1
|
Feitosa BDA, Torres BBM, Luginieski M, Coutinho DJ, Faria GC. Non-ideal nernstian behavior in organic electrochemical transistors: fundamental processes and theory. MATERIALS HORIZONS 2024; 11:6007-6018. [PMID: 39320945 DOI: 10.1039/d4mh00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Despite the successful implementation of organic electrochemical based devices (OEDs), fundamental processes that regulate their operations and sensing capabilities, specifically those related to ion-to-electron transduction, remain unclear. Indeed, there is still a lack of fundamental models to explain the steady-state and transient characteristics of OEDs, associating fundamentals of the physical-chemistry of the pair polymer-electrolyte with the output performance of such devices. In this study, we bring new highlights to a thermodynamic-based model that qualitatively and quantitatively describes OEDs operation, with a special focus on the organic electrochemical transistor (OECT). In this context, we introduce novel interpretations for traditional drain current models, grounded in thermodynamic and electrochemical principles. The model fitting parameters are correlated to the physical and chemical properties of the polymer-electrolyte pair, and it has been shown to explain trends observed in experimental results from the literature. Moreover, our model reveals that a non-Nerstian electrochemical behavior dominates OECT operation. Also, by analyzing experimental data, we are able to generate guidelines for material design and device development, targeting highly sensitive electrochemical biosensors and devices.
Collapse
Affiliation(s)
- Bianca de Andrade Feitosa
- Instituto de Física de São Carlos (USP), São Carlos-SP, 13566-590, Brazil.
- Escola de Engenharia de São Carlos (USP), São Carlos-SP, 13563-120, Brazil
| | | | - Marcos Luginieski
- Instituto de Física de São Carlos (USP), São Carlos-SP, 13566-590, Brazil.
| | - Douglas José Coutinho
- Universidade Tecnológica Federal do Paraná (UTFPR), Toledo-PR, 85902-490 Toledo-PR, Brazil
| | | |
Collapse
|
2
|
Alyami A, Skowrons M, Perera K, Lüssem B, Jákli A. Performance of Organic Electrochemical Transistors with Ionic Liquid Crystal Elastomers as Solid Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54282-54291. [PMID: 39323228 PMCID: PMC11472256 DOI: 10.1021/acsami.4c06608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Organic electrochemical transistors (OECTs) have emerged as attractive devices for bioelectronics, wearable electronics, soft robotics, and energy storage devices. The electrolyte, being a fundamental component of OECTs, plays a crucial role in their performance. Recently, it has been demonstrated that ionic liquid crystal elastomers (iLCEs) can be used as a solid electrolyte for OECTs. Their capabilities, however, have only been shown for relatively large size substrate-free OECTs. Here, we study the influence of the different alignments of iLCEs on steady state and transient behavior of OECTs using a lateral geometry with source, drain, and gate in the same plane. We achieve excellent electrical response with an ON/OFF switching ratio of >105 and minimal leakage current. The normalized maximum transconductance gm/w of the most sensitive iLCE was found to be 33 S m-1, which is one of the highest among all solid-state-based OECTs reported so far. Additionally, iLCEs show high stability and can be removed and reattached multiple times to the same OECT device without decreasing performance.
Collapse
Affiliation(s)
- Arwa Alyami
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Michael Skowrons
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Kelum Perera
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Björn Lüssem
- Institute
for Microsensors, Microactuators, and Microsystems (IMSAS), University of Bremen, Bremen 28359, Germany
- MAPEX
Center for Materials and Processes, University
of Bremen, Bremen 28359, Germany
| | - Antal Jákli
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Advanced
Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Pan TM, Lin LA, Ding HY, Her JL, Pang ST. A simple and highly sensitive flexible sensor with extended-gate field-effect transistor for epinephrine detection utilizing InZnSnO sensing films. Talanta 2024; 275:126178. [PMID: 38692052 DOI: 10.1016/j.talanta.2024.126178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
This study introduces a straightforward method for depositing InZnSnO films onto flexible polyimide substrates at room temperature, enabling their application in electrochemical pH sensing and the detection of epinephrine. A comprehensive analysis of these sensing films, spanning structural, morphological, compositional, and profiling characteristics, was conducted using diverse techniques, including X-ray diffraction, atomic force microscopy, X-ray photoelectron spectroscopy, and secondary ion mass spectroscopy. The investigation into the influence of oxygen flow rates on the performance of InZnSnO sensitive films revealed a significant correlation between their structural properties and sensing capabilities. Notably, exposure to an oxygen flow rate of 30/2 (Ar/O2) the ratio of resulted in the InZnSnO sensitive film demonstrating outstanding pH sensitivity at 59.58 mV/pH within a broad pH range of 2-12, surpassing the performance observed with other oxygen flow rates. Moreover, under this specific condition, the film exhibited excellent stability, with a minimal drift rate of 0.14 mV/h at pH 7 and a low hysteresis voltage of 1.8 mV during a pH cycle of 7 → 4→7 → 10→7. Given the critical role of epinephrine in mammalian central nervous and hormone systems, monitoring its levels is essential for assessing human health. To facilitate the detection of epinephrine, we utilized the carboxyl group of 4-formylphenylboronic acid to enable a reaction with the amino group of the 3-aminopropyltriethoxysilane-coated InZnSnO film. Through optimization, the resulting InZnSnO-based flexible sensor displayed a broad and well-defined linear relationship within the concentration range of 10-7 to 0.1 μM. In practical applications, this sensor proved effective in analyzing epinephrine in human serum, showcasing notable selectivity, stability, and reproducibility. The promising outcomes of this study underscore the potential for future applications, leveraging the advantages of electrochemical sensors, including affordability, rapid response, and user-friendly operation.
Collapse
Affiliation(s)
- Tung-Ming Pan
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; Division of Urology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan.
| | - Li-An Lin
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hong-Yan Ding
- Department of Electronics Engineering, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Jim-Long Her
- Division of Natural Science, Center for General Education, Chang Gung University, Taoyuan 33302, Taiwan
| | - See-Tong Pang
- Division of Urology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan City 33305, Taiwan
| |
Collapse
|
4
|
Liu H, Song J, Zhao Z, Zhao S, Tian Z, Yan F. Organic Electrochemical Transistors for Biomarker Detections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305347. [PMID: 38263718 PMCID: PMC11251571 DOI: 10.1002/advs.202305347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/16/2023] [Indexed: 01/25/2024]
Abstract
The improvement of living standards and the advancement of medical technology have led to an increased focus on health among individuals. Detections of biomarkers are feasible approaches to obtaining information about health status, disease progression, and response to treatment of an individual. In recent years, organic electrochemical transistors (OECTs) have demonstrated high electrical performances and effectiveness in detecting various types of biomarkers. This review provides an overview of the working principles of OECTs and their performance in detecting multiple types of biomarkers, with a focus on the recent advances and representative applications of OECTs in wearable and implantable biomarker detections, and provides a perspective for the future development of OECT-based biomarker sensors.
Collapse
Affiliation(s)
- Hong Liu
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Jiajun Song
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zeyu Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Sanqing Zhao
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Zhiyuan Tian
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
- Research Institute of Intelligent Wearable SystemsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077P. R. China
| |
Collapse
|
5
|
Zhao H, Zhang L, Deng T, Li C. Microfluidic Sensing Textile for Continuous Monitoring of Sweat Glucose at Rest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19605-19614. [PMID: 38568178 DOI: 10.1021/acsami.4c01912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Wearable sweat sensors have received considerable attention due to their great potential for noninvasive continuous monitoring of an individual's health status applications. However, the low secretion rate and fast evaporation of sweat pose challenges in collecting sweat from sedentary individuals for noninvasive analysis of body physiology. Here, we demonstrate wearable textiles for continuous monitoring of sweat at rest using the combination of a heating element and a microfluidic channel to increase localized skin sweat secretion rates and combat sweat evaporation, enabling accurate and stable monitoring of trace amounts of sweat. The Janus sensing yarns with a glucose sensing sensitivity of 36.57 mA cm-2 mM-1 are embroidered into the superhydrophobic heated textile to collect sweat directionally, resulting in improved sweat collection efficiency of up to 96 and 75% retention. The device also maintains a highly durable sensing performance, even in dynamic deformation, recycling, and washing. The microfluidic sensing textile can be further designed into a wireless sensing system that enables sedentary-compatible sweat analysis for the continuous, real-time monitoring of body glucose levels at rest.
Collapse
Affiliation(s)
- He Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Tianbo Deng
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
7
|
Nguyen KV, Lee D, Kim Y, Lee WH. Fiber-Type Transistor-Based Chemical and Physical Sensors Using Conjugated Polymers. Polymers (Basel) 2023; 15:4062. [PMID: 37896306 PMCID: PMC10609800 DOI: 10.3390/polym15204062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Fiber-type electronics is a crucial field for realizing wearable electronic devices with a wide range of sensing applications. In this paper, we begin by discussing the fabrication of fibers from conjugated polymers. We then explore the utilization of these fibers in the development of field-effect and electrochemical transistors. Finally, we investigate the diverse applications of these fiber-type transistors, encompassing chemical and physical sensors. Our paper aims to offer a comprehensive understanding of the use of conjugated polymers in fiber-type transistor-based sensors.
Collapse
Affiliation(s)
| | | | | | - Wi Hyoung Lee
- Department of Organic and Nano System Engineering, School of Chemical Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
8
|
Vizzini P, Beltrame E, Coppedè N, Vurro F, Andreatta F, Torelli E, Manzano M. Detection of Listeria monocytogenes in foods with a textile organic electrochemical transistor biosensor. Appl Microbiol Biotechnol 2023; 107:3789-3800. [PMID: 37145160 PMCID: PMC10175343 DOI: 10.1007/s00253-023-12543-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
Foods contaminated by pathogens are responsible for foodborne diseases which have socioeconomic impacts. Many approaches have been extensively investigated to obtain specific and sensitive methods to detect pathogens in food, but they are often not easy to perform and require trained personnel. This work aims to propose a textile organic electrochemical transistor-based (OECT) biosensor to detect L. monocytogenes in food samples. The analyses were performed with culture-based methods, Listeria Precis™ method, PCR, and our textile OECT biosensor which used poly(3,4-ethylenedioxythiophene) (PEDOT):polystyrene sulfonate (PSS) (PEDOT:PSS) for doping the organic channel. Atomic force microscopy (AFM) was used to obtain topographic maps of the gold gate. The electrochemical activity on gate electrodes was measured and related to the concentration of DNA extracted from samples and hybridized to the specific capture probe immobilized onto the gold surface of the gate. This assay reached a limit of detection of 1.05 ng/μL, corresponding to 0.56 pM of L. monocytogenes ATCC 7644, and allowed the specific and rapid detection of L. monocytogenes in the analyzed samples. KEYPOINTS: • Textile organic electrochemical transistors functionalized with a specific DNA probe • AFM topographic and surface potential maps of a functionalized gold gate surface • Comparison between the Listeria monocytogenes Precis™ method and an OECT biosensor.
Collapse
Affiliation(s)
- Priya Vizzini
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Elena Beltrame
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Nicola Coppedè
- Institute of Materials for Electronics and Magnetism IMEM, CNR Parco Area delle Scienze, 43124, Parma, Italy
| | - Filippo Vurro
- Institute of Materials for Electronics and Magnetism IMEM, CNR Parco Area delle Scienze, 43124, Parma, Italy
| | - Francesco Andreatta
- Polytechnic Department of Engineering and Architecture, University of Udine, 33100, Udine, Italy
| | - Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne, NE1 7RX, UK
| | - Marisa Manzano
- Department of Agriculture Food Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
9
|
Manfredi R, Vurro F, Janni M, Bettelli M, Gentile F, Zappettini A, Coppedè N. Long-Term Stability in Electronic Properties of Textile Organic Electrochemical Transistors for Integrated Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1861. [PMID: 36902979 PMCID: PMC10003982 DOI: 10.3390/ma16051861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Organic electrochemical transistors (OECTs) have demonstrated themselves to be an efficient interface between living environments and electronic devices in bioelectronic applications. The peculiar properties of conductive polymers allow new performances that overcome the limits of conventional inorganic biosensors, exploiting the high biocompatibility coupled to the ionic interaction. Moreover, the combination with biocompatible and flexible substrates, such as textile fibers, improves the interaction with living cells and allows specific new applications in the biological environment, including real-time analysis of plants' sap or human sweat monitoring. In these applications, a crucial issue is the lifetime of the sensor device. The durability, long-term stability, and sensitivity of OECTs were studied for two different textile functionalized fiber preparation processes: (i) adding ethylene glycol to the polymer solution, and (ii) using sulfuric acid as a post-treatment. Performance degradation was studied by analyzing the main electronic parameters of a significant number of sensors for a period of 30 days. RGB optical analysis were performed before and after the treatment of the devices. This study shows that device degradation occurs at voltages higher than 0.5 V. The sensors obtained with the sulfuric acid approach exhibit the most stable performances over time.
Collapse
Affiliation(s)
- Riccardo Manfredi
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| | - Filippo Vurro
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| | - Michela Janni
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| | - Manuele Bettelli
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Andrea Zappettini
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| | - Nicola Coppedè
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Italian National Research Council, Parco Area delle Scienze, 37/A, 43124 Parma, Italy
| |
Collapse
|
10
|
Brendgen R, Graßmann C, Gellner S, Schwarz-Pfeiffer A. Textile One-Component Organic Electrochemical Sensor for Near-Body Applications. MICROMACHINES 2022; 13:1980. [PMID: 36422410 PMCID: PMC9695350 DOI: 10.3390/mi13111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The need for more efficient health services and the trend of a healthy lifestyle pushes the development of smart textiles. Since textiles have always been an object of everyday life, smart textiles promise an extensive user acceptance. Thereby, the manufacture of electrical components based on textile materials is of great interest for applications as biosensors. Organic electrochemical transistors (OECTs) are often used as biosensors for the detection of saline content, adrenaline, glucose, etc., in diverse body fluids. Textile-based OECTs are mostly prepared by combining a liquid electrolyte solution with two separate electro-active yarns that must be precisely arranged in a textile structure. Herein, on the other hand, a biosensor based on a textile single-component organic electrochemical transistor with a hardened electrolyte was developed by common textile technologies such as impregnation and laminating. Its working principle was demonstrated by showing that the herein-produced transistor functions similarly to a switch or an amplifier and that it is able to detect ionic analytes of a saline solution. These findings support the idea of using this new device layout of textile-based OECTs as biosensors in near-body applications, though future work must be carried out to ensure reproducibility and selectivity, and to achieve an increased level of textile integration.
Collapse
Affiliation(s)
- Rike Brendgen
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| | - Carsten Graßmann
- Research Institute for Textile and Clothing (FTB), Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| | - Sandra Gellner
- Faculty Electrical Engineering and Computer Science, Niederrhein University of Applied Sciences, Reinarzstr. 49, 47805 Krefeld, Germany
| | - Anne Schwarz-Pfeiffer
- Faculty of Textile and Clothing Technology, Niederrhein University of Applied Sciences, Webschulstr. 31, 41065 Moenchengladbach, Germany
| |
Collapse
|
11
|
Cho S, Chang T, Yu T, Lee CH. Smart Electronic Textiles for Wearable Sensing and Display. BIOSENSORS 2022; 12:bios12040222. [PMID: 35448282 PMCID: PMC9029731 DOI: 10.3390/bios12040222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 05/13/2023]
Abstract
Increasing demand of using everyday clothing in wearable sensing and display has synergistically advanced the field of electronic textiles, or e-textiles. A variety of types of e-textiles have been formed into stretchy fabrics in a manner that can maintain their intrinsic properties of stretchability, breathability, and wearability to fit comfortably across different sizes and shapes of the human body. These unique features have been leveraged to ensure accuracy in capturing physical, chemical, and electrophysiological signals from the skin under ambulatory conditions, while also displaying the sensing data or other immediate information in daily life. Here, we review the emerging trends and recent advances in e-textiles in wearable sensing and display, with a focus on their materials, constructions, and implementations. We also describe perspectives on the remaining challenges of e-textiles to guide future research directions toward wider adoption in practice.
Collapse
Affiliation(s)
- Seungse Cho
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Taehoo Chang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Tianhao Yu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA;
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA;
- Center for Implantable Devices, Purdue University, West Lafayette, IN 47907, USA
- Correspondence:
| |
Collapse
|
12
|
Sinha A, Dhanjai, Stavrakis AK, Stojanović GM. Textile-based electrochemical sensors and their applications. Talanta 2022; 244:123425. [PMID: 35397323 DOI: 10.1016/j.talanta.2022.123425] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
Textile and their composite-based functional sensors are extensively acknowledged and preferred detection platforms in recent times. Developing suitable methodologies for fabricating textile sensors can be achieved either by integration of conductive fibers and yarns into textiles using technologies such as weaving, knitting and embroidery; or by functionalization of textile materials with conductive nanomaterials/inks using printing or coating methods. Textile materials are gaining enormous attention for fabricating soft lab-on-fabric devices due to their unique features such as high flexibility, wear and wash resistance, mechanical strength and promising sensing performances. Owing to these collective properties, textile-based electrochemical transducers are now showcasing rapid and accurate electrical measurements towards real time point-of-care diagnostics and environmental monitoring applications. The present review provides a brief overview of key progress made in the field of developing textile materials and their composites-based electrochemical sensors and biosensors in recent years where electrode configurations are specifically based on either natural or synthetic fabrics. Different ways to fabricate and functionalize textiles for their application in electrochemical analysis are briefly discussed. The review ends with a conclusive note focusing on the current challenges in the fabrication of textile-based stable electrochemical sensors and biosensors.
Collapse
Affiliation(s)
- Ankita Sinha
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia.
| | - Dhanjai
- BioSense Institute, Dr Zorana Đinđića 1, University of Novi Sad, Novi Sad, 21000, Serbia
| | - Adrian K Stavrakis
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Goran M Stojanović
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| |
Collapse
|
13
|
Kim HJ, Perera K, Liang Z, Bowen B, Mei J, Boudouris BW. Radical Polymer-Based Organic Electrochemical Transistors. ACS Macro Lett 2022; 11:243-250. [PMID: 35574776 DOI: 10.1021/acsmacrolett.1c00695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic electrochemical transistors (OECTs) are an emerging platform for bioelectronic applications. Significant effort has been placed in designing advanced polymers that simultaneously transport both charge and ions (i.e., macromolecules that are mixed conductors). However, the considerations for mixed organic conductors are often different from the established principles that are well-known in the solid-state organic electronics field; thus, the discovery of new OECT macromolecular systems is highly desired. Here, we demonstrate a new materials system by blending a radical polymer (i.e., a macromolecule with a nonconjugated backbone and with stable open-shell sites at its pendant group) with a frequently used conjugated polymer. Specifically, poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl) (PTEO) was blended with poly(3-hexylthiophene) (P3HT) to create thin films with distinct closed-shell and open-shell domains. Importantly, the sharp and unique oxidation-reduction (redox) potential associated with the radical moieties of the PTEO chain provided a distinct actuation feature to the blended films that modulated the ionic transport of the OECT devices. In turn, this led to controlled regulation of the doping of the P3HT phase in the composite film. By decoupling the ionic and electronic transport into two distinct phases and by using an ion transport phase with well-controlled redox activity, never-before-seen performance for a P3HT-based OECT was observed. That is, at loadings as low as 5% PTEO (by weight) OECTs achieved figure-of-merit (i.e., μC*) values >150 F V-1 cm-1 s-1, which place the performance on the same order as state-of-the-art conjugated polymers despite the relatively common conjugated macromolecular moiety implemented. As such, this effort presents a design platform by which to readily create a tailored OECT response through strategic macromolecular selection and polymer processing.
Collapse
Affiliation(s)
- Ho Joong Kim
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Zihao Liang
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Brennen Bowen
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Bryan W. Boudouris
- Charles D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Avenue, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Cheng M, Gong W, Lu M, Ma J, Lu Z, Li H. Engineering and Application of Pillar[6]arene Functionalized Chiral Surface in Selective Adsorption of
R
‐Adrenaline. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ming Cheng
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| | - Wen Gong
- Department of Cardiology, The Third People's Hospital of Hubei Province Hospital of Hubei Province Wuhan Hubei 430030 China
| | - Mingxiang Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Junkai Ma
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Department of Chemistry, School of Pharmacy Hubei University of Medicine Shiyan Hubei 442000 China
| | - Zhiyan Lu
- Department of Forensic Medicine Zhongnan Hospital of Wuhan University No.169 East Lake Road, Wuchang District Wuhan Hubei 430071 China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry Central China Normal University Wuhan Hubei 430079 China
| |
Collapse
|
15
|
Ying M, Yang G, Xu Y, Ye H, Lin X, Lu Y, Pan H, Bai Y, Du M. Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum. Analyst 2021; 147:40-47. [PMID: 34816839 DOI: 10.1039/d1an01817e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal-organic frameworks (MOFs) have attracted extensive attention for the development of colorimetric detection methods due to their ease of modification and high density of active sites. However, most of the reported colorimetric sensors based on MOFs show only a single nanozyme activity. Herein, the bifunctional enzyme activities of a hexagonal prism Cu MOF with fumaric acid as the ligand (Cu FMA), namely laccase-like activity under alkaline conditions (pH = 8) and peroxidase-like activity under acidic conditions (pH = 4), were verified. The specificity of Cu FMA at different pH values may be due to the presence of the Cu+ active center introduced by the weak reducibility of FMA. At pH = 8, Cu+ active centers are beneficial for dissociating the H-O bonds of phenolic compounds for the laccase system. In contrast, the dissociation of H-O is weakened at pH = 4, which prompts the breaking of the O-O bonds of H2O2 as a Fenton-like reaction for the peroxidase system. Based on the dual enzyme activities, Cu FMA sensors exhibit outstanding detectability for epinephrine and glucose with linear ranges of 2.7-54.6 μM and 0.01-0.8 mM and detection limits of 1.1 μM and 2.28 × 10-7 M, respectively. The Cu FMA colorimetric sensor can be applied for detecting and measuring glucose and epinephrine in human serum samples. This work paves the way for Cu MOFs to be used as the basis for rational regulation of the activity of dual nanozymes and for multifunctional applications under completely independent conditions.
Collapse
Affiliation(s)
- Meihui Ying
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,National & Local Joint Biomedical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P.R. China.,Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Guizeng Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Yuanjie Xu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,National & Local Joint Biomedical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P.R. China
| | - Huiling Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Xing Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,National & Local Joint Biomedical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P.R. China
| | - Yi Lu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,National & Local Joint Biomedical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P.R. China
| | - Haibo Pan
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, P.R. China. .,National & Local Joint Biomedical Engineering Research Center on Phototodynamics Technology, Fuzhou, Fujian 350108, P.R. China.,Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China.,Fujian Enterprises Key Laboratory of Hi-Tech Functional Composite Fabrics, Jinjiang, Fujian 362246, P.R. China
| | - Yang Bai
- Fujian Enterprises Key Laboratory of Hi-Tech Functional Composite Fabrics, Jinjiang, Fujian 362246, P.R. China
| | - Min Du
- Fujian Key Lab of Medical Instrument and Pharmaceutical Technology, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
16
|
Koklu A, Ohayon D, Wustoni S, Druet V, Saleh A, Inal S. Organic Bioelectronic Devices for Metabolite Sensing. Chem Rev 2021; 122:4581-4635. [PMID: 34610244 DOI: 10.1021/acs.chemrev.1c00395] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrochemical detection of metabolites is essential for early diagnosis and continuous monitoring of a variety of health conditions. This review focuses on organic electronic material-based metabolite sensors and highlights their potential to tackle critical challenges associated with metabolite detection. We provide an overview of the distinct classes of organic electronic materials and biorecognition units used in metabolite sensors, explain the different detection strategies developed to date, and identify the advantages and drawbacks of each technology. We then benchmark state-of-the-art organic electronic metabolite sensors by categorizing them based on their application area (in vitro, body-interfaced, in vivo, and cell-interfaced). Finally, we share our perspective on using organic bioelectronic materials for metabolite sensing and address the current challenges for the devices and progress to come.
Collapse
Affiliation(s)
- Anil Koklu
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - David Ohayon
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Shofarul Wustoni
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Victor Druet
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Abdulelah Saleh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Organic Bioelectronics Laboratory, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Brunyé TT, Yau K, Okano K, Elliott G, Olenich S, Giles GE, Navarro E, Elkin-Frankston S, Young AL, Miller EL. Toward Predicting Human Performance Outcomes From Wearable Technologies: A Computational Modeling Approach. Front Physiol 2021; 12:738973. [PMID: 34566701 PMCID: PMC8458818 DOI: 10.3389/fphys.2021.738973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
Wearable technologies for measuring digital and chemical physiology are pervading the consumer market and hold potential to reliably classify states of relevance to human performance including stress, sleep deprivation, and physical exertion. The ability to efficiently and accurately classify physiological states based on wearable devices is improving. However, the inherent variability of human behavior within and across individuals makes it challenging to predict how identified states influence human performance outcomes of relevance to military operations and other high-stakes domains. We describe a computational modeling approach to address this challenge, seeking to translate user states obtained from a variety of sources including wearable devices into relevant and actionable insights across the cognitive and physical domains. Three status predictors were considered: stress level, sleep status, and extent of physical exertion; these independent variables were used to predict three human performance outcomes: reaction time, executive function, and perceptuo-motor control. The approach provides a complete, conditional probabilistic model of the performance variables given the status predictors. Construction of the model leverages diverse raw data sources to estimate marginal probability density functions for each of six independent and dependent variables of interest using parametric modeling and maximum likelihood estimation. The joint distributions among variables were optimized using an adaptive LASSO approach based on the strength and directionality of conditional relationships (effect sizes) derived from meta-analyses of extant research. The model optimization process converged on solutions that maintain the integrity of the original marginal distributions and the directionality and robustness of conditional relationships. The modeling framework described provides a flexible and extensible solution for human performance prediction, affording efficient expansion with additional independent and dependent variables of interest, ingestion of new raw data, and extension to two- and three-way interactions among independent variables. Continuing work includes model expansion to multiple independent and dependent variables, real-time model stimulation by wearable devices, individualized and small-group prediction, and laboratory and field validation.
Collapse
Affiliation(s)
- Tad T Brunyé
- Cognitive Science Team, US Army DEVCOM Soldier Center, Natick, MA, United States.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Kenny Yau
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Kana Okano
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Grace Elliott
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Sara Olenich
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Grace E Giles
- Cognitive Science Team, US Army DEVCOM Soldier Center, Natick, MA, United States.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Ester Navarro
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Seth Elkin-Frankston
- Cognitive Science Team, US Army DEVCOM Soldier Center, Natick, MA, United States.,Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| | - Alexander L Young
- Department of Statistics, Harvard University, Cambridge, MA, United States
| | - Eric L Miller
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States.,Department of Electrical and Computer Engineering, Tufts University, Medford, MA, United States
| |
Collapse
|
18
|
Rovira M, Fernández-Sánchez C, Jiménez-Jorquera C. Hybrid Technologies Combining Solid-State Sensors and Paper/Fabric Fluidics for Wearable Analytical Devices. BIOSENSORS 2021; 11:303. [PMID: 34562893 PMCID: PMC8467283 DOI: 10.3390/bios11090303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/03/2023]
Abstract
The development of diagnostic tools for measuring a wide spectrum of target analytes, from biomarkers to other biochemical parameters in biological fluids, has experienced a significant growth in the last decades, with a good number of such tools entering the market. Recently, a clear focus has been put on miniaturized wearable devices, which offer powerful capabilities for real-time and continuous analysis of biofluids, mainly sweat, and can be used in athletics, consumer wellness, military, and healthcare applications. Sweat is an attractive biofluid in which different biomarkers could be noninvasively measured to provide rapid information about the physical state of an individual. Wearable devices reported so far often provide discrete (single) measurements of the target analytes, most of them in the form of a yes/no qualitative response. However, quantitative biomarker analysis over certain periods of time is highly demanded for many applications such as the practice of sports or the precise control of the patient status in hospital settings. For this, a feasible combination of fluidic elements and sensor architectures has been sought. In this regard, this paper shows a concise overview of analytical tools based on the use of capillary-driven fluidics taking place on paper or fabric devices integrated with solid-state sensors fabricated by thick film technologies. The main advantages and limitations of the current technologies are pointed out together with the progress towards the development of functional devices. Those approaches reported in the last decade are examined in detail.
Collapse
Affiliation(s)
- Meritxell Rovira
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| | - César Fernández-Sánchez
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cecilia Jiménez-Jorquera
- Instituto de Microelectrónica de Barcelona (IMB-CNM), CSIC, Campus UAB, Bellaterra, 08193 Barcelona, Spain; (M.R.); (C.F.-S.)
| |
Collapse
|
19
|
Light-Emitting Textiles: Device Architectures, Working Principles, and Applications. MICROMACHINES 2021; 12:mi12060652. [PMID: 34199399 PMCID: PMC8229797 DOI: 10.3390/mi12060652] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed.
Collapse
|
20
|
Towards In Vivo Monitoring of Ions Accumulation in Trees: Response of an in Planta Organic Electrochemical Transistor Based Sensor to Water Flux Density, Light and Vapor Pressure Deficit Variation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11114729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Research on organic electrochemical transistor (OECT) based sensors to monitor in vivo plant traits such as xylem sap concentration is attracting attention for their potential application in precision agriculture. Fabrication and electronic aspects of OECT have been the subject of extensive research while its characterization within the plant water relation context deserves further efforts. This study tested the hypothesis that the response (R) of an OECT (bioristor) implanted in the trunk of olive trees is inversely proportional to the water flux density flowing through the plant (Jw). This study also examined the influence on R of vapor pressure deficit (VPD) as coupled/uncoupled with light. R was hourly recorded in potted olive trees for a 10-day period concomitantly with Jw (weight loss method). A subgroup of trees was bagged in order to reduce VPD and in turn Jw, and other trees were located in a walk-in chamber where VPD and light were independently managed. R was tightly sensitive to diurnal oscillation of Jw and at negligible values of Jw (late afternoon and night) R increased. The bioristor was not sensitive to the VPD per se unless a light source was coupled to trigger Jw. This study preliminarily examined the suitability of bioristor to estimate the mean daily nutrients accumulation rate (Ca, K) in leaves comparing chemical and sensor-based procedures showing a good agreement between them opening new perspective towards the application of OECT sensor in precision agricultural cropping systems.
Collapse
|
21
|
Chen S, Shi M, Xu Q, Xu J, Duan X, Gao Y, Lu L, Gao F, Wang X, Yu Y. Ti 3C 2T xMXene/nitrogen-doped reduced graphene oxide composite: a high-performance electrochemical sensing platform for adrenaline detection. NANOTECHNOLOGY 2021; 32:265501. [PMID: 33730698 DOI: 10.1088/1361-6528/abef94] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Herein, Ti3C2TxMXene/N-doped reduced graphene oxide (MXene/N-rGO) composite was employed as the electrocatalyst to construct a new electrochemical sensing platform for the determination of adrenaline (AD). The MXene/N-rGO was synthesized via a facile one-step hydrothermal method, where ethylenediamine acted as a reducing agent and N source. The doped N in rGO served as a bridge between MXene and rGO through tight hydrogen bonds. Scanning electron microscopy showed that large numbers of MXenes with accordion-like morphology were distributed on the surface of the N-rGO. The MXene/N-rGO composite displayed a synergetic catalytic effect for oxidizing AD, originating from the unique catalytic activity of N-rGO and the large surface area and satisfactory conductivity of MXene. These characteristics of composite material led to a remarkable effect on signal amplification for the detection of AD, with a wide linear range from 10.0 nM to 90.0μM and a low detection limit of 3.0 nM based on a signal to noise ratio of 3. Moreover, the MXene/N-rGO electrode displayed good stability, repeatability, and reproducibility. Additionally, the proposed sensor was successfully applied for voltammetric sensing of AD in urine with recoveries from 97.75% to 103.0%.
Collapse
Affiliation(s)
- Shuxian Chen
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Min Shi
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Quan Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Jingkun Xu
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People's Republic of China
| | - Xuemin Duan
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong, People's Republic of China
| | - Feng Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Xiaoqiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| |
Collapse
|
22
|
Gualandi I, Tessarolo M, Mariani F, Possanzini L, Scavetta E, Fraboni B. Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat. Polymers (Basel) 2021; 13:894. [PMID: 33799437 PMCID: PMC8000821 DOI: 10.3390/polym13060894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/26/2023] Open
Abstract
Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic.
Collapse
Affiliation(s)
- Isacco Gualandi
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Federica Mariani
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Luca Possanzini
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| | - Erika Scavetta
- Dipartimento di Chimica Industriale ‘Toso Montanari’, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy;
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy; (M.T.); (L.P.); (B.F.)
| |
Collapse
|
23
|
Wu Y, Mechael SS, Chen Y, Carmichael TB. Velour Fabric as an Island-Bridge Architectural Design for Stretchable Textile-Based Lithium-ion Battery Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51679-51687. [PMID: 33155809 DOI: 10.1021/acsami.0c16801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The advancement of wearable electronics depends on the seamless integration of lightweight and stretchable energy storage devices with textiles. Integrating brittle energy storage materials with soft and stretchable textiles, however, presents a challenging mechanical mismatch. It is critical to protect brittle energy storage materials from strain-induced damage and at the same time preserve the softness and stretchability of the functionalized e-textile. Here, we demonstrate the strategic use of a warp-knitted velour fabric in an "island-bridge" architectural strain-engineering design to prepare stretchable textile-based lithium-ion battery (LIB) electrodes. The velour fabric consists of a warp-knitted framework and a cut pile. We integrate the LIB electrode into this fabric by solution-based metallization to create the warp-knitted framework current collector "bridges" followed by selective deposition of the brittle electroactive material CuS on the cut pile "islands". As the textile electrode is stretched, the warp-knitted framework current collector elongates, while the electroactive cut pile fibers simply ride along at their anchor points on the framework, protecting the brittle CuS coating from strain and subsequent damage. The textile-based stretchable LIB electrode exhibited excellent electrical and electrochemical performance with a current collector sheet resistance of 0.85 ± 0.06 Ω/sq and a specific capacity of 400 mAh/g at 0.5 C for 300 charging-discharging cycles as well as outstanding rate capability. The electrical performance and charge-discharge cycling stability of the electrode persisted even after 1000 repetitive stretching-releasing cycles, demonstrating the protective functionality of the textile-based island-bridge architectural strain-engineering design.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Sara S Mechael
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Yiting Chen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Tricia Breen Carmichael
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
24
|
Possanzini L, Decataldo F, Mariani F, Gualandi I, Tessarolo M, Scavetta E, Fraboni B. Textile sensors platform for the selective and simultaneous detection of chloride ion and pH in sweat. Sci Rep 2020; 10:17180. [PMID: 33057081 PMCID: PMC7560666 DOI: 10.1038/s41598-020-74337-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 11/09/2022] Open
Abstract
The development of wearable sensors, in particular fully-textile ones, is one of the most interesting open challenges in bioelectronics. Several and significant steps forward have been taken in the last decade in order to achieve a compact, lightweight, cost-effective, and easy to wear platform for healthcare and sport activities real-time monitoring. We have developed a fully textile, multi-thread biosensing platform that can detect different bioanalytes simultaneously without interference, and, as an example, we propose it for testing chloride ions (Cl-) concentration and pH level. The textile sensors are simple threads, based on natural and synthetic fibers, coated with the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) and properly functionalized with either a nano-composite material or a chemical sensitive dye to obtain Cl- and pH selective sensing functionality, respectively. The single-thread sensors show excellent sensitivity, reproducibility, selectivity, long term stability and the ability to work with small volumes of solution. The performance of the developed textile devices is demonstrated both in buffer solution and in artificial human perspiration to perform on-demand and point-of-care epidermal fluids analysis. The possibility to easily knit or sew the thread sensors into fabrics opens up a new vision for a textile wearable multi-sensing platform achievable in the near future.
Collapse
Affiliation(s)
- Luca Possanzini
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy.
| | - Francesco Decataldo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Federica Mariani
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Isacco Gualandi
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Marta Tessarolo
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Erika Scavetta
- Department of Industrial Chemistry, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Beatrice Fraboni
- Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| |
Collapse
|
25
|
Romele P, Gkoupidenis P, Koutsouras DA, Lieberth K, Kovács-Vajna ZM, Blom PWM, Torricelli F. Multiscale real time and high sensitivity ion detection with complementary organic electrochemical transistors amplifier. Nat Commun 2020; 11:3743. [PMID: 32719350 PMCID: PMC7385487 DOI: 10.1038/s41467-020-17547-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Ions are ubiquitous biological regulators playing a key role for vital processes in animals and plants. The combined detection of ion concentration and real-time monitoring of small variations with respect to the resting conditions is a multiscale functionality providing important information on health states. This multiscale functionality is still an open challenge for current ion sensing approaches. Here we show multiscale real-time and high-sensitivity ion detection with complementary organic electrochemical transistors amplifiers. The ion-sensing amplifier integrates in the same device both selective ion-to-electron transduction and local signal amplification demonstrating a sensitivity larger than 2300 mV V-1 dec-1, which overcomes the fundamental limit. It provides both ion detection over a range of five orders of magnitude and real-time monitoring of variations two orders of magnitude lower than the detected concentration, viz. multiscale ion detection. The approach is generally applicable to several transistor technologies and opens opportunities for multifunctional enhanced bioelectronics.
Collapse
Affiliation(s)
- Paolo Romele
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy
| | | | | | - Katharina Lieberth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Zsolt M Kovács-Vajna
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy
| | - Paul W M Blom
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fabrizio Torricelli
- University of Brescia, Department of Information Engineering, via Branze 38, 25123, Brescia, Italy.
| |
Collapse
|
26
|
Wu X, Surendran A, Moser M, Chen S, Muhammad BT, Maria IP, McCulloch I, Leong WL. Universal Spray-Deposition Process for Scalable, High-Performance, and Stable Organic Electrochemical Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20757-20764. [PMID: 32281363 DOI: 10.1021/acsami.0c04776] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic electrochemical transistors (OECTs) with high transconductance and good operating stability in an aqueous environment are receiving substantial attention as promising ion-to-electron transducers for bioelectronics. However, to date, in most of the reported OECTs, the fabrication procedures have been devoted to spin-coating processes that may nullify the advantages of large-area and scalable manufacturing. In addition, conventional microfabrication and photolithography techniques are complicated or incompatible with various nonplanar flexible and curved substrates. Herein, we demonstrate a facile patterning method via spray deposition to fabricate ionic-liquid-doped poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based OECTs, with a high peak transconductance of 12.9 mS and high device stability over 4000 switching cycles. More importantly, this facile technique makes it possible to fabricate high-performance OECTs on versatile substrates with different textures and form factors such as thin permeable membranes, flexible plastic sheets, hydrophobic elastomers, and rough textiles. Overall, the results highlight the spray-deposition technique as a convenient route to prepare high-performing OECTs and will contribute to the translation of OECTs into real-world applications.
Collapse
Affiliation(s)
- Xihu Wu
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abhijith Surendran
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Maximilian Moser
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
| | - Shuai Chen
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bening Tirta Muhammad
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, Imperial College London, London SW7 2AX, U.K
- Physical Sciences and Engineering Division, KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Wei Lin Leong
- School of Electrical Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
27
|
Nagamine K, Nomura A, Ichimura Y, Izawa R, Sasaki S, Furusawa H, Matsui H, Tokito S. Printed Organic Transistor-based Biosensors for Non-invasive Sweat Analysis. ANAL SCI 2020; 36:291-302. [PMID: 31904007 DOI: 10.2116/analsci.19r007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/25/2019] [Indexed: 08/09/2023]
Abstract
This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Ayako Nomura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryota Izawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shiori Sasaki
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Furusawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
28
|
Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y, Ren M, Wang Y, Chen J, Chen W, Chai Y, Tao X. Smart Textile-Integrated Microelectronic Systems for Wearable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901958. [PMID: 31273850 DOI: 10.1002/adma.201901958] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/02/2019] [Indexed: 05/21/2023]
Abstract
The programmable nature of smart textiles makes them an indispensable part of an emerging new technology field. Smart textile-integrated microelectronic systems (STIMES), which combine microelectronics and technology such as artificial intelligence and augmented or virtual reality, have been intensively explored. A vast range of research activities have been reported. Many promising applications in healthcare, the internet of things (IoT), smart city management, robotics, etc., have been demonstrated around the world. A timely overview and comprehensive review of progress of this field in the last five years are provided. Several main aspects are covered: functional materials, major fabrication processes of smart textile components, functional devices, system architectures and heterogeneous integration, wearable applications in human and nonhuman-related areas, and the safety and security of STIMES. The major types of textile-integrated nonconventional functional devices are discussed in detail: sensors, actuators, displays, antennas, energy harvesters and their hybrids, batteries and supercapacitors, circuit boards, and memory devices.
Collapse
Affiliation(s)
- Jidong Shi
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Su Liu
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lisha Zhang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Bao Yang
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Lin Shu
- School of Electronic and Information Engineering, Southern China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Ying Yang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ming Ren
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yang Wang
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiewei Chen
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Chen
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Yang Chai
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
- Department of Applied Physics, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Xiaoming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
29
|
Chen D, Jiang K, Huang T, Shen G. Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901806. [PMID: 31206831 DOI: 10.1002/adma.201901806] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/04/2019] [Indexed: 05/03/2023]
Abstract
Fiber supercapacitors (SCs), with their small size and weight, excellent flexibility and deformability, and high capacitance and power density, are recognized as one of the most robust power supplies available for wearable electronics. They can be woven into breathable textiles or integrated into different functional materials to fit curved surfaces for use in day-to-day life. A comprehensive review on recent important development and progress in fiber SCs is provided, with respect to the active electrode materials, device configurations, functions, integrations. Active electrode materials based on different electrochemical mechanisms and intended to improve performance including carbon-based materials, metal oxides, and hybrid composites, are first summarized. The three main types of fiber SCs, namely parallel, twist, and coaxial structures, are then discussed, followed by the exploration of some functions including stretchability and self-healing. Miniaturized integration of fiber SCs to obtain flexible energy fibers and integrated sensing systems is also discussed. Finally, a short conclusion is made, combining with comments on the current challenges and potential solutions in this field.
Collapse
Affiliation(s)
- Di Chen
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kai Jiang
- Institute & Hospital of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLA, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100853, China
| | - Tingting Huang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Guozhen Shen
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
30
|
Wang L, Fu X, He J, Shi X, Chen T, Chen P, Wang B, Peng H. Application Challenges in Fiber and Textile Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901971. [PMID: 31273843 DOI: 10.1002/adma.201901971] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Indexed: 05/24/2023]
Abstract
Modern electronic devices are moving toward miniaturization and integration with an emerging focus on wearable electronics. Due to their close contact with the human body, wearable electronics have new requirements including low weight, small size, and flexibility. Conventional 3D and 2D electronic devices fail to efficiently meet these requirements due to their rigidity and bulkiness. Hence, a new family of 1D fiber-shaped electronic devices including energy-harvesting devices, energy-storage devices, light-emitting devices, and sensing devices has risen to the challenge due to their small diameter, lightweight, flexibility, and weavability into soft textile electronics. The application challenges faced by fiber and textile electronics from single fiber-shaped devices to continuously scalable fabrication, to encapsulation and testing, and to application mode exploration, are discussed. The evolutionary trends of fiber and textile electronics are then summarized. Finally, future directions required to boost their commercialization are highlighted.
Collapse
Affiliation(s)
- Lie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xuemei Fu
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Jiqing He
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Xiang Shi
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Taiqiang Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Peining Chen
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Bingjie Wang
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| | - Huisheng Peng
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2205 Songhu Road, Shanghai, 200438, China
| |
Collapse
|
31
|
Leydecker T, Wang ZM, Torricelli F, Orgiu E. Organic-based inverters: basic concepts, materials, novel architectures and applications. Chem Soc Rev 2020; 49:7627-7670. [DOI: 10.1039/d0cs00106f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The review article covers the materials and techniques employed to fabricate organic-based inverter circuits and highlights their novel architectures, ground-breaking performances and potential applications.
Collapse
Affiliation(s)
- Tim Leydecker
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
- Institut National de la Recherche Scientifique (INRS)
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier Sciences
- University of Electronic Science and Technology of China
- Chengdu 610054
- China
| | - Fabrizio Torricelli
- Department of Information Engineering
- University of Brescia
- 25123 Brescia
- Italy
| | - Emanuele Orgiu
- Institut National de la Recherche Scientifique (INRS)
- EMT Center
- Varennes J3X 1S2
- Canada
| |
Collapse
|
32
|
Vurro F, Janni M, Coppedè N, Gentile F, Manfredi R, Bettelli M, Zappettini A. Development of an In Vivo Sensor to Monitor the Effects of Vapour Pressure Deficit (VPD) Changes to Improve Water Productivity in Agriculture. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4667. [PMID: 31661770 PMCID: PMC6864644 DOI: 10.3390/s19214667] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/07/2023]
Abstract
Environment, biodiversity and ecosystem services are essential to ensure food security and nutrition. Managing natural resources and mainstreaming biodiversity across agriculture sectors are keys towards a sustainable agriculture focused on resource efficiency. Vapour Pressure Deficit (VPD) is considered the main driving force of water movements in the plant vascular system, however the tools available to monitor this parameter are usually based on environmental monitoring. The driving motif of this paper is the development of an in-vivo sensor to monitor the effects of VPD changes in the plant. We have used an in vivo sensor, termed "bioristor", to continuously monitor the changes occurring in the sap ion's status when plants experience different VPD conditions and we observed a specific R (sensor response) trend in response to VPD. The possibility to directly monitor the physiological changes occurring in the plant in different VPD conditions, can be used to increase efficiency of the water management in controlled conditions thus achieving a more sustainable use of natural resources.
Collapse
Affiliation(s)
- Filippo Vurro
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Michela Janni
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
- Istituto di Bioscienze e Biorisorse (IBBR-CNR) Via Amendola 165/A, 70126 Bari, Italy.
| | - Nicola Coppedè
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Francesco Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, 80138 Naples, Italy.
| | - Riccardo Manfredi
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Manuele Bettelli
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| | - Andrea Zappettini
- Istituto dei materiali per l'elettronica e il magnetismo (IMEM-CNR) Parco Area delle Scienze 37/A, 43124 Parma, Italy.
| |
Collapse
|
33
|
Mariani F, Conzuelo F, Cramer T, Gualandi I, Possanzini L, Tessarolo M, Fraboni B, Schuhmann W, Scavetta E. Microscopic Determination of Carrier Density and Mobility in Working Organic Electrochemical Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902534. [PMID: 31448569 DOI: 10.1002/smll.201902534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/27/2019] [Indexed: 05/10/2023]
Abstract
A comprehensive understanding of electrochemical and physical phenomena originating the response of electrolyte-gated transistors is crucial for improved handling and design of these devices. However, the lack of suitable tools for direct investigation of microscale effects has hindered the possibility to bridge the gap between experiments and theoretical models. In this contribution, a scanning probe setup is used to explore the operation mechanisms of organic electrochemical transistors by probing the local electrochemical potential of the organic film composing the device channel. Moreover, an interpretative model is developed in order to highlight the meaning of electrochemical doping and to show how the experimental data can give direct access to fundamental device parameters, such as local charge carrier concentration and mobility. This approach is versatile and provides insight into the organic semiconductor/electrolyte interface and useful information for materials characterization, device scaling, and sensing optimization.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Felipe Conzuelo
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Tobias Cramer
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| | - Luca Possanzini
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127, Bologna, Italy
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari", Università di Bologna, Viale Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
34
|
Dhanjai, Yu N, Mugo SM. A flexible-imprinted capacitive sensor for rapid detection of adrenaline. Talanta 2019; 204:602-606. [PMID: 31357341 DOI: 10.1016/j.talanta.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 01/13/2023]
Abstract
This article demonstrates a non-enzymatic biomimetic adrenaline capacitive sensor fabricated inexpensively by layer-by-layer (LbL) assembly. The LbL assembly consists of polydimethylsiloxane (PDMS) substrate, carbon nanotube-cellulose nanocrystals (CNC/CNT) nanofilms (first layer) with adrenaline imprinted poly (aniline/phenylboronic acid) (pANI/PBA) moieties (second layer). The flexible sensor has been effectively demonstrated for high sensitivity and selectivity in capacitive detection of adrenaline standard and adrenaline in real zebra fish brain sample. The molecularly imprinted adrenaline sensor exhibited linear response between 0.001 μM and 100 μM with a correlation coefficient of 0.9738 and detection limit (LOD) of 0.001 μM. The developed sensor demonstrated high adrenaline selectivity and good sensor to sensor reproducibility of 15.7% for molecularly imprinted films. The sensor precision for triplicate standard runs for different adrenaline concentrations ranged from 0.5 to 5.0%, indicative of the overall reliability and validity of the device. The inexpensive sensor remains stable over time, responding proportionately to doses of adrenaline, and as such effective as a dosimetric sensor for near real time continuous monitoring. Frugal in sample consumption (50 μL), the study suggested the practical utilization of the developed biosensor towards adrenaline detection in biological fluids.
Collapse
Affiliation(s)
- Dhanjai
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada; Department of Mathematical and Physical Sciences, Concordia University of Edmonton, 7128 Ada Blvd NW, Edmonton, AB, T5B 4E4, Canada
| | - Nancy Yu
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB, T5J 4S2, Canada.
| |
Collapse
|
35
|
Yang Y, Gao W. Wearable and flexible electronics for continuous molecular monitoring. Chem Soc Rev 2019; 48:1465-1491. [PMID: 29611861 DOI: 10.1039/c7cs00730b] [Citation(s) in RCA: 514] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wearable biosensors have received tremendous attention over the past decade owing to their great potential in predictive analytics and treatment toward personalized medicine. Flexible electronics could serve as an ideal platform for personalized wearable devices because of their unique properties such as light weight, low cost, high flexibility and great conformability. Unlike most reported flexible sensors that mainly track physical activities and vital signs, the new generation of wearable and flexible chemical sensors enables real-time, continuous and fast detection of accessible biomarkers from the human body, and allows for the collection of large-scale information about the individual's dynamic health status at the molecular level. In this article, we review and highlight recent advances in wearable and flexible sensors toward continuous and non-invasive molecular analysis in sweat, tears, saliva, interstitial fluid, blood, wound exudate as well as exhaled breath. The flexible platforms, sensing mechanisms, and device and system configurations employed for continuous monitoring are summarized. We also discuss the key challenges and opportunities of the wearable and flexible chemical sensors that lie ahead.
Collapse
Affiliation(s)
- Yiran Yang
- Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | | |
Collapse
|
36
|
Xu M, Obodo D, Yadavalli VK. The design, fabrication, and applications of flexible biosensing devices. Biosens Bioelectron 2019; 124-125:96-114. [PMID: 30343162 PMCID: PMC6310145 DOI: 10.1016/j.bios.2018.10.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Flexible biosensors form part of a rapidly growing research field that take advantage of a multidisciplinary approach involving materials, fabrication and design strategies to be able to function at biological interfaces that may be soft, intrinsically curvy, irregular, or elastic. Numerous exciting advancements are being proposed and developed each year towards applications in healthcare, fundamental biomedical research, food safety and environmental monitoring. In order to place these developments in perspective, this review is intended to present an overview on field of flexible biosensor development. We endeavor to show how this subset of the broader field of flexible and wearable devices presents unique characteristics inherent in their design. Initially, a discussion on the structure of flexible biosensors is presented to address the critical issues specific to their design. We then summarize the different materials as substrates that can resist mechanical deformation while retaining their function of the bioreceptors and active elements. Several examples of flexible biosensors are presented based on the different environments in which they may be deployed or on the basis of targeted biological analytes. Challenges and future perspectives pertinent to the current and future stages of development are presented. Through these summaries and discussion, this review is expected to provide insights towards a systematic and fundamental understanding for the fabrication and utilization of flexible biosensors, as well as inspire and improve designs for smart and effective devices in the future.
Collapse
Affiliation(s)
- Meng Xu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Dora Obodo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
37
|
Li G, Mo X, Law WC, Chan KC. Wearable Fluid Capture Devices for Electrochemical Sensing of Sweat. ACS APPLIED MATERIALS & INTERFACES 2019; 11:238-243. [PMID: 30516364 DOI: 10.1021/acsami.8b17419] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Wearable sensing technologies are vital for realizing personalized health monitoring. Noninvasive human sweat sampling is essential for monitoring an individual's physical state using rich physiological data. However, existing wearable sensing technologies lack the controlled capture of body sweat and in performing on-device measurement without inflammatory contact. Herein, we report the development of a wearable sweat-capture device using patterned graphene arrays with controlled superwettability and electrical conductivity for simultaneously capturing and electrochemically measuring sweat droplets. The sweat droplets exhibited strong attachment on the superhydrophilic graphene patterns, even during moderate exercising. The captured sweat droplets present strong electrochemical signals using graphene films as the working electrode and metal pins as the counter electrode arrays assembled on 3D printed holders, at the detection limit of 6 μM for H2O2 sensing. This research enables full-body spatiotemporal mapping of sweat, which is beneficial for a broad range of personalized monitoring applications, such as drug abuse detection, athletics performance optimization, and physiological wellness tracking.
Collapse
Affiliation(s)
- Guijun Li
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Xiaoyong Mo
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Wing-Cheung Law
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Kang Cheung Chan
- Advanced Manufacturing Technology Research Centre, Department of Industrial and Systems Engineering , Hong Kong Polytechnic University , Hung Hom , Hong Kong
| |
Collapse
|
38
|
Liao J, Si H, Zhang X, Lin S. Functional Sensing Interfaces of PEDOT:PSS Organic Electrochemical Transistors for Chemical and Biological Sensors: A Mini Review. SENSORS (BASEL, SWITZERLAND) 2019; 19:E218. [PMID: 30634408 PMCID: PMC6359468 DOI: 10.3390/s19020218] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/29/2018] [Accepted: 01/05/2019] [Indexed: 02/04/2023]
Abstract
Organic electrochemical transistors (OECTs) are promising devices for applications in in vitro and in vivo measurements. OECTs have two important sensing interfaces for signal monitoring: One is the gate electrode surface; the other is the channel surface. This mini review introduced the new developments in chemical and biological detection of the two sensing interfaces. Specific focus was given on the modification technological approaches of the gate or channel surface. In particular, some unique strategies and surface designs aiming to facilitate signal-transduction and amplification were discussed. Several perspectives and current challenges of OECTs development were also briefly summarized.
Collapse
Affiliation(s)
- Jianjun Liao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Hewei Si
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xidong Zhang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shiwei Lin
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
39
|
Janni M, Coppede N, Bettelli M, Briglia N, Petrozza A, Summerer S, Vurro F, Danzi D, Cellini F, Marmiroli N, Pignone D, Iannotta S, Zappettini A. In Vivo Phenotyping for the Early Detection of Drought Stress in Tomato. PLANT PHENOMICS (WASHINGTON, D.C.) 2019; 2019:6168209. [PMID: 33313533 PMCID: PMC7706337 DOI: 10.34133/2019/6168209] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/05/2019] [Indexed: 05/04/2023]
Abstract
Drought stress imposes a major constraint over a crop yield and can be expected to grow in importance if the climate change predicted comes about. Improved methods are needed to facilitate crop management via the prompt detection of the onset of stress. Here, we report the use of an in vivo OECT (organic electrochemical transistor) sensor, termed as bioristor, in the context of the drought response of the tomato plant. The device was integrated within the plant's stem, thereby allowing for the continuous monitoring of the plant's physiological status throughout its life cycle. Bioristor was able to detect changes of ion concentration in the sap upon drought, in particular, those dissolved and transported through the transpiration stream, thus efficiently detecting the occurrence of drought stress immediately after the priming of the defence responses. The bioristor's acquired data were coupled with those obtained in a high-throughput phenotyping platform revealing the extreme complementarity of these methods to investigate the mechanisms triggered by the plant during the drought stress event.
Collapse
Affiliation(s)
- Michela Janni
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Nicola Coppede
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Manuele Bettelli
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Nunzio Briglia
- Università degli Studi della Basilicata, Dipartimento delle Culture Europee e del Mediterraneo: Architettura, Ambiente, Patrimoni Culturali (DICEM), Via S. Rocco, I-75100 Matera, Italy
| | - Angelo Petrozza
- ALSIA Centro Ricerche Metapontum Agrobios, s.s. Jonica 106 ,km 448, 2, Metaponto, MT 75010, Italy
| | - Stephan Summerer
- ALSIA Centro Ricerche Metapontum Agrobios, s.s. Jonica 106 ,km 448, 2, Metaponto, MT 75010, Italy
| | - Filippo Vurro
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Donatella Danzi
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Francesco Cellini
- ALSIA Centro Ricerche Metapontum Agrobios, s.s. Jonica 106 ,km 448, 2, Metaponto, MT 75010, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43124 Parma, Italy
| | - Domenico Pignone
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Salvatore Iannotta
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124 Parma, Italy
| |
Collapse
|
40
|
Christodouleas DC, Kaur B, Chorti P. From Point-of-Care Testing to eHealth Diagnostic Devices (eDiagnostics). ACS CENTRAL SCIENCE 2018; 4:1600-1616. [PMID: 30648144 PMCID: PMC6311959 DOI: 10.1021/acscentsci.8b00625] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Indexed: 05/09/2023]
Abstract
Point-of-care devices were originally designed to allow medical testing at or near the point of care by health-care professionals. Some point-of-care devices allow medical self-testing at home but cannot fully cover the growing diagnostic needs of eHealth systems that are under development in many countries. A number of easy-to-use, network-connected diagnostic devices for self-testing are needed to allow remote monitoring of patients' health. This Outlook highlights the essential characteristics of diagnostic devices for eHealth settings and indicates point-of-care technologies that may lead to the development of new devices. It also describes the most representative examples of simple-to-use, point-of-care devices that have been used for analysis of untreated biological samples.
Collapse
Affiliation(s)
| | - Balwinder Kaur
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Parthena Chorti
- Department of Chemistry, University
of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
41
|
Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem Rev 2018; 119:3-35. [DOI: 10.1021/acs.chemrev.8b00016] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Shi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Howard E. Katz
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
42
|
Kim SM, Kim CH, Kim Y, Kim N, Lee WJ, Lee EH, Kim D, Park S, Lee K, Rivnay J, Yoon MH. Influence of PEDOT:PSS crystallinity and composition on electrochemical transistor performance and long-term stability. Nat Commun 2018; 9:3858. [PMID: 30242224 PMCID: PMC6155079 DOI: 10.1038/s41467-018-06084-6] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/09/2018] [Indexed: 01/27/2023] Open
Abstract
Owing to the mixed electron/hole and ion transport in the aqueous environment, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based organic electrochemical transistor has been regarded as one of the most promising device platforms for bioelectronics. Nonetheless, there exist very few in-depth studies on how intrinsic channel material properties affect their performance and long-term stability in aqueous environments. Herein, we investigated the correlation among film microstructural crystallinity/composition, device performance, and aqueous stability in poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films. The highly organized anisotropic ordering in crystallized conducting polymer films led to remarkable device characteristics such as large transconductance (∼20 mS), extraordinary volumetric capacitance (113 F·cm-3), and unprecedentedly high [μC*] value (∼490 F·cm-1V-1s-1). Simultaneously, minimized poly(styrenesulfonate) residues in the crystallized film substantially afforded marginal film swelling and robust operational stability even after >20-day water immersion, >2000-time repeated on-off switching, or high-temperature/pressure sterilization. We expect that the present study will contribute to the development of long-term stable implantable bioelectronics for neural recording/stimulation.
Collapse
Affiliation(s)
- Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Chang-Hyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Department of Electronic Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Youngseok Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Nara Kim
- Heeger Center for Advanced Materials, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Laboratory of Organic Electronics, ITN, Linköping University, Norrköping, SE-601 74, Sweden
| | - Won-June Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Eun-Hak Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Dokyun Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sungjun Park
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kwanghee Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
- Heeger Center for Advanced Materials, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
43
|
Adhikari S, Richter B, Mace ZS, Sclabassi RJ, Cheng B, Whiting DM, Averick S, Nelson TL. Organic Conductive Fibers as Nonmetallic Electrodes and Neural Interconnects. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Santosh Adhikari
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | - Bertram Richter
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States
| | - Zachary S. Mace
- Computational Diagnostics, Inc. Pittsburgh, Pennsylvania 15213, United States
| | - Robert J. Sclabassi
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States
- Computational Diagnostics, Inc. Pittsburgh, Pennsylvania 15213, United States
| | - Boyle Cheng
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States
| | - Donald M. Whiting
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States
| | - Saadyah Averick
- System Department of Neurosurgery, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States
| | - Toby L. Nelson
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| |
Collapse
|
44
|
Fabrication and Use of Organic Electrochemical Transistors for Sensing of Metabolites in Aqueous Media. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Coppedè N, Janni M, Bettelli M, Maida CL, Gentile F, Villani M, Ruotolo R, Iannotta S, Marmiroli N, Marmiroli M, Zappettini A. An in vivo biosensing, biomimetic electrochemical transistor with applications in plant science and precision farming. Sci Rep 2017; 7:16195. [PMID: 29170393 PMCID: PMC5700984 DOI: 10.1038/s41598-017-16217-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/31/2017] [Indexed: 12/04/2022] Open
Abstract
The in vivo monitoring of key plant physiology parameters will be a key enabler of precision farming. Here, a biomimetic textile-based biosensor, which can be inserted directly into plant tissue is presented: the device is able to monitor, in vivo and in real time, variations in the solute content of the plant sap. The biosensor has no detectable effect on the plant's morphology even after six weeks of continuous operation. The continuous monitoring of the sap electrolyte concentration in a growing tomato plant revealed a circadian pattern of variation. The biosensor has the potential to detect the signs of abiotic stress, and therefore might be exploited as a powerful tool to study plant physiology and to increase tomato growth sustainability. Also, it can continuously communicate the plant health status, thus potentially driving the whole farm management in the frame of smart agriculture.
Collapse
Affiliation(s)
- Nicola Coppedè
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Michela Janni
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Amendola 165/A, 70126, Bari, Italy
| | - Manuele Bettelli
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Calogero Leandro Maida
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43100, Parma, Italy
| | - Francesco Gentile
- Department of Electrical Engineering and Information Technology, University Federico II, Naples, Italy
| | - Marco Villani
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Roberta Ruotolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43100, Parma, Italy
| | - Salvatore Iannotta
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43100, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 11/A, 43100, Parma, Italy
| | - Andrea Zappettini
- Institute of Materials for Electronics and Magnetism (IMEM), National Research Council (CNR), Parco Area delle Scienze 37/A, 43124, Parma, Italy.
| |
Collapse
|
46
|
Allison L, Hoxie S, Andrew TL. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem Commun (Camb) 2017; 53:7182-7193. [DOI: 10.1039/c7cc02592k] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene).
Collapse
Affiliation(s)
- Linden Allison
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| | - Steven Hoxie
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| | - Trisha L. Andrew
- Department of Chemistry, University of Massachusetts Amherst
- Amherst
- USA
| |
Collapse
|
47
|
Kaphle V, Liu S, Al-Shadeedi A, Keum CM, Lüssem B. Contact Resistance Effects in Highly Doped Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8766-8770. [PMID: 27511804 DOI: 10.1002/adma.201602125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Injection at the source contact critically determines the behavior of depletion-type organic electrochemical transistors (OETs). The contact resistance of OETs increases exponentially with the gate voltage and strongly influences the modulation of the drain current by the gate voltage over a wide voltage range. A modified standard model accounting contact resistance can explain the particular shape of the transconductance.
Collapse
Affiliation(s)
- Vikash Kaphle
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Shiyi Liu
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | | | - Chang-Min Keum
- Department of Physics, Kent State University, Kent, OH, 44242, USA
| | - Björn Lüssem
- Department of Physics, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
48
|
Gualandi I, Marzocchi M, Achilli A, Cavedale D, Bonfiglio A, Fraboni B. Textile Organic Electrochemical Transistors as a Platform for Wearable Biosensors. Sci Rep 2016; 6:33637. [PMID: 27667396 PMCID: PMC5035988 DOI: 10.1038/srep33637] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 01/24/2023] Open
Abstract
The development of wearable chemical sensors is receiving a great deal of attention in view of non-invasive and continuous monitoring of physiological parameters in healthcare applications. This paper describes the development of a fully textile, wearable chemical sensor based on an organic electrochemical transistor (OECT) entirely made of conductive polymer (PEDOT:PSS). The active polymer patterns are deposited into the fabric by screen printing processes, thus allowing the device to actually "disappear" into it. We demonstrate the reliability of the proposed textile OECTs as a platform for developing chemical sensors capable to detect in real-time various redox active molecules (adrenaline, dopamine and ascorbic acid), by assessing their performance in two different experimental contexts: i) ideal operation conditions (i.e. totally dipped in an electrolyte solution); ii) real-life operation conditions (i.e. by sequentially adding few drops of electrolyte solution onto only one side of the textile sensor). The OECTs response has also been measured in artificial sweat, assessing how these sensors can be reliably used for the detection of biomarkers in body fluids. Finally, the very low operating potentials (<1 V) and absorbed power (~10-4 W) make the here described textile OECTs very appealing for portable and wearable applications.
Collapse
Affiliation(s)
- I Gualandi
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - M Marzocchi
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - A Achilli
- Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza D'Armi, 09123 Cagliari, Italy
| | - D Cavedale
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - A Bonfiglio
- Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza D'Armi, 09123 Cagliari, Italy
| | - B Fraboni
- Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| |
Collapse
|
49
|
Steinberg MD, Kassal P, Steinberg IM. System Architectures in Wearable Electrochemical Sensors. ELECTROANAL 2016. [DOI: 10.1002/elan.201600094] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Gentile F, Ferrara L, Villani M, Bettelli M, Iannotta S, Zappettini A, Cesarelli M, Di Fabrizio E, Coppedè N. Geometrical Patterning of Super-Hydrophobic Biosensing Transistors Enables Space and Time Resolved Analysis of Biological Mixtures. Sci Rep 2016; 6:18992. [PMID: 26753611 PMCID: PMC4709515 DOI: 10.1038/srep18992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/19/2015] [Indexed: 12/17/2022] Open
Abstract
PEDOT PSS is a conductive polymer that can be integrated into last generation Organic Electrochemical Transistor (OECT) devices for biological inspection, identification and analysis. While a variety of reports in literature demonstrated the chemical and biological sensitivity of these devices, still their ability in resolving complex mixtures remains controversial. Similar OECT devices display good time dynamics behavior but lack spatial resolution. In this work, we integrated PEDOT PSS with patterns of super-hydrophobic pillars in which a finite number of those pillars is independently controlled for site-selective measurement of a solution. We obtained a multifunctional, hierarchical OECT device that bridges the micro- to the nano-scales for specific, combined time and space resolved analysis of the sample. Due to super-hydrophobic surface properties, the biological species in the drop are driven by convection, diffusion, and the externally applied electric field: the balance/unbalance between these forces will cause the molecules to be transported differently within its volume depending on particle size thus realizing a size-selective separation. Within this framework, the separation and identification of two different molecules, namely Cetyl Trimethyl Ammonium Bromid (CTAB) and adrenaline, in a biological mixture have been demonstrated, showing that geometrical control at the micro-nano scale impart unprecedented selectivity to the devices.
Collapse
Affiliation(s)
- Francesco Gentile
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy
- Department of Experimental and Clinical Medicine, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Lorenzo Ferrara
- Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Marco Villani
- IMEM-CNR Parco Area delle Scienze 37/A - 43124 Parma, Italy
| | | | | | | | - Mario Cesarelli
- Department of Electrical Engineering and Information Technology, University of Naples, 80125, Naples, Italy
| | - Enzo Di Fabrizio
- King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Nicola Coppedè
- IMEM-CNR Parco Area delle Scienze 37/A - 43124 Parma, Italy
| |
Collapse
|