1
|
Ivaneev AI, Ermolin MS, Fedotov PS. Separation, Characterization, and Analysis of Environmental Nano- and Microparticles: State-of-the-Art Methods and Approaches. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Ivaneev AI, Ermolin MS, Fedotov PS, Faucher S, Lespes G. Sedimentation Field-flow Fractionation in Thin Channels and Rotating Coiled Columns: From Analytical to Preparative Scale Separations. SEPARATION AND PURIFICATION REVIEWS 2020. [DOI: 10.1080/15422119.2020.1784940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexandr I. Ivaneev
- National University of Science and Technology ‘MISIS’, Moscow, Russian Federation
- Université de Pau et des Pays de l’Adour (2ES/UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR UPPA/CNRS, Hélioparc, 2, Avenue Angot, 64000 Pau, France
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S. Ermolin
- National University of Science and Technology ‘MISIS’, Moscow, Russian Federation
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Petr S. Fedotov
- National University of Science and Technology ‘MISIS’, Moscow, Russian Federation
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Stéphane Faucher
- Université de Pau et des Pays de l’Adour (2ES/UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR UPPA/CNRS, Hélioparc, 2, Avenue Angot, 64000 Pau, France
| | - Gaëtane Lespes
- Université de Pau et des Pays de l’Adour (2ES/UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR UPPA/CNRS, Hélioparc, 2, Avenue Angot, 64000 Pau, France
| |
Collapse
|
3
|
Ivaneev AI, Faucher S, Ermolin MS, Karandashev VK, Fedotov PS, Lespes G. Separation of nanoparticles from polydisperse environmental samples: comparative study of filtration, sedimentation, and coiled tube field-flow fractionation. Anal Bioanal Chem 2019; 411:8011-8021. [PMID: 31781812 DOI: 10.1007/s00216-019-02147-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023]
Abstract
Nanoparticles (NPs) in the environment have a potential risk for human health and the ecosystem due to their ubiquity, specific characteristics, and properties (extreme mobility in the environment, abilities to accumulate of toxic elements and penetrate into living organisms). There is still a gap in studies on the chemical composition of natural NPs. The main reason is the difficulty to recover NPs, which may represent only one-thousandth or less of the bulk environmental sample, for further dimensional and quantitative characterization. In the present study, a methodology for the recovery of the nanoparticle fraction from polydisperse environmental samples was developed taking as example volcanic ashes from different regions of the world. For the first time, three separation methods, namely, filtration through a 0.45-μm membrane, sedimentation, and coiled tube field-flow fractionation (CTFFF), were comparatively studied. The separated fractions were characterized by laser diffraction and scanning electron microscopy and then analyzed by inductively coupled plasma atomic emission and mass spectrometry. It has been shown that all three methods provide the separation of NPs less than 400 nm from the bulk material. However, the fraction separated by sedimentation also contained a population (5% in mass) of submicron particles (~ 400-900 nm). The filtration resulted in low recovery of NPs. The determination of most trace elements was then impossible; the concentration of elements was under the limit of detection of the analytical instrument. The sedimentation and CTFFF made it possible to determine quantifiable concentrations for both major and trace elements in separated fractions. However, the sedimentation took 48 h while CTFFF enabled the fractionation time to be decreased down to 2 h. Hence, CTFFF looked to be the most promising method for the separation of NPs followed by their quantitative elemental analysis.
Collapse
Affiliation(s)
- Alexandr I Ivaneev
- National University of Science and Technology "MISIS", 4 Leninsky Ave, Moscow, Russia, 119991. .,Université de Pau et des Pays de l'Adour (UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux (IPREM), UMR 5254 UPPA/CNRS, 64053, Pau Cedex 9, France. .,Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991.
| | - Stéphane Faucher
- Université de Pau et des Pays de l'Adour (UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux (IPREM), UMR 5254 UPPA/CNRS, 64053, Pau Cedex 9, France.
| | - Mikhail S Ermolin
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991
| | - Vasily K Karandashev
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia, 142432
| | - Petr S Fedotov
- National University of Science and Technology "MISIS", 4 Leninsky Ave, Moscow, Russia, 119991.,Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia, 119991
| | - Gaëtane Lespes
- Université de Pau et des Pays de l'Adour (UPPA), Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les matériaux (IPREM), UMR 5254 UPPA/CNRS, 64053, Pau Cedex 9, France
| |
Collapse
|
4
|
Zhu Y, Ma LQ, Dong X, Harris WG, Bonzongo JC, Han F. Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2014; 264:286-292. [PMID: 24316802 DOI: 10.1016/j.jhazmat.2013.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/22/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
The effects of ionic strength (IS) reduction (5-0.05mM) and flow interruption (FI, flow stopped for 7d) on colloid and Hg release in the leachate were examined in column experiment. Two Hg contaminated soils (13.9 and 146mg/kg) were used, with Hg concentrations in colloids being 2-4 times greater than bulk soils. Based on sequential extraction, Hg concentrations in organic matter (OM) fraction were the most abundant in soils (31-48%). Column leaching after IS reduction and FI released large amounts of colloidal Hg, accounting for 44-48% of released Hg. The highest colloidal Hg concentrations at 27.8 and 360μg/L were observed at ∼1 pore volume after FI. Concentration distribution of colloidal OM and colloidal Fe was similar to colloidal Hg in the leachate, showing peak concentrations after IS reduction and FI. Most of the released colloidal Hg was in OM fraction (37-53%), with some in Fe/Mn oxide fraction (11-19%). Based on composition of released colloids and Hg fractionation in soils and colloids, colloidal OM could serve as an important carrier for Hg transport in soils.
Collapse
Affiliation(s)
- Yingjia Zhu
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA.
| | - Xiaoling Dong
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - Willie G Harris
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, USA
| | - J C Bonzongo
- Department of Environmental Engineering and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Fengxiang Han
- Department of Chemistry and Biochemistry, Jackson State University, MS 39217, USA
| |
Collapse
|