire de Génétique Moléculaire et Histocompatibilité, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 Avenue Camille Desmoulins, 29238 Brest, France.
| | - Tony Le Gall
- "Gene Transfer and Gene Therapy Team", INSERM UMR 1078, IBSAM, Laboratoire de Génétique Moléculaire et Histocompatibilité, UFR Médecine et Sciences de la Santé, CHRU Brest, 22 Avenue Camille Desmoulins, 29238 Brest, France.
| |
Collapse
|
38
|
Synthesis of new drug model has an effective antimicrobial and antitumors by combination of cephalosporin antibiotic drug with silver(I) ion in nano scale range: Chemical, physical and biological studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Recent Developments in the Medicinal Applications of Silver-NHC Complexes and Imidazolium Salts. Molecules 2017; 22:molecules22081263. [PMID: 28749425 PMCID: PMC6152056 DOI: 10.3390/molecules22081263] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 07/21/2017] [Accepted: 07/22/2017] [Indexed: 01/12/2023] Open
Abstract
Because of their great structural diversity and multitude of chemical properties, N-heterocyclic carbenes (NHCs) have been utilized in a variety of capacities. Most recently, NHCs have been utilized as carrier molecules for many transition metals in medicinal chemistry. Specifically, Ag(I)-NHCs have been investigated as potent antibacterial agents and chemotherapeutics and have shown great efficacy in both in vitro and in vivo studies. Ag(I)-NHC compounds have been shown to be effective against a wide range of both Gram-positive and Gram-negative bacterial strains. Many compounds have also shown great efficacy as antitumor agents demonstrating comparable or better antitumor activity than standard chemotherapeutics such as cisplatin and 5-fluorouracil. While these compounds have shown great promise, clinical use has remained an unattained goal. Current research has been focused upon synthesis of novel Ag(I)-NHC compounds and further investigations of their antibacterial and antitumor activity. This review will focus on recent advances of Ag(I)-NHCs in medicinal applications.
Collapse
|
40
|
Hussaini SY, Haque RA, Asekunowo PO, Abdul Majid A, Taleb Agha M, Razali MR. Synthesis, characterization and anti-proliferative activity of propylene linked bis-benzimidazolium salts and their respective dinuclear Silver(I)- N -heterocyclic carbene complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.04.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Recent advances in use of silver nanoparticles as antimalarial agents. Int J Pharm 2017; 526:254-270. [PMID: 28450172 DOI: 10.1016/j.ijpharm.2017.04.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/23/2022]
Abstract
Malaria is one of the most common infectious diseases, which has become a great public health problem all over the world. Ineffectiveness of available antimalarial treatment is the main reason behind its menace. The failure of current treatment strategies is due to emergence of drug resistance in Plasmodium falciparum and drug toxicity in human beings. Therefore, the development of novel and effective antimalarial drugs is the need of the hour. Considering the huge biomedical applications of nanotechnology, it can be potentially used for the malarial treatment. Silver nanoparticles (AgNPs) have demonstrated significant activity against malarial parasite (P. falciparum) and vector (female Anopheles mosquito). It is believed that AgNPs will be a solution for the control of malaria. This review emphasizes the pros- and cons of existing antimalarial treatments and in depth discussion on application of AgNPs for treatment of malaria. The role of nanoparticles for site specific drug delivery and toxicological issues have also been discussed.
Collapse
|
42
|
Asekunowo PO, Haque RA, Razali MR. A comparative insight into the bioactivity of mono- and binuclear silver(I)-N-heterocyclic carbene complexes: synthesis, lipophilicity and substituent effect. REV INORG CHEM 2017. [DOI: 10.1515/revic-2016-0007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractSilver(I)-N-heterocyclic carbene (Ag(I)-NHC) complexes of mononuclear and binuclear species, synthesised by our group and others in recent years, offer a fascinating outlook on their bioactivity. These complexes advance a range of adaptable structural patterns, leading to intra-specific variation in anticancer and antimicrobial activities. This study therefore reviews the synthesis, structural analysis and bioactivity of Ag complexes derived from mononuclear-NHC complexes either with coordinating or non-coordinating anions and binuclear NHC complexes. Specifically, the effect of stability, chain lengths and lipophilicity on the biological activity of recently reported Ag(I)-NHC complexes is reviewed. These complexes can be further explored as novel antibacterial and anticancer drugs in the nearest future.
Collapse
Affiliation(s)
| | - Rosenani A. Haque
- 2The School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Mohd. R. Razali
- 1The School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
43
|
Synthesis, structural characterization, crystal structures and antibacterial potentials of coumarin–tethered N–heterocyclic carbene silver(I) complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
N-heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression. Future Med Chem 2016; 8:2213-2229. [PMID: 27874288 DOI: 10.4155/fmc-2016-0160] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM Metal carbenic complexes have received considerable attention in both the catalysis and biological fields for their potential applications in cancer and antimicrobial therapies. RESULTS A small series of new silver and gold N-heterocyclic carbene complexes has been designed and synthesized. Among the tested complexes, one compound was particularly active in inhibiting anchorage-dependent and -independent breast cancer proliferation, and inducing cell apoptosis via a mitochondria-related process. The antitumor activity was associated to the transcriptional activation of the tumor suppressor gene p53 in an Sp1-dependent manner, as evidenced by biological and docking studies. CONCLUSION Our results highlight the importance and the versatility of N-heterocyclic carbene complexes of gold and silver as useful tools against breast cancer progression.
Collapse
|
45
|
Cardoso JMS, Correia I, Galvão AM, Marques F, Carvalho MFNN. Synthesis of Ag(I) camphor sulphonylimine complexes and assessment of their cytotoxic properties against cisplatin-resistant A2780cisR and A2780 cell lines. J Inorg Biochem 2016; 166:55-63. [PMID: 27835775 DOI: 10.1016/j.jinorgbio.2016.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/10/2016] [Accepted: 11/03/2016] [Indexed: 12/24/2022]
Abstract
Camphorsulphonylimine complexes [Ag(NO3)(IL)2] (IL=C12H19N3SO2, 1) and [(AgNO3)2(IIL)] (IIL=C22H23N3SO2, 2) were synthesized and characterized by elemental analysis, spectroscopy (IR, NMR) and cyclic voltammetry. [Ag(NO3)(IL)2] crystalizes in the monoclinic C2 space group with a triangular geometry assuming a chalice-type shape. The anti-proliferative properties of the new complexes 1 and 2 and those of the previously reported [Ag(NO3)(IIIL)] (IIIL=C16H18N3SO2, 3) were assessed against the human ovarian cancer cells (cisplatin-sensitive A2780, cisplatin-resistant A2780cisR) and the non-tumoral human HEK 293 cell line, using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The NR (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assay was alternatively used to assess the cytotoxicity on the A2780 cells. Results from the MTT assay (48h exposure) show that the complexes display IC50 values lower (by at least one order of magnitude) than cisplatin, while the cytotoxicity of AgNO3 is of the same order of cisplatin. The camphorsulphonylimine ligands display irrelevant (IL, IIIL) or no cytotoxicity (IIL). The highest cytotoxicity (lower IC50) was found for [(AgNO3)2(IIL)]. The binding ability of the complexes to calf thymus-deoxyribonucleic acid (CT-DNA) was studied by fluorescence. Constants (Ksv, Ka) and the number (n) of binding centres to DNA were calculated showing that DNA intercalation possibly occurs in the cases of complexes 2 and 3, while a more complicated process operates for 1. As expected from the cytotoxicity, [(AgNO3)2(IIL)] displays the highest binding affinity (Ka=1.61×105 M-1). No binding to DNA was detected for AgNO3 or IIL under the experimental conditions used. The binding trend to CT-DNA found by fluorescence was corroborated by cyclic voltammetry.
Collapse
Affiliation(s)
- João M S Cardoso
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Isabel Correia
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Adelino M Galvão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal
| | - M Fernanda N N Carvalho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1049-001, Lisboa, Portugal.
| |
Collapse
|
46
|
Medici S, Peana M, Crisponi G, Nurchi VM, Lachowicz JI, Remelli M, Zoroddu MA. Silver coordination compounds: A new horizon in medicine. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.015] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Sánchez O, González S, Higuera-Padilla ÁR, León Y, Coll D, Fernández M, Taylor P, Urdanibia I, Rangel HR, Ortega JT, Castro W, Goite MC. Remarkable in vitro anti-HIV activity of new silver(I)– and gold(I)–N-heterocyclic carbene complexes. Synthesis, DNA binding and biological evaluation. Polyhedron 2016. [DOI: 10.1016/j.poly.2016.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
48
|
Mohamed HA, Lake BRM, Laing T, Phillips RM, Willans CE. Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans 2016; 44:7563-9. [PMID: 25812062 DOI: 10.1039/c4dt03679d] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new library of silver(I)-N-heterocyclic carbene complexes prepared from the natural products caffeine, theophylline and theobromine is reported. The complexes have been fully characterised using a combination of NMR spectroscopy, mass spectrometry, elemental analysis and X-ray diffraction analysis. Furthermore, the hydrophobicity of the complexes has been measured. The silver(I)-N-heterocyclic carbenes have been evaluated for their antiproliferative properties against a range of cancer cell lines of different histological types, and compared to cisplatin. The data shows different profiles of response when compared to cisplatin in the same panel of cells, indicating a different mechanism of action. Furthermore, it appears that the steric effect of the ligand and the hydrophobicity of the complex both play a role in the chemosensitivity of these compounds, with greater steric bulk and greater hydrophilicity delivering higher cytotoxicity.
Collapse
Affiliation(s)
- Heba A Mohamed
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
49
|
Kalinowska-Lis U, Felczak A, Chęcińska L, Małecka M, Lisowska K, Ochocki J. Influence of selected inorganic counter-ions on the structure and antimicrobial properties of silver(i) complexes with imidazole-containing ligands. NEW J CHEM 2016. [DOI: 10.1039/c5nj02514a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Newly synthesized silver(i) complexes with 4(5)-(hydroxymethyl)imidazole and selected counter-ions show significant activity against Gram-positive bacteria, especially the one containing the trifluoroacetate counter-ion.
Collapse
Affiliation(s)
| | - Aleksandra Felczak
- Department of Industrial Microbiology and Biotechnology
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-237 Łódź
- Poland
| | - Lilianna Chęcińska
- Department of Theoretical and Structural Chemistry
- Faculty of Chemistry
- University of Lodz
- 90-236 Łódź
- Poland
| | - Magdalena Małecka
- Department of Theoretical and Structural Chemistry
- Faculty of Chemistry
- University of Lodz
- 90-236 Łódź
- Poland
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology
- Faculty of Biology and Environmental Protection
- University of Lodz
- 90-237 Łódź
- Poland
| | - Justyn Ochocki
- Department of Bioinorganic Chemistry
- Medical University of Lodz
- 90-151 Łódź
- Poland
| |
Collapse
|
50
|
Savić ND, Glišić BĐ, Wadepohl H, Pavic A, Senerovic L, Nikodinovic-Runic J, Djuran MI. Silver(i) complexes with quinazoline and phthalazine: synthesis, structural characterization and evaluation of biological activities. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00494b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New silver(i) complexes with quinazoline and phthalazine have been synthesized, characterized and evaluated for their antimicrobial activity and their effect on the viability of fibroblasts and the development of zebrafish embryos.
Collapse
Affiliation(s)
- Nada D. Savić
- Department of Chemistry
- Faculty of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Biljana Đ. Glišić
- Department of Chemistry
- Faculty of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut
- University of Heidelberg
- 69120 Heidelberg
- Germany
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Lidija Senerovic
- Institute of Molecular Genetics and Genetic Engineering
- University of Belgrade
- 11000 Belgrade
- Serbia
| | | | - Miloš I. Djuran
- Department of Chemistry
- Faculty of Science
- University of Kragujevac
- 34000 Kragujevac
- Serbia
| |
Collapse
|