1
|
Prasanseang W, Maineawklang N, Liwatthananukul N, Somsri S, Wattanakit C. Synthesis, Characterization, and CO 2 Methanation Over Hierarchical ZSM-5-NiCoAl Layered Double Hydroxide Nanocomposites: Improvement of C-C Coupling to Ethane. Chemphyschem 2024:e202400926. [PMID: 39656467 DOI: 10.1002/cphc.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets. The effect of the weight ratio of NiCo-LDHs precursor to ZSM-5 on the composite properties has been studied. The results show that 45 wt.% LDHs (ZSM-5@NiCoAl-LDHs-45) is the most suitable condition for preparing NiCoAl-LDHs/ZSM-5 composite, which promotes a strong interaction between bimetallic NiCo and hierarchical ZSM-5. The ZSM-5@NiCoAl-LDHs-45 showed a BET surface of 386 m2 g-1, in which the surface area has been re-allocated between microspores and mesopores due to the presence of NiCoAl-LDHs composite. The catalyst was also tested for CO2 methanation at 380 °C under atmospheric hydrogen pressure. The results show that the catalyst could provide CO2 conversion of up to 40 % at WSHV of 2.91 h-1. Interestingly, it could not only promote methane but also provide a high selectivity of ethane, approximately 20.4 %. Moreover, the excellent catalytic stability of ethane production was illustrated over 24 hours of time-on-stream (TOS).
Collapse
Affiliation(s)
- Warot Prasanseang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Natthawoot Liwatthananukul
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Supattra Somsri
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| |
Collapse
|
2
|
Xue L, Pang M, Yuan Z, Zhou D. Metal-Site Dispersed Zinc-Chromium Oxide Derived from Chromate-Intercalated Layered Hydroxide for Highly Selective Propane Dehydrogenation. Molecules 2024; 29:3063. [PMID: 38999013 PMCID: PMC11243157 DOI: 10.3390/molecules29133063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Propane dehydrogenation (PDH) is a crucial approach for propylene production. However, commonly used CrOx-based catalysts have issues including easy sintering at elevated reaction temperatures and relying on high acidity supports. In this work, we develop a strategy, to strongly anchor and isolate active sites against their commonly observed aggregation during reactions, by taking advantage of the net trap effect in chromate intercalated Zn-Cr layered hydroxides as precursors. Furthermore, the intercalated chromate overcomes the collapse of traditional layered hydroxides during their transformation to metal oxide, thus exposing more available active sites. A joint fine modulation including crystal structure, surface acidity, specific surface area, and active sites dispersion is performed on the final mixed metal oxides for propane dehydrogenation. As a result, Zn1Cr2-CrO42--MMO delivers attractive propane conversion (~27%) and propylene selectivity (>90%) as compared to other non-noble-metal-based catalysts.
Collapse
Affiliation(s)
- Lu Xue
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maoqi Pang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zijian Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Daojin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Mattera M, Sorrenti A, De Gregorio Perpiñá L, Oestreicher V, Sevim S, Arteaga O, Chen XZ, Pané S, Abellán G, Puigmartí-Luis J. "On-The-Fly" Synthesis of Self-Supported LDH Hollow Structures Through Controlled Microfluidic Reaction-Diffusion Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307621. [PMID: 38111987 DOI: 10.1002/smll.202307621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Layered double hydroxides (LDHs) are a class of functional materials that exhibit exceptional properties for diverse applications in areas such as heterogeneous catalysis, energy storage and conversion, and bio-medical applications, among others. Efforts have been devoted to produce millimeter-scale LDH structures for direct integration into functional devices. However, the controlled synthesis of self-supported continuous LDH materials with hierarchical structuring up to the millimeter scale through a straightforward one-pot reaction method remains unaddressed. Herein, it is shown that millimeter-scale self-supported LDH structures can be produced by means of a continuous flow microfluidic device in a rapid and reproducible one-pot process. Additionally, the microfluidic approach not only allows for an "on-the-fly" formation of unprecedented LDH composite structures, but also for the seamless integration of millimeter-scale LDH structures into functional devices. This method holds the potential to unlock the integrability of these materials, maintaining their performance and functionality, while diverging from conventional techniques like pelletization and densification that often compromise these aspects. This strategy will enable exciting advancements in LDH performance and functionality.
Collapse
Affiliation(s)
- Michele Mattera
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
| | - Alessandro Sorrenti
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), University of Barcelona (UB), Barcelona, 08028, Spain
| | - Lidia De Gregorio Perpiñá
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
| | - Víctor Oestreicher
- Institute of Molecular Science, University of Valencia (UVEG), c/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Oriol Arteaga
- Departament de Fisica Aplicada, PLAT group, Universitat de Barcelona, IN2UB, Barcelona, 08028, Spain
| | - Xiang-Zhong Chen
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200438, P. R. China
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Gonzalo Abellán
- Institute of Molecular Science, University of Valencia (UVEG), c/Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona (UB), Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
4
|
Wijitwongwan RP, Intasa-Ard SG, Ogawa M. Hybridization of layered double hydroxides with functional particles. Dalton Trans 2024; 53:6144-6156. [PMID: 38477615 DOI: 10.1039/d4dt00292j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Layered double hydroxides (LDHs) are a class of materials with useful properties associated with their anion exchange abilities as well as redox and adsorptive properties for a wide range of applications including adsorbents, catalysts and their supports, electrodes, pigments, ceramic precursors, and drug carriers. In order to satisfy the requirements for each application as well as to find alternative applications, the preparation of LDHs with the desired composition and particle morphology and post-synthetic modification by the host-guest interactions have been examined. In addition, the hybridization of LDHs with various functional particles has been reported to design materials of modified, improved, and multiple functions. In the present article, the preparation, the heterostructure and the application of hybrids containing LDHs as the main component are overviewed.
Collapse
Affiliation(s)
- Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Soontaree Grace Intasa-Ard
- School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
5
|
Wang C, Miao C, Han S, Yao H, Zhong Q, Ma S. Highly efficient capture of iodine vapor by [Mo 3S 13] 2- intercalated layered double hydroxides. J Colloid Interface Sci 2024; 659:550-559. [PMID: 38198932 DOI: 10.1016/j.jcis.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
From the swollen LDH, bulky [Mo3S13]2- anions are facilely introduced into the LDH interlayers to assemble the Mo3S13-LDH composite, which exhibits excellent iodine capture performance and good irradiation resistance. The positive-charged LDH layers may disperse the [Mo3S13]2- uniformly within the interlayers, providing abundant adsorption sites for effectively trapping iodine. The Mo-S bond serving as a soft Lewis base has strong affinity to I2 with soft Lewis acidic characteristic, which is conducive to improvement of iodine capture via physical sorption. Besides, chemisorption has a significant contribution to the iodine adsorption. The S22-/S2- in [Mo3S13]2- can reduce the I2 to [I3]- ions, which are facilely fixed within the LDH gallery in virtue of electrostatic attraction. Meanwhile, the S22-/S2- themselves are oxidized to S8 and SO42-, while Mo4+ is oxidized (by O2 in air) to Mo6+, which combines with SO42- forming amorphous Mo(SO4)3. With the collective interactions of chemical and physical adsorption, the Mo3S13-LDH demonstrates an extremely large iodine adsorption capacity of 1580 mg/g. Under γ radiation, the structure of Mo3S13-LDH well maintains and iodine adsorption capability does not deteriorate, indicating the good irradiation resistance. This work provides an important reference to tailor cost-effective sorbents for trapping iodine from radioactive nuclear wastes.
Collapse
Affiliation(s)
- Chaonan Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chang Miao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Senkai Han
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Huiqin Yao
- College of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Qiangqiang Zhong
- Third Institute of Oceanography, Ministry of Natural Resource, Xiamen 361005, China.
| | - Shulan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
6
|
Sanchis-Gual R, Jaramillo-Hernández C, Hunt D, Seijas-Da Silva Á, Mizrahi M, Marini C, Oestreicher V, Abellán G. Influence of Crystallographic Structure and Metal Vacancies on the Oxygen Evolution Reaction Performance of Ni-based Layered Hydroxides. Chemistry 2024; 30:e202303146. [PMID: 37967023 DOI: 10.1002/chem.202303146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Nickel-based layered hydroxides (LHs) are a family of efficient electrocatalysts for the alkaline oxygen evolution reaction (OER). Nevertheless, fundamental aspects such as the influence of the crystalline structure and the role of lattice distortion of the catalytic sites remain poorly understood and typically muddled. Herein, we carried out a comprehensive investigation on ɑ-LH, β-LH and layered double hydroxide (LDH) phases by means of structural, spectroscopical, in-silico and electrochemical studies, which suggest the key aspect exerted by Ni-vacancies in the ɑ-LH structure. Density functional theory (DFT) calculations and X-ray absorption spectroscopy (XAS) confirm that the presence of Ni-vacancies produces acute distortions of the electroactive Ni sites (reflected as the shortening of the Ni-O distances and changes in the O-Ni-O angles), triggering the appearance of Ni localised electronic states on the Fermi level, reducing the Egap, and consequently, increasing the reactivity of the electroactive sites in the ɑ-LH structure. Furthermore, post-mortem Raman and XAS measurements unveil its transformation into a highly reactive oxyhydroxide-like phase that remains stable under ambient conditions. Hence, this work pinpoints the critical role of the crystalline structure as well as the electronic properties of LH structures on their inherent electrochemical reactivity towards OER catalysis. We envision Ni-based ɑ-LH as a perfect platform for hosting trivalent cations, closing the gap toward the next generation of benchmark efficient earth-abundant electrocatalysts.
Collapse
Affiliation(s)
- Roger Sanchis-Gual
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Camilo Jaramillo-Hernández
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Diego Hunt
- Departamento de Física de la Materia Condensada, GiyA, Instituto de Nanociencia y Nanotecnología, CNEA-CAC-CONICET, Av. Gral. Paz, 1650, San Martín, Buenos Aires, Argentina
| | - Álvaro Seijas-Da Silva
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Martín Mizrahi
- Instituto de Investigaciones Fisicoquímicas Técnicas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata CCT La Plata- CONICET., Diagonal 113 y 64, 1900, La Plata, Argentina
- Facultad de Ingeniería, Universidad Nacional de La Plata, Calle 1 esq. 47, 1900, La Plata, Argentina
| | - Carlo Marini
- CELLS-ALBA Synchrotron, Cerdanyola del Vallès, 08290, Barcelona, Spain
| | - Víctor Oestreicher
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| |
Collapse
|
7
|
Gao F, Wang X, Cui WG, Liu Y, Yang Y, Sun W, Chen J, Liu P, Pan H. Topologically Porous Heterostructures for Photo/Photothermal Catalysis of Clean Energy Conversion. SMALL METHODS 2023; 7:e2201532. [PMID: 36813753 DOI: 10.1002/smtd.202201532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/26/2023] [Indexed: 06/18/2023]
Abstract
As a straightforward way to fix solar energy, photo/photothermal catalysis with semiconductor provides a promising way to settle the energy shortage and environmental crisis in many fields, especially in clean energy conversion. Topologically porous heterostructures (TPHs), featured with well-defined pores and mainly composed by the derivatives of some precursors with specific morphology, are a major part of hierarchical materials in photo/photothermal catalysis and provide a versatile platform to construct efficient photocatalysts for their enhanced light absorption, accelerated charges transfer, improved stability, and promoted mass transportation. Therefore, a comprehensive and timely review on the advantages and recent applications of the TPHs is of great importance to forecast the potential applications and research trend in the future. This review initially demonstrates the advantages of TPHs in photo/photothermal catalysis. Then the universal classifications and design strategies of TPHs are emphasized. Besides, the applications and mechanisms of photo/photothermal catalysis in hydrogen evolution from water splitting and COx hydrogenation over TPHs are carefully reviewed and highlighted. Finally, the challenges and perspectives of TPHs in photo/photothermal catalysis are also critically discussed.
Collapse
Affiliation(s)
- Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xinqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yanxia Liu
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Ping Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
8
|
Charalambous C, Xu S, Ding S, Chansai S, Asuquo E, Torres Lopez A, Parlett CMA, Gilmour JD, Garforth A, Hardacre C. Non-thermal plasma activated CO2 hydrogenation over K- and La- promoted layered-double hydroxide supported Ni catalysts. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1027167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The catalytic conversion of CO2 to CH4 and CO over nickel particles supported on layered-double hydroxide (MgAl) with different metal promoters was investigated under non-thermal plasma (NTP) conditions. It has been shown that lanthanum-promoted Ni catalysts significantly enhanced the CO2 conversion in comparison to the 10Ni/MgAl catalyst (33.4% vs. 89.3%). In comparison, for the potassium-promoted catalysts, CO2 conversion is similar to that of 10Ni/MgAl but the CO selectivity increased significantly (35.7% vs. 62.0%). The introduction of La and K to Ni catalysts increased the Ni dispersion and improved the reducibility of Ni species, thus affecting CO2 conversion and product selectivity. In situ DRIFTS showed similar reaction pathways for La- and K- promoted catalysts with Ni catalysts. However, the La and K promoters significantly improved the formation of formate species on the Ni surface, facilitating CO2 conversion to useful products.
Collapse
|
9
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
10
|
Heterogeneous asymmetric β-C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Hussien AGS, Polychronopoulou K. A Review on the Different Aspects and Challenges of the Dry Reforming of Methane (DRM) Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3400. [PMID: 36234525 PMCID: PMC9565677 DOI: 10.3390/nano12193400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Accepted: 07/14/2022] [Indexed: 06/16/2023]
Abstract
The dry reforming of methane (DRM) reaction is among the most popular catalytic reactions for the production of syngas (H2/CO) with a H2:CO ratio favorable for the Fischer-Tropsch reaction; this makes the DRM reaction important from an industrial perspective, as unlimited possibilities for production of valuable products are presented by the FT process. At the same time, simultaneously tackling two major contributors to the greenhouse effect (CH4 and CO2) is an additional contribution of the DRM reaction. The main players in the DRM arena-Ni-supported catalysts-suffer from both coking and sintering, while the activation of the two reactants (CO2 and CH4) through different approaches merits further exploration, opening new pathways for innovation. In this review, different families of materials are explored and discussed, ranging from metal-supported catalysts, to layered materials, to organic frameworks. DRM catalyst design criteria-such as support basicity and surface area, bimetallic active sites and promoters, and metal-support interaction-are all discussed. To evaluate the reactivity of the surface and understand the energetics of the process, density-functional theory calculations are used as a unique tool.
Collapse
Affiliation(s)
- Aseel G. S. Hussien
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Kyriaki Polychronopoulou
- Department of Mechanical Engineering, Khalifa University of Science and Technology, Main Campus, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
12
|
Zhou Z, Gao P. Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64107-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Arumugam B, Ramaraj SK. Insights into the Design and Electrocatalytic Activity of Magnesium Aluminum Layered Double Hydroxides: Application to Nonenzymatic Catechol Sensor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4848-4858. [PMID: 35413192 DOI: 10.1021/acs.langmuir.1c03494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design of an efficient electrocatalyst for effective trace level determinations of noxious synthetic and or biological compounds is the unceasingly noteworthy conceptual approach for rapid technology. In this work, we designed a magnesium-aluminum layered double hydroxides (Mg-Al LDHs) nanocatalyst and applied it to the electrocatalytic determination of an extremely carcinogenic catechol sensor. A coprecipitation method was employed for synthesizing the nanocatalyst, and the structure, porous nature, and morphology were confirmed by X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm, field emission-scanning electron microscopy, and transmission electron microscopy. The elemental composition was observed by energy dispersive X-ray analysis. The electrochemical studies were investigated with the help of cyclic voltammetry and differential pulse voltammetry techniques. The Mg-Al LDHs-based electrocatalyst was used to detect catechol by electrochemical measurements with different parameters. The proposed catechol sensor shows a wide dynamic range (0.007-200 μM) with a lower level of detection (2.3 nm) and sensitivity (3.57 μA μM-1 cm-2). The excellent sensor performance is attributed to the high surface area, fast electron transfer, more active sites, and excellent flexibility. This study depicts the proposed sensor as probable to practical in a scientific investigation. In addition, the modified electrode showed greater selectivity and was used in the detection of fatal contaminants in instant treatment strategies. Moreover, the Mg-Al LDHs confirmed auspicious real sample scrutiny with noteworthy retrieval outcomes in lake water samples which exposed improved consequences.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai - 625009, Tamil Nadu India
| |
Collapse
|
14
|
Zheng J, Li W, Tang R, Xiong S, Gong D, Deng Y, Zhou Z, Li L, Su L, Yang L. Ultrafast photodegradation of nitenpyram by Ag/Ag 3PO 4/Zn-Al LDH composites activated by persulfate system: Removal efficiency, degradation pathway and reaction mechanism. CHEMOSPHERE 2022; 292:133431. [PMID: 34968516 DOI: 10.1016/j.chemosphere.2021.133431] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
In this study, an investigation is conducted into the degradation of nitenpyram (NTP) using highly efficient APMMO/PDS/Vis system. As photocatalysts, silver phosphate (AP) and calcined Zn-Al layered double hydroxides (MMO) exhibit high efficiency in achieving charge separation. Besides, the injection of electrons into peroxydisulfate (PDS) from the APMMO can contribute to obtaining the species in the active state with higher efficiency. Based on the APMMO/PDS/Vis system, 50 mg/L of nitenpyram (NTP, 50 mL) can be completely removed in 60 min using 0.8 g/L photocatalyst and 0.2 g/L PDS under the optimum condition and visible light (780 nm > λ > 420 nm). Meanwhile, as demonstrated under visible light within 30 min, an ultrahigh degradation efficiency can be achieved by NTP based on APMMO1/PDS/Vis system. Besides, the electron paramagnetic resonance (EPR) technique and radical quenching experiments suggested 1O2, h+, SO4-•, •O2-, and •OH are all contributory to the removal of pollutants. Given the outcomes achieved by LC/MS system and mass spectrometry, the primary degradation intermediates of NTP end up being converted into photodegradation products (such as 2-Chloropyridine, 6-Chloropurine Riboside and dl-Leucine). Additionally, there are three potential photodegradation pathways to NTP degradation have been deployed. Moreover, the NTP light degradation occurring in APMMO1/PDS/Vis system is competent under the three types of real water sample. Accordingly, the high-efficiency APMMO1/PDS/Vis system is fit for use in water pollution control for agricultural productions.
Collapse
Affiliation(s)
- Jiangfu Zheng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Wenbo Li
- Hunan Province Environmental Protection Engineering Center for Organic Pollution Control of UrbanWater and Wastewater, Changsha, 410001, Hunan, China
| | - Rongdi Tang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Sheng Xiong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Daoxin Gong
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Yaocheng Deng
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China.
| | - Zhanpeng Zhou
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Ling Li
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Long Su
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Lihua Yang
- College of Resources & Environment, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
15
|
A Comprehensive Review of Layered Double Hydroxide-Based Carbon Composites as an Environmental Multifunctional Material for Wastewater Treatment. Processes (Basel) 2022. [DOI: 10.3390/pr10040617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
As is well known, hydrotalcite-like compounds, such as layered-double-hydroxide (LDH) materials, have shown great potential applications in many fields owing to their unique characteristics, including a higher anion exchange capacity, a structure memory effect, low costs, and remarkable recyclability. While the lower surface area and leaching of metal ions from LDH composites reduce the process efficiency of the catalyst, combining LDH materials with other materials can improve the surface properties of the composites and enhance the catalytic performance. Among organic compounds, carbon materials can be used as synergistic materials to overcome the defects of LDHs and provide better performance for environmental functional materials, including adsorption materials, electrode materials, photocatalytic materials, and separation materials. Therefore, this article comprehensively reviews recent works on the preparation and application of layered double-hydroxide-based carbon (LDH–C) composites as synergistic materials in the field of environmental remediation. In addition, their corresponding mechanisms are discussed in depth. Finally, some perspectives are proposed for further research directions on exploring efficient and low-cost clay composite materials.
Collapse
|
16
|
Bi ZX, Guo RT, Hu X, Wang J, Chen X, Pan WG. Research progress on photocatalytic reduction of CO 2 based on LDH materials. NANOSCALE 2022; 14:3367-3386. [PMID: 35187556 DOI: 10.1039/d1nr08235c] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Converting CO2 to renewable fuels or valuable carbon compounds is an effective way to solve the global warming and energy crisis. Compared with other CO2 conversion methods, photocatalytic reduction of CO2 is more energy-saving, environmentally friendly, and has a broader application prospect. Layered double hydroxide (LDH) has attracted widespread attention as a two-dimensional material, composed of metal hydroxide layers, interlayer anions and water molecules. This review briefly introduces the basic theory of photocatalysis and the mechanism of CO2 reduction. The composition and properties of LDH are introduced. The research progress on LDH in the field of photocatalytic reduction of CO2 is elaborated from six aspects: directly as a catalyst, as a precursor for a catalyst, and by modification, intercalation, supporting with other materials and construction of a heterojunction. Finally, the development prospects of LDH are put forward. This review could provide an effective reference for the development of more efficient and reasonable photocatalysts based on LDH.
Collapse
Affiliation(s)
- Zhe-Xu Bi
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| | - Xing Hu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Juan Wang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Xin Chen
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China.
- Shanghai Engineering Research Center of Power Generation Environment Protection, Shanghai, China
| |
Collapse
|
17
|
Li K, Ma X, He S, Wang L, Yang X, Zhang G, Guan S, Qu X, Zhou S, Xu B. Ultrathin Nanosheet-Supported Ag@Ag 2O Core-Shell Nanoparticles with Vastly Enhanced Photothermal Conversion Efficiency for NIR-II-Triggered Photothermal Therapy. ACS Biomater Sci Eng 2022; 8:540-550. [PMID: 35107009 DOI: 10.1021/acsbiomaterials.1c01291] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photothermal therapy (PTT) working in the second near-infrared (NIR-II) region has aroused a huge interest due to its potential application in terms of clinical cancer treatment. However, owing to the lack of photothermal nanoagents with high photothermal conversion efficiency, NIR-II-driven PTT still suffers from poor efficiency and subsequent cancer recurrence. In this work, we show a new and highly efficient preparation approach for NIR-II photothermal nanoagents and tailor ultrathin layered double hydroxide (LDH)-supported Ag@Ag2O core-shell nanoparticles (Ag@Ag2O/LDHs-U), vastly improving NIR-II photothermal performance. A combination study (high-resolution transmission electron microscopy (HRTEM), extended X-ray absorption fine structure spectroscopy (EXAFS), and X-ray photoelectron spectroscopy (XPS)) verifies that ultrafine Ag@Ag2O core-shell nanoparticles (∼3.8 nm) are highly dispersed and firmly immobilized within ultrathin LDH nanosheets, and their Ag2O shell possesses abundant vacancy-type defects. These unique Ag@Ag2O/LDHs-U display an impressive photothermal conversion efficiency as high as 76.9% at 1064 nm. Such an excellent photothermal performance is likely attributed to the enhanced localized surface plasmon resonance (LSPR) coupling effect between Ag and Ag2O and the reduced band gap caused by vacancy-type defects in the Ag2O shell. Meanwhile, Ag@Ag2O/LDHs-U also show prominent photothermal stability, due to the unique supported core-shell nanostructure. Moreover, both in vitro and in vivo studies further confirm that Ag@Ag2O/LDHs-U possess good biocompatible properties and outstanding PTT therapeutic efficacy in the NIR-II region. This research shows a new strategy in the rational design and preparation of an efficient photothermal agent, which is helpful to achieve more accurate and effective cancer theranostics.
Collapse
Affiliation(s)
- Kunle Li
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Xiaotong Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xueting Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guiju Zhang
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| |
Collapse
|
18
|
Li J, Yu H, Yan T, Sun M, Li X, Song W, Yan L. Insight into the enhanced visible-light photoreduction of aqueous Cr(VI) by assembled Fe3O4/LDO/BiOBr composites. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
19
|
Akgul D, Kurtoğlu SF, Zhao Y, Fındık V, Monari A, Uzun A, Aviyente V. Influence of ionic liquids on the electronic environment of atomically dispersed Ir on (MgO) (100). Phys Chem Chem Phys 2022; 24:11305-11314. [DOI: 10.1039/d2cp00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, ionic liquids (ILs) have been used as ligands for single-site Ir(CO)2 complexes bound to metal-oxide supports because of their electron-donor/acceptor capacities. The combined effects of supports and ILs as...
Collapse
|
20
|
Catalytic Synthesis of Methacrolein via the Condensation of Formaldehyde and Propionaldehyde with L-Proline Intercalated Layered Double Hydroxides. Catalysts 2021. [DOI: 10.3390/catal12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aldol condensation reactions are very important C–C coupling reactions in organic chemistry. In this study, the catalytic performance of layered double hydroxides (LDHs) in the aldol condensation reaction of formaldehyde (FA) and propionaldehyde (PA) was investigated. The MxAl-LDHs (denoted as re-MxAl–LDHs; M = Ca and Mg; X = 2–4), as heterogeneous basic catalysts toward the aldol condensation reaction, were prepared via a two-step procedure. The catalyst exhibited a high PA conversion (82.59%), but the methacrolein (MAL) selectivity was only 36.01% due to the limitation of the alkali-catalyzed mechanism. On this basis, the direct intercalation of L-proline into LDHs also has been investigated. The influences of several operating conditions, including the temperature, reaction time, and substrate content, on the reaction results were systematically studied, and the optimized reaction conditions were obtained. The optimized Mg3Al–Pro-LDHs catalyst exhibited a much higher MAL selectivity than those of re-MgxAl–LDHs.
Collapse
|
21
|
Thomas AM, Yoon C, Ippili S, Jella V, Yang TY, Yoon G, Yoon SG. High-Performance Flexible Ultraviolet Photodetectors Based on Facilely Synthesized Ecofriendly ZnAl:LDH Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61434-61446. [PMID: 34908392 DOI: 10.1021/acsami.1c19313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies have focused on the development of efficient, flexible, and highly sensitive ultraviolet photodetectors (UV PDs) with various wide band-gap materials. In the present study, the application of environmentally friendly zinc-aluminum layered double hydroxide (ZnAl-CO3:LDH) is demonstrated for a high-performance, flexible UV PD. The vertically oriented ZnAl:LDH nanosheets (ZnAl:LDH Ns) are facilely synthesized by dipping the sputtered 10 wt % aluminum-doped zinc oxide thin films in deionized water at room temperature. Without passivation, the UV PDs exhibit an exceptional light-to-dark current ratio of 104 and a responsivity of ∼34.7 mA/W at a bias of 1 V. Moreover, the spectral responsivity and detectivity are enhanced to ∼148.3 mA/W and 2.5 × 1012 Jones, respectively, by passivating the ZnAl:LDH Ns with polydimethylsiloxane (PDMS), thus making the device suitable for application in UV detectors. In addition, the ambient atmosphere effect on PD performance, which elucidates the clear understanding of the PD working mechanism, is also investigated. The passivation of the Ns by PDMS also helps to enhance the mechanical robustness and long-term stability of the PD. The methodology demonstrated herein highlights the potential of the ZnAl:LDH material in realizing the next generation of flexible UV PDs.
Collapse
Affiliation(s)
- Alphi Maria Thomas
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| | - Chongsei Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Swathi Ippili
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| | - Venkatraju Jella
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| | - Tae-Youl Yang
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| | - Giwan Yoon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Soon-Gil Yoon
- Department of Materials Science and Engineering, Chungnam National University, Daeduk Science Town, 34134 Daejeon, Republic of Korea
| |
Collapse
|
22
|
Zvaigzne M, Samokhvalov P, Gun'ko YK, Nabiev I. Anisotropic nanomaterials for asymmetric synthesis. NANOSCALE 2021; 13:20354-20373. [PMID: 34874394 DOI: 10.1039/d1nr05977g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The production of enantiopure chemicals is an essential part of modern chemical industry. Hence, the emergence of asymmetric catalysis led to dramatic changes in the procedures of chemical synthesis, and now it provides the most advantageous and economically executable solution for large-scale production of chiral chemicals. In recent years, nanostructures have emerged as potential materials for asymmetric synthesis. Indeed, on the one hand, nanomaterials offer great opportunities as catalysts in asymmetric catalysis, due to their tunable absorption, chirality, and unique energy transfer properties; on the other hand, the advantages of the larger surface area, increased number of unsaturated coordination centres, and more accessible active sites open prospects for catalyst encapsulation, partial or complete, in a nanoscale cavity, pore, pocket, or channel leading to alteration of the chemical reactivity through spatial confinement. This review focuses on anisotropic nanomaterials and considers the state-of-the-art progress in asymmetric synthesis catalysed by 1D, 2D and 3D nanostructures. The discussion comprises three main sections according to the nanostructure dimensionality. We analyze recent advances in materials and structure development, discuss the functional role of the nanomaterials in asymmetric synthesis, chirality, confinement effects, and reported enantioselectivity. Finally, the new opportunities and challenges of anisotropic 1D, 2D, and 3D nanomaterials in asymmetric synthesis, as well as the future prospects and current trends of the design and applications of these materials are analyzed in the Conclusions and outlook section.
Collapse
Affiliation(s)
- Mariya Zvaigzne
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Pavel Samokhvalov
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Yurii K Gun'ko
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- School of Chemistry, Trinity College, the University of Dublin, Dublin 2, Ireland.
| | - Igor Nabiev
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, 51 rue Cognacq Jay, Université de Reims Champagne-Ardenne, 51100 Reims, France
- Sechenov First Moscow State Medical University (Sechenov University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| |
Collapse
|
23
|
Pan Q, Zheng F, Deng D, Chen B, Wang Y. Interlayer Spacing Regulation of NiCo-LDH Nanosheets with Ultrahigh Specific Capacity for Battery-Type Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56692-56703. [PMID: 34787409 DOI: 10.1021/acsami.1c19320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The transition metal-based layered double hydroxides (LDHs) have been extensively studied as promising functional nanomaterials owing to their excellent electrochemical activity and tunable chemical composition. In this work, using acetate anions (Ac-) as intercalating elements, the NiCo-LDH nanosheets arraying on Ni foam with different amounts of Ac- anion intercalation or volume of hydrothermal solution were prepared by a simple hydrothermal method. The optimized amount of Ac- anions expanded the interlayer space of LDH nanosheets from 0.8 to 0.94 nm. An ultrahigh specific capacity of 1200 C g-1 at 1 A g-1 (690 C g-1 without Ac- anions), an outstanding rate capability of 72.5% at 30 A g-1, and a cycle stability of 79.90% after 4500 cycles were mainly attributed to the higher interlayer spacing of Ac- anion intercalation. The enlarged interlayer spacing was beneficial for stabilizing the α-phase of LDHs and accelerating the electron transport and electrolyte penetration in the electrochemical reaction. This work sheds light on the mechanisms of the interlayer spacing regulation of NiCo-LDH nanosheets and offers a promising strategy to synthesize functional nanomaterials with excellent electrochemical performance via integrating their unique layered structure and interlayer anion exchange characteristics.
Collapse
Affiliation(s)
- Qianfeng Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Fenghua Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Dingfei Deng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bo Chen
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Yang Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, China
| |
Collapse
|
24
|
Zhang L, Dang Y, Zhou X, Gao P, Petrus van Bavel A, Wang H, Li S, Shi L, Yang Y, Vovk EI, Gao Y, Sun Y. Direct conversion of CO 2 to a jet fuel over CoFe alloy catalysts. ACTA ACUST UNITED AC 2021; 2:100170. [PMID: 34704085 PMCID: PMC8523875 DOI: 10.1016/j.xinn.2021.100170] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
The direct conversion of carbon dioxide (CO2) using green hydrogen is a sustainable approach to jet fuel production. However, achieving a high level of performance remains a formidable challenge due to the inertness of CO2 and its low activity for subsequent C–C bond formation. In this study, we prepared a Na-modified CoFe alloy catalyst using layered double-hydroxide precursors that directly transforms CO2 to a jet fuel composed of C8–C16 jet-fuel-range hydrocarbons with very high selectivity. At a temperature of 240°C and pressure of 3 MPa, the catalyst achieves an unprecedentedly high C8–C16 selectivity of 63.5% with 10.2% CO2 conversion and a low combined selectivity of less than 22% toward undesired CO and CH4. Spectroscopic and computational studies show that the promotion of the coupling reaction between the carbon species and inhibition of the undesired CO2 methanation occur mainly due to the utilization of the CoFe alloy structure and addition of the Na promoter. This study provides a viable technique for the highly selective synthesis of eco-friendly and carbon-neutral jet fuel from CO2. An alloy is developed for the direct CO2 hydrogenation to jet-fuel-range hydrocarbons The selectivity of the hydrocarbons (63.5%) exceeds the theoretical maximum value The CoFe alloy is the active phase in the coupling reaction between surface carbons The CoFe alloy is a highly efficient catalyst in the presence of a sodium promoter
Collapse
Affiliation(s)
- Lei Zhang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China
| | - Yaru Dang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Peng Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Hao Wang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lei Shi
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yong Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Evgeny I Vovk
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yihao Gao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Shanghai Institute of Clean Technology, Shanghai 201620, China
| |
Collapse
|
25
|
Synthesis, Characterization and Photocatalytic Performance of Calcined ZnCr-Layered Double Hydroxides. NANOMATERIALS 2021; 11:nano11113051. [PMID: 34835815 PMCID: PMC8623791 DOI: 10.3390/nano11113051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
The development of new materials for performing photocatalytic processes to remove contaminants is an interesting and important research line due to the ever-increasing number of contaminants on our planet. In this sense, we developed a layered double hydroxide material based on Zn and Cr, which was transformed into the corresponding oxide by heat treatment at 500 °C. Both materials were widely characterized for their elemental composition, and structural, morphological, optical and textural properties using several experimental techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, UV-vis spectroscopy and physisorption techniques. In addition, the photocatalytic activity of both materials was analysed. The calcined one showed interesting photocatalytic activity in photodegradation tests using crystal violet dye. The operational parameters for the photocatalytic process using the calcined material were optimised, considering the pH, the initial concentration of the dye, the catalyst load, and the regeneration of the catalyst. The catalyst showed good photocatalytic activity, reaching a degradation of 100% in the optimised conditions and showing good performance after five photodegradation cycles.
Collapse
|
26
|
Synthesis and Structural Analysis of Ternary Ca–Al–Fe Layered Double Hydroxides with Different Iron Contents. CRYSTALS 2021. [DOI: 10.3390/cryst11111296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hydrocalumite structured layered double hydroxides (LDHs) with various Fe3+ ratios were prepared through a coprecipitation method. In order to control the Fe3+ content in LDH, binary Ca–Fe LDHs were first synthesized with various Ca/Fe ratios. The X-ray diffraction pattern showed that only a limited Ca/Fe ratio resulted in LDH formation. The Fe3+ content in LDH was controlled by applying Al3+ while the divalent and trivalent metal ratio was set to 2. Through X-ray diffraction patterns, ternary LDHs with Ca–Al–Fe composition were successfully synthesized without significant impurities, with the Al increasing crystallinity. Quantification showed that Al moiety participated in the formation of the LDH framework more than Ca and Fe, implying a structural stabilization in the presence of Al. In order to investigate the global and local structure of Fe moiety in the LDH, both solid state UV-vis and X-ray absorption spectroscopies were carried out. Both spectroscopies revealed that the existence of Al induced slight local distortion in coordination but global crystal stabilization.
Collapse
|
27
|
An Z, Tang Y, Jiang Y, Han H, Ping Q, Wang W, Zhu Y, Song H, Shu X, Xiang X, He J. Enhanced enantioselectivity in heterogeneous manganese-catalyzed asymmetric epoxidation with nanosheets modified amino acid Schiff bases as ligands by modulating the orientation and the arrangement order. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Landeros JM, Cruz‐Hernández C, Juaristi E. α‐Amino Acids and α,β‐Dipeptides Intercalated into Hydrotalcite: Efficient Catalysts in the Asymmetric Michael Addition Reaction of Aldehydes to
N
‐Substituted Maleimides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- José M. Landeros
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
| | - Carlos Cruz‐Hernández
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados Instituto Politécnico Nacional Avenida IPN #2508 07360 Ciudad de México Mexico
- El Colegio Nacional Luis González Obregón 23, Centro Histórico 06020 Ciudad de México Mexico
| |
Collapse
|
29
|
Vigna L, Nigro A, Verna A, Ferrari IV, Marasso SL, Bocchini S, Fontana M, Chiodoni A, Pirri CF, Cocuzza M. Layered Double Hydroxide-Based Gas Sensors for VOC Detection at Room Temperature. ACS OMEGA 2021; 6:20205-20217. [PMID: 34395971 PMCID: PMC8358945 DOI: 10.1021/acsomega.1c02038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Miniaturized low-cost sensors for volatile organic compounds (VOCs) have the potentiality to become a fundamental tool for indoor and outdoor air quality monitoring, to significantly improve everyday life. Layered double hydroxides (LDHs) belong to the class of anionic clays and are largely employed for NO x detection, while few results are reported on VOCs. In this work, a novel LDH coprecipitation method is proposed. For the first time, a study comparing four LDHs (ZnAl-Cl, ZnFe-Cl, ZnAl-NO3, and MgAl-NO3) is carried out to investigate the sensing performances. As explored through several microscopy and spectroscopy analyses, LDHs show a morphology characterized by a large surface area and a three-dimensional hierarchical flowerlike architecture with micro- and nanopores that induce a fast diffusion and highly effective surface interaction of the target gases. The fabricated sensors, operating at room temperature, are able to reversibly and selectively detect acetone, ethanol, ammonia, and chlorine vapors, reaching significant sensing response values up to 6% at 21 °C. The results demonstrate that by changing the LDHs' composition, it is possible to modulate the sensitivity and selectivity of the sensor, helping the discrimination of different analytes, and the consequent integration on a sensor array paves the way for electronic nose development.
Collapse
Affiliation(s)
- Lorenzo Vigna
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Arianna Nigro
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Alessio Verna
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Ivan Vito Ferrari
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Simone Luigi Marasso
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| | - Sergio Bocchini
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Marco Fontana
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Angelica Chiodoni
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Candido Fabrizio Pirri
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- Center
for Sustainable Future Technologies, Istituto
Italiano di Tecnologia, Via Livorno 60, 10144 Torino, Italy
| | - Matteo Cocuzza
- Dipartimento
di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
- CNR-IMEM, Parco Area delle Scienze 37a, 43124 Parma, Italy
| |
Collapse
|
30
|
Shi K, Xu X, Dong S, Li B, Han J. Stretchable gas barrier films achieved by hydrogen‐bond self‐assembly of nano‐brick multilayers. AIChE J 2021. [DOI: 10.1002/aic.17373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kaiqiang Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Xiaozhi Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Siyuan Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Biao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Jingbin Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
31
|
Song X, Ye S, Zhou X, Gui W, Yang C, Yang Z. Construction of Z-scheme NiO/NiC/g-C 3N 4 composites using NiC as novel cocatalysts for the efficient photocatalytic degradation. RSC Adv 2021; 11:24822-24835. [PMID: 35481003 PMCID: PMC9036862 DOI: 10.1039/d1ra03562b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022] Open
Abstract
A novel composite consisting of NiO/NiC/g-C3N4 with excellent photocatalytic properties was successfully synthesized by the simple calcination of layered double metal hydroxide (LDH) and melamine. The color and chemical composition of the as-prepared composites could be tailored by changing the mass ratio of NiAl-LDH and g-C3N4. For the L4C composite at the ratio of 1 : 1, it showed the desired dark color due to the generated NiC. It also showed high photodegradation efficiency under visible light irradiation, reaching 97.5% toward Rhodamine B and 92.6% toward tetracycline. The high photodegradation efficiency could be mainly attributed to the unique formation of NiC cocatalysts coupled with g-C3N4 and NiO semiconductors, which constructed a Z-scheme system and facilitated the efficient separation of the photogenerated electron-hole pairs. The present findings provide a promising approach for fabricating the new types of composite photocatalysts for pollutant degradation.
Collapse
Affiliation(s)
- Xiaojie Song
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| | - Sisi Ye
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| | - Xin Zhou
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| | - Wanrui Gui
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| | - Can Yang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| | - Zhihong Yang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences Wuhan 430074 China +86-27-67884814
| |
Collapse
|
32
|
Li K, He S, Wang L, Guan S, Zhou S, Xu B. Electron Donor-Acceptor Effect-Induced Organic/Inorganic Nanohybrids with Low Energy Gap for Highly Efficient Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17920-17930. [PMID: 33827214 DOI: 10.1021/acsami.1c00554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
For the design and optimization of near-infrared photothermal nanohybrids, tailoring the energy gap of nanohybrids plays a crucial role in attaining a satisfactory photothermal therapeutic efficacy for cancer and remains a challenge. Herein, we report an electron donor-acceptor effect-induced organic/inorganic nanohybrid with a low energy gap (denoted as ICG/Ag/LDH) by the in situ deposition of Ag nanoparticles onto the CoAl-LDH surface, followed by the coupling of ICG. A combination study verifies that the supported Ag nanoparticles as the electron donor (D) push electrons into the conjugated system of ICG by the electronic interaction between ICG and Ag, while OH groups of LDHs as the electron acceptor (A) pull electrons from the conjugated system of ICG by hydrogen bonding (N···H-O). This induces the formation of the D-A conjugated π-system and has a strong influence on the π-conjugated system of ICG, thus leading to a prominent decrease toward the energy gap and correspondingly an ultra-long redshift (∼115 nm). The resulting ICG/Ag/LDHs show an enhanced photothermal conversion efficiency (∼45.5%) at 808 nm laser exposure, which is ∼1.6 times larger than that of ICG (∼28.4%). Such a high photothermal performance is attributed to the fact that ICG/Ag/LDHs possess a D-π-A hybrid structure and a resulting lower energy gap, thus effectively promoting nonradiative transitions and leading to enhancement of the photothermal effect. Both in vitro and in vivo results confirm the good biocompatible properties and capability of the ICG/Ag/LDHs for NIR-triggered cancer treatment. This research demonstrates a successful paradigm for the rational design and preparation of new nanohybrids through the modulation of electron donor-acceptor effect, which offers a new avenue to achieve efficient phototherapeutic agent for improving the cancer therapeutic outcomes.
Collapse
Affiliation(s)
- Kunle Li
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials. Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials. Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
| | - Shuyun Zhou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials. Chinese Academy of Sciences, Technical Institute of Physics and Chemistry, Beijing 100190, P. R. China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, 11 Fucheng Road, Haidian District, Beijing 100048, P. R. China
| |
Collapse
|
33
|
Sun X, Li S, Cao J, Wang Y, Yang W, Zhang L, Liu Y, Qiu J, Tao S. A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17429-17438. [PMID: 33827215 DOI: 10.1021/acsami.0c22284] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Suzuki cross-coupling reactions catalyzed by palladium are authoritative protocols in fine-chemical synthesis. Mass transfer and catalyst activity are both significant factors affecting the reaction efficiency in heterogeneous reactions. Although the holistic catalysts hold great promise in heterogeneous reactions due to the enhanced mass transport and convenient recycling, the unsatisfied catalytic activity has impeded further large-scale applications. In addition, another pronounced barrier is the product separation in the intricate system. Here, the catalytic production and separation of biphenyl (purity of 99.7%) were achieved by integrating the Suzuki cross-coupling reactions and the crystallization separation for the first time. A hierarchical-structured impeller with Pd nanoparticles (NPs) loaded on the Ni(OH)2 nanosheets was prepared to catalyze the Suzuki reactions for bromobenzene, which exhibits a high turnover frequency (TOF) value of 25,976 h-1 and a yield of 99.5%. The X-ray absorption fine structure (XAFS) analysis has unveiled that the electron transfer between the Pd NPs and Ni(OH)2 accounts for the greatly enhanced catalytic activity. The findings inspire new insights toward rational engineering of highly efficient holistic catalysts for Suzuki reaction, and the innovative integrated technology offers an avenue for the separation and collection of products.
Collapse
Affiliation(s)
- Xueyan Sun
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shaofeng Li
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinzhe Cao
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuchao Wang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wenbo Yang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lijing Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jieshan Qiu
- State Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- Department of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
34
|
Annalakshmi M, Kumaravel S, Chen TW, Chen SM, Lou BS. 3D Flower-like NiCo Layered Double Hydroxides: An Efficient Electrocatalyst for Non-Enzymatic Electrochemical Biosensing of Hydrogen Peroxide in Live Cells and Glucose in Biofluids. ACS APPLIED BIO MATERIALS 2021; 4:3203-3213. [PMID: 35014407 DOI: 10.1021/acsabm.0c01600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herein, a hierarchical structure of flower-like NiCo layered double hydroxides (NiCo LDH) microspheres composed of three-dimensional (3D) ultrathin nanosheets was successfully synthesized via a facile hydrothermal approach. The formation of NiCo LDH was confirmed by various physicochemical studies, and the NiCo LDH-modified glassy carbon electrode was used as an efficient dual-functional electrocatalyst for non-enzymatic glucose and hydrogen peroxide (H2O2) biosensor. The host matrix of hydrotalcite NiCo LDH exhibits the enhanced electrocatalytic sensing performances with a quick response time (<3 s), wide linear range (50 nM-18.95 mM and 20 nM-11.5 mM) and lowest detection limits (S/N = 3) (10.6 and 4.4 nM) toward glucose and H2O2, and also it exhibits good stability, selectivity, and reproducibility. In addition, this biosensor was successfully utilized to the real-time detection of endogenous H2O2 produced from live cells and glucose in various biological fluids, and demonstrates that the as synthesized NiCo LDH may provide a successful pathway for physiological and clinical pathological diagnosis.
Collapse
Affiliation(s)
- Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Sakthivel Kumaravel
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.,Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Tse-Wei Chen
- Department of Materials, Imperial College London, London SW7 2AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Bih-Show Lou
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan, ROC.,Chemistry Division, Center for General Education, Chang Gung University, Taoyuan 33302, Taiwan, ROC
| |
Collapse
|
35
|
Madhusha C, Rajapaksha K, Munaweera I, de Silva M, Perera C, Wijesinghe G, Weerasekera M, Attygalle D, Sandaruwan C, Kottegoda N. A Novel Green Approach to Synthesize Curcuminoid-Layered Double Hydroxide Nanohybrids: Adroit Biomaterials for Future Antimicrobial Applications. ACS OMEGA 2021; 6:9600-9608. [PMID: 33869940 PMCID: PMC8047737 DOI: 10.1021/acsomega.1c00151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Thermal instability, photodegradation, and poor bioavailability of natural active ingredients are major drawbacks in developing effective natural product-based antimicrobial formulations. These inherited issues could be fruitfully mitigated by the introduction of natural active ingredients into various nanostructures. This study focuses on the development of a novel green mechanochemical synthetic route to incorporate curcuminoids into Mg-Al-layered double hydroxides. The developed one-pot and scalable synthetic approach makes lengthy synthesis procedures using toxic solvents redundant, leading to improved energy efficiency. The hydrotalcite-shaped nanohybrids consist of surface and interlayer curcuminoids that have formed weak bonds with layered double hydroxides as corroborated by X-ray diffractograms, X-ray photoelectron spectra, and Fourier transmission infrared spectra. The structural and morphological properties resulted in increased thermal stability of curcuminoids. Slow and sustained release of the curcuminoids was observed at pH 5.5 for a prolonged time up to 7 h. The developed nanohybrids exhibited zeroth-order kinetics, favoring transdermal application. Furthermore, the efficacy of curcuminoid incorporated LDHs (CC-LDH) as an anticolonization agent was investigated against four wound biofilm-forming pathogens, Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant Staphyloccocus aureus, and Candida albicans, using a broth dilution method and an in vitro biofilm model system. Microbiological studies revealed a 54-58% reduction in biofilm formation ability of bacterial pathogens in developed nanohybrids compared to pure curcuminoids. Therefore, the suitability of these green-chemically synthesized CC-LDH nanohybrids for next-generation antimicrobial applications with advanced dermatological/medical properties is well established.
Collapse
Affiliation(s)
- Chamalki Madhusha
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Kumudu Rajapaksha
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Imalka Munaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Instrument
Center, Faculty of Applied Sciences, University
of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Madhavi de Silva
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Center
for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Chandani Perera
- Department
of Chemistry, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Gayan Wijesinghe
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Manjula Weerasekera
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Dinesh Attygalle
- Department
of Materials Science and Engineering, University
of Moratuwa, Katubedda 10400 Sri Lanka
| | - Chanaka Sandaruwan
- Sri Lanka
Institute of Nanotechnology (SLINTEC), Mahenwatta, Pitipana, Homagama 10206, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Center
for Advanced Materials Research (CAMR), Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| |
Collapse
|
36
|
Xue Y, Xu L, Chen M, Wu CE, Cheng G, Wang N, Hu X. Constructing Ni-based confinement catalysts with advanced performances toward the CO 2 reforming of CH 4: state-of-the-art review and perspectives. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01039e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The concept of Ni-based confinement catalysts has been proposed and developed to address the challenge of the thermal sintering of metallic Ni active sites during CRM by the space and/or lattice confinement effects.
Collapse
Affiliation(s)
- Yingying Xue
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P.R. China
| | - Ge Cheng
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science & Technology, 210044, Nanjing, P.R. China
| | - Ning Wang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P.R. China
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, P.R. China
| |
Collapse
|
37
|
Jiang Z, Wu J, Liu X, Yu H, Jiao C, Shen J, Pei Y. Facile synthesis of MgAl layered double hydroxides by a co-precipitation method for efficient nitrate removal from water: kinetics and mechanisms. NEW J CHEM 2021. [DOI: 10.1039/d1nj02035h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of MgAl-LDH as highly efficient adsorbents for removing low concentrations of NO3− were synthesized. The mechanism of NO3− removal has been comprehensively discussed in terms of its characterization, adsorption kinetics and thermodynamics.
Collapse
Affiliation(s)
- Zhuwu Jiang
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
- College of Civil Engineering
| | - Jiangnan Wu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Xinru Liu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Hai Yu
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Chengyuan Jiao
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Jyunhong Shen
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| | - Yanyan Pei
- College of Ecological Environment and Urban Construction
- Fujian University of Technology
- Fuzhou
- China
| |
Collapse
|
38
|
Lin CW, Lin SX, Kankala RK, Busa P, Deng JP, Lue SI, Liu CL, Weng CF, Lee CH. Surface-functionalized layered double hydroxide nanocontainers as bile acid sequestrants for lowering hyperlipidemia. Int J Pharm 2020; 590:119921. [PMID: 33027632 DOI: 10.1016/j.ijpharm.2020.119921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 01/01/2023]
Abstract
The surface modification of two-dimensional (2D) nanocontainers with versatile chemical functionalities offers enormous advantages in medicine owing to their altered physicochemical properties. In this study, we demonstrate the fabrication of surface-functionalized layered double hydroxides (LDHs) towards their use as effective intestinal bile acid sequestrants. To demonstrate these aspects, the LDHs are initially modified with an amino silane, N1-(3-trimethoxysilylpropyl) diethylenetriamine (LDHs-N3),which, on the one hand, subsequently used for the fabrication of the dendrimer by repetitive immobilization of ethylene diamine using methyl acrylate as a spacer. On the other hand, these surface-functionalized LDHs are wrapped with an anionic enteric co-polymer to not only prevent the degradation but also increase the stability of these 2D nanoplates in an acidic environment of the stomach to explore the in vivo efficacy. In vitro cholic acid adsorption results showed that these surface-functionalized LDHs displayed tremendous adsorption ability of bile salt. Consequently, the bile salt adsorption results in vivo in mice confirmed that the enteric polymer-coated diethylenetriamine silane-modified LDHs, resulting in the reduced cholesterol by 8.2% in the high fat diet-fed mice compared to that of the oil treatment group with augmented 28% of cholesterol, which gained weight by 6.7% in 4 weeks. Notably, the relative organ (liver and kidney) weight analysis and the tissue section of histology results indicated that the modified LDHs showed high biocompatibility in vivo. Together, our findings validate that these surface-functionalized 2D nanoplates have great potential as effective intestinal bile acid sequestrants.
Collapse
Affiliation(s)
- Chiao-Wen Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Shi-Xiang Lin
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ranjith Kumar Kankala
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Prabhakar Busa
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Jin-Pei Deng
- Department of Chemistry, Tamkang University, New Taipei City 251, Taiwan
| | - Sheng-I Lue
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan; Department of Physiology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chen-Lun Liu
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan
| | - Chia-Hung Lee
- Department of Life Science, National Dong Hwa University, Hualien 97401, Taiwan.
| |
Collapse
|
39
|
An Z, Ma H, Han H, Huang Z, Jiang Y, Wang W, Zhu Y, Song H, Shu X, Xiang X, He J. Insights into the Multiple Synergies of Supports in the Selective Oxidation of Glycerol to Dihydroxyacetone: Layered Double Hydroxide Supported Au. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02844] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhe An
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Honghao Ma
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongbo Han
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyu Huang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yitao Jiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenlong Wang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering & Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
40
|
Fabrication of functionalized layered double hydroxide/chitosan nanocomposite with dual responsive drug release for the targeted therapy of breast cancer. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Recent progress on layered double hydroxide (LDH) derived metal-based catalysts for CO2 conversion to valuable chemicals. Catal Today 2020. [DOI: 10.1016/j.cattod.2020.06.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Green Diesel Production over Nickel-Alumina Nanostructured Catalysts Promoted by Copper. ENERGIES 2020. [DOI: 10.3390/en13143707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of nickel–alumina catalysts promoted by copper containing 1, 2, and 5 wt. % Cu and 59, 58, and 55 wt. % Ni, respectively, (symbols: 59Ni1CuAl, 58Ni2CuAl, 55Ni5CuAl) and a non-promoted catalyst containing 60 wt. % Ni (symbol: 60NiAl) were prepared following a one-step co-precipitation method. They were characterized using various techniques (N2 sorption isotherms, XRD, SEM-EDX, XPS, H2-TPR, NH3-TPD) and evaluated in the selective deoxygenation of sunflower oil using a semi-batch reactor (310 °C, 40 bar of hydrogen, 96 mL/min hydrogen flow rate, and 100 mL/1 g reactant to catalyst ratio). The severe control of the co-precipitation procedure and the direct reduction (without previous calcination) of precursor samples resulted in mesoporous nano-structured catalysts (most of the pores in the range 3–5 nm) exhibiting a high surface area (192–285 m2 g−1). The promoting action of copper is demonstrated for the first time for catalysts with a very small Cu/Ni weight ratio (0.02–0.09). The effect is more pronounced in the catalyst with the medium copper content (58Ni2CuAl) where a 17.2% increase of green diesel content in the liquid products has been achieved with respect to the non-promoted catalyst. The copper promoting action was attributed to the increase in the nickel dispersion as well as to the formation of a Ni-Cu alloy being very rich in nickel. A portion of the Ni-Cu alloy nanoparticles is covered by Ni0 and Cu0 nanoparticles in the 59Ni1CuAl and 55Ni5CuAl catalysts, respectively. The maximum promoting action observed in the 58Ni2CuAl catalyst was attributed to the finding that, in this catalyst, there is no considerable masking of the Ni-Cu alloy by Ni0 or Cu0. The relatively low performance of the 55Ni5CuAl catalyst with respect to the other promoted catalysts was attributed, in addition to the partial coverage of Ni-Cu alloy by Cu0, to the remarkably low weak/moderate acidity and relatively high strong acidity exhibited by this catalyst. The former favors selective deoxygenation whereas the latter favors coke formation. Copper addition does not affect the selective-deoxygenation reactions network, which proceeds predominantly via the dehydration-decarbonylation route over all the catalysts studied.
Collapse
|
43
|
Jing KQ, Fu YQ, Wang ZQ, Chen ZN, Tan HZ, Sun J, Xu ZN, Guo GC. Zn 2+ stabilized Pd clusters with enhanced covalent metal-support interaction via the formation of Pd-Zn bonds to promote catalytic thermal stability. NANOSCALE 2020; 12:14825-14830. [PMID: 32672320 DOI: 10.1039/d0nr02987d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pd-Based heterogeneous catalysts have been demonstrated to be efficient in numerous heterogeneous reactions. However, the effect of the support resulting in covalent metal-support interaction (CMSI) has not been researched sufficiently. In this work, a Lewis base is modulated over MgAl-LDH to investigate the support effects and it is further loaded with Pd clusters to research the metal-support interactions. MgAl-LDH with ultra-low Pd loading (0.0779%) shows CO conversion (55.0%) and dimethyl oxalate (DMO) selectivity (93.7%) for CO oxidative coupling to DMO, which was gradually deactivated after evaluation for 20 h. To promote the stability of Pd/MgAl-LDH, Zn2+ ions were introduced into the MgAl-LDH support to strengthen the CMSI by forming Pd-Zn bonds, which further increased the adsorption energy of the Pd clusters on ZnMgAl-LDH, and this was verified by X-ray absorption fine structure (XAFS) measurements and density functional theory (DFT) calculations. The stability of the Pd/ZnMgAl-LDH catalyst could be maintained for at least 100 h. This work highlights that covalent metal-support interactions can be strengthened by forming new metal-metal bonds, which could be extended to other systems for the stabilization of noble metals over supports.
Collapse
Affiliation(s)
- Kai-Qiang Jing
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Qing Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhi-Qiao Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhe-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Hong-Zi Tan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jing Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Zhong-Ning Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Guo-Cong Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| |
Collapse
|
44
|
Yang J, Liu S, Wang M, Hu C, Qiu J. Fabrication of Porous Carbon Nanosheets with the Engineered Graphitic Structure for Electrochemical Supercapacitors. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan Yang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Siyu Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Man Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chao Hu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jieshan Qiu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
45
|
Tian S, Tan M, Ma Q, Wu X, Luan C, Fang Y, Li H, Yang G, Tsubaki N, Tan Y. LDH-Derived (CuZn)xAly Bifunctional Catalyst for Direct Synthesis of Dimethyl Ether from Syngas. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sha Tian
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Minghui Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xuemei Wu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Chunhui Luan
- Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yuan Fang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Hangjie Li
- Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Guohui Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555, Japan
| | - Yisheng Tan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
| |
Collapse
|
46
|
|
47
|
Li S, Wang D, Wu X, Chen Y. Recent advance on VOCs oxidation over layered double hydroxides derived mixed metal oxides. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Belskaya OB, Likholobov VA. Development of Approaches to the Formation of Platinum Sites with Desired Properties Using Layer-Structured Supports. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220030263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Rodriguez-Rivas F, Pastor A, de Miguel G, Cruz-Yusta M, Pavlovic I, Sánchez L. Cr 3+ substituted Zn-Al layered double hydroxides as UV-Vis light photocatalysts for NO gas removal from the urban environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:136009. [PMID: 31846878 DOI: 10.1016/j.scitotenv.2019.136009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
The ZnAl-CO3, ZnAlCr-CO3 and ZnCr-CO3 LDH samples were studied as De-NOx photocatalysts in this work. Samples without Cr and increasing the presence of Cr3+ in the LDH framework in the 0.06, 0.15 and 0.3 Cr/Zn ratio were prepared by co-precipitation method, all of them constituted by pure LDH phase. The increase of chromium content in the LDH framework leads to lower crystallinity and higher specific surface area in the samples. Moreover, the CrO6 octahedron centres expand the photo-activity from UV to Visible light and assist to decrease the recombination rate of the electrons and holes. The favourable textural, optical and electronic properties of Cr-containing LDH samples explain the good NO removal efficiency (55%) and outstanding selectivity (90%) found for the analysed De-NOx process.
Collapse
Affiliation(s)
- Fredy Rodriguez-Rivas
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain; Departamento de Química, Facultad de Química y Farmacia, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa, Honduras
| | - Adrián Pastor
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain
| | - Gustavo de Miguel
- Departamento de Química Física y Termodinámica Aplicada, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain
| | - Manuel Cruz-Yusta
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain
| | - Ivana Pavlovic
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain
| | - Luis Sánchez
- Departamento de Química Inorgánica, Instituto Universitario de Nanoquímica IUNAN, Universidad de Córdoba, Campus de Rabanales, E-14014 Córdoba, Spain.
| |
Collapse
|
50
|
Bai Z, Chen X, Li C, Guan W, Chen P, Liang C. Preparation of supported palladium catalyst from hydrotalcite-like compound for dicyclopentadiene resin hydrogenation. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|