1
|
Caval M, Dettori MA, Carta P, Dallocchio R, Dessì A, Marceddu S, Serra PA, Fabbri D, Rocchitta G. Sustainable Electropolymerization of Zingerone and Its C2 Symmetric Dimer for Amperometric Biosensor Films. Molecules 2023; 28:6017. [PMID: 37630267 PMCID: PMC10459948 DOI: 10.3390/molecules28166017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Polymeric permselective films are frequently used for amperometric biosensors to prevent electroactive interference present in the target matrix. Phenylenediamines are the most commonly used for the deposition of shielding polymeric films against interfering species; however, even phenolic monomers have been utilized in the creation of these films for microsensors and biosensors. The purpose of this paper is to evaluate the performances of electrosynthesized polymers, layered by means of constant potential amperometry (CPA), of naturally occurring compound zingerone (ZING) and its dimer dehydrozingerone (ZING DIM), which was obtained by straight oxidative coupling reaction. The polymers showed interesting shielding characteristics against the main interfering species, such as ascorbic acid (AA): actually, polyZING exhibited an AA shielding aptitude comprised between 77.6 and 99.6%, comparable to that obtained with PPD. Moreover, a marked capability of increased monitoring of hydrogen peroxide (HP), when data were compared with bare metal results, was observed. In particular, polyZING showed increases ranging between 55.6 and 85.6%. In the present work, the molecular structures of the obtained polymers have been theorized and docking analyses were performed to understand their peculiar characteristics better. The structures were docked using the Lamarckian genetic algorithm (LGA). Glutamate biosensors based on those polymers were built, and their performances were compared with biosensors based on PPD, which is the most widespread polymer for the construction of amperometric biosensors.
Collapse
Affiliation(s)
- Myriam Caval
- Dipartimento di Scienze Biomediche, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| | - Maria Antonietta Dettori
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Paola Carta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Roberto Dallocchio
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Alessandro Dessì
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Salvatore Marceddu
- Istituto di Istituto Scienze delle Produzioni Alimentari, Consiglio Nazionale Ricerche, 07100 Sassari, Italy;
| | - Pier Andrea Serra
- Dipartimento di Medicina, Chirurgia e Farmacia, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| | - Davide Fabbri
- Istituto di Chimica Biomolecolare, Consiglio Nazionale Ricerche, 07100 Sassari, Italy; (M.A.D.); (P.C.); (R.D.); (A.D.)
| | - Gaia Rocchitta
- Dipartimento di Medicina, Chirurgia e Farmacia, Università Degli Studi di Sassari, 07100 Sassari, Italy;
| |
Collapse
|
2
|
|
3
|
Lee M, Kim S, Jang M, Park HS, Lee JY. One-Pot electrochemical fabrication of high performance amperometric enzymatic biosensors using polypyrrole and polydopamine. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
4
|
Chronoamperometry as effective alternative technique for electro‐synthesis of
ortho
‐
phenylendiamine permselective films for biosensor applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.49172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Ciriello R, Carbone M, Coviello D, Guerrieri A, Salvi A. Improved stability of thin insulating poly(o-aminophenol) films in aqueous solutions through an efficient strategy for electrosynthesis under neutral pH conditions: Electrochemical and XPS investigation. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
A Storage-Dependent Platinum Functionalization with a Commercial Pre-Polymer Useful for Hydrogen Peroxide and Ascorbic Acid Detection. SENSORS 2019; 19:s19112435. [PMID: 31141953 PMCID: PMC6603770 DOI: 10.3390/s19112435] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022]
Abstract
A preliminary assessment of properties of the commercial product Chemiplus 2DS HB (BI-QEM Specialties SpA) is proposed. Cyclic voltammetry of this oligomer containing sulfate/sulfone groups shows a single oxidative peak at +0.866 V vs. Ag/AgCl, and its passivating process on Pt electrode suggests the formation of a non-conductive layer. Electrode modification was achieved by exploiting the constant potential amperometry setting potential at +0.900 V vs. Ag/AgCl. A substantial change in the oxidative currents from electroactive species H2O2 and ascorbic acid (AA) were observed on Pt/Chemiplus 2DS HB sensors compared to unmodified Pt. Furthermore, the influence of different storage conditions on modified sensors was examined. A storage solution containing AA concentration from 0.1 until 10 mM maintained effective AA rejection of Pt/Chemiplus 2DS HB after 7 days from construction; H2O2 oxidation capability was also retained. Sulfone and sulfonate groups of Chemiplus 2DS HB are likely responsible for the dimensionality of the film and the electrostatic interaction leading to a self-blocking/self-rejection of AA. The way Pt/Chemiplus can reveal the AA presence depends on the maintaining of AA rejection, and this peculiarity can distinguish it from other sensors or biosensors.
Collapse
|
7
|
Brown MD, Hall JR, Schoenfisch MH. A direct and selective electrochemical hydrogen sulfide sensor. Anal Chim Acta 2019; 1045:67-76. [PMID: 30454574 PMCID: PMC6641862 DOI: 10.1016/j.aca.2018.08.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/17/2018] [Accepted: 08/28/2018] [Indexed: 01/23/2023]
Abstract
Continuous, in situ detection of hydrogen sulfide (H2S) in biological milieu is made possible with electrochemical methods, but direct amperometry is constrained by the generation of elemental sulfur as an oxidative byproduct. Deposition of a sulfur layer passivates the working electrode, reducing sensitivity and causing performance variability. Herein, we report on the use of a surface preconditioning procedure to deposit elemental sulfur on a glassy carbon electrode prior to measurement and evaluate performance with common analytical metrics. The lack of traditional anti-poisoning techniques (e.g. redox mediators, cleaning pulses) also allowed for facile surface modification with electropolymerized films. For the first time, a series of electropolymerized films were characterized for their H2S permselective behavior against common biological interferents. Highly selective, film-modified electrodes were then evaluated for their anti-biofouling ability in simulated wound fluid. The final optimized electrode was capable of measuring H2S with a low detection limit (i.e., <100 nM) and ∼80% of its initial sensitivity in proteinaceous media.
Collapse
Affiliation(s)
- Micah D Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, United States
| | - Jackson R Hall
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, United States
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
8
|
Development of a flow microsensor for selective detection of nitric oxide in the presence of hydrogen peroxide. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.158] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Baig N, Rana A, Kawde AN. Modified Electrodes for Selective Voltammetric Detection of Biomolecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201800468] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Nadeem Baig
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Azeem Rana
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| | - Abdel-Nasser Kawde
- Chemistry Department, College of Sciences; King Fahd University of Petroleum and Minerals; Dhahran 31261 Saudi Arabia
| |
Collapse
|
10
|
Brown MD, Schoenfisch MH. Nitric oxide permselectivity in electropolymerized films for sensing applications. ACS Sens 2016; 1:1453-1461. [PMID: 31875180 DOI: 10.1021/acssensors.6b00596] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The presence of biological interferents in physiological media necessitates chemical modification of the working electrode to facilitate accurate electrochemical measurement of nitric oxide (NO). In this study, we evaluated a series of self-terminating electropolymerized films prepared from one of three isomers of phenylenediamine (PD), phenol, eugenol, or 5-amino-1-naphthol (5A1N) to improve the NO selectivity of a platinum working electrode. The electrodeposition procedure for each monomer was individually optimized using cyclic voltammetry (CV) or constant potential amperometry (CPA). Cyclic voltammetry deposition parameters favoring slower film formation generally yielded films with improved selectivity for NO over nitrite and l-ascorbate. Nitric oxide sensors were fabricated and compared using the optimized deposition procedure for each monomer. Sensors prepared using poly-phenol and poly-5A1N film-modified platinum working electrodes demonstrated the most ideal analytical performance, with the former demonstrating the best selectivity. In simulated wound fluid, platinum electrodes modified with poly-5A1N films proved superior with respect to the NO sensitivity and detection limit.
Collapse
Affiliation(s)
- Micah D. Brown
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North
Carolina 27599, United States
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, CB 3290, Chapel Hill, North
Carolina 27599, United States
| |
Collapse
|
11
|
Monti P, Calia G, Marceddu S, Dettori MA, Fabbri D, Jaoua S, O'Neill RD, Migheli Q, Delogu G, Serra PA. Low electro-synthesis potentials improve permselectivity of polymerized natural phenols in biosensor applications. Talanta 2016; 162:151-158. [PMID: 27837811 DOI: 10.1016/j.talanta.2016.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/27/2016] [Accepted: 10/02/2016] [Indexed: 01/01/2023]
Abstract
First-generation amperometric biosensors are often based on the electro-oxidation of oxidase-generated H2O2. At the applied potential used in most studies, other molecules such as ascorbic acid or dopamine can be oxidized. Phenylenediamines are commonly used to avoid this problem: when these compounds are electro-deposited onto the transducer surface in the form of poly-phenylenediamine, a highly selective membrane is formed. Although there is no evidence of toxicity of the resulting polymer, phenylenediamine monomers are considered carcinogenic. An aim of this work was to evaluate the suitability of natural phenols as non-toxic alternatives to the ortho isomer of phenylenediamine. Electrosynthesis over Pt-Ir electrodes of 2-methoxy phenols (guaiacol, eugenol and isoeugenol), and hydroxylated biphenyls (dehydrodieugenol and magnolol) was achieved. The potentials used in the present study are significantly lower than values commonly applied during electro-polymerization. Polymers were obtained by means of constant potential amperometry, instead of cyclic voltammetry, in order to achieve multiple polymerizations, hence decreasing the time of realization and variability. Permselective properties of natural phenols were significantly improved at low polymerization potentials. Among the tested compounds, isoeugenol and magnolol, polymerized respectively at +25mV and +170mV against Ag/AgCl reference electrode, proved as permselective as poly-ortho-phenylenediamine and may be considered as effective polymeric alternatives. The natural phenol-coated electrodes were stable and responsive throughout 14 days. A biosensor prototype based on acetylcholine esterase and choline oxidase was electro-coated with poly-magnolol in order to evaluate the interference-rejecting properties of the electrosynthesized film in an amperometric biosensor; a moderate decrease in ascorbic acid rejection was observed during in vitro calibration of biosensors.
Collapse
Affiliation(s)
- Patrizia Monti
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Istituto CNR di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Giammario Calia
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy; Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Sassari, Viale S. Pietro 43/b, I-07100 Sassari, Italy
| | - Salvatore Marceddu
- Istituto CNR di Scienze delle Produzioni Alimentari, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Maria A Dettori
- Istituto CNR di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Davide Fabbri
- Istituto CNR di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Samir Jaoua
- Department of Biological & Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Robert D O'Neill
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Quirico Migheli
- Dipartimento di Agraria and Unità di Ricerca Istituto Nazionale di Biostrutture e Biosistemi, Università degli Studi di Sassari, Viale Italia 39, I-07100 Sassari, Italy
| | - Giovanna Delogu
- Istituto CNR di Chimica Biomolecolare, UOS Sassari, Traversa La Crucca 3, I-07100 Sassari, Italy
| | - Pier A Serra
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Sassari, Viale S. Pietro 43/b, I-07100 Sassari, Italy.
| |
Collapse
|
12
|
Characterization of Biosensors Based on Recombinant Glutamate Oxidase: Comparison of Crosslinking Agents in Terms of Enzyme Loading and Efficiency Parameters. SENSORS 2016; 16:s16101565. [PMID: 27669257 PMCID: PMC5087354 DOI: 10.3390/s16101565] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/07/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023]
Abstract
Amperometric l-glutamate (Glu) biosensors, based on both wild-type and a recombinant form of l-glutamate oxidase (GluOx), were designed and characterized in terms of enzyme-kinetic, sensitivity and stability parameters in attempts to fabricate a real-time Glu monitoring device suitable for future long-term detection of this amino acid in biological and other complex media. A comparison of the enzyme from these two sources showed that they were similar in terms of biosensor performance. Optimization of the loading of the polycationic stabilization agent, polyethyleneimine (PEI), was established before investigating a range of crosslinking agents under different conditions: glutaraldehyde (GA), polyethylene glycol (PEG), and polyethylene glycol diglycidyl ether (PEGDE). Whereas PEI-free biosensor designs lost most of their meager Glu sensitivity after one or two days, configurations with a 2:5 ratio of dip-evaporation applications of PEI(1%):GluOx(400 U/mL) displayed a 20-fold increase in their initial sensitivity, and a decay half-life extended to 10 days. All the crosslinkers studied had no effect on initial Glu sensitivity, but enhanced biosensor stability, provided the crosslinking procedure was carried out under well-defined conditions. The resulting biosensor design based on the recombinant enzyme deposited on a permselective layer of poly-(ortho-phenylenediamine), PoPD/PEI₂/GluOx₅/PEGDE, displayed good sensitivity (LOD < 0.2 μM), response time (t90% < 1 s) and stability over a 90-day period, making it an attractive candidate for future long-term monitoring of Glu concentration dynamics in complex media.
Collapse
|
13
|
Farina D, Zinellu M, Fanari M, Porcu MC, Scognamillo S, Puggioni GMG, Rocchitta G, Serra PA, Pretti L. Development of a biosensor telemetry system for monitoring fermentation in craft breweries. Food Chem 2016; 218:479-486. [PMID: 27719939 DOI: 10.1016/j.foodchem.2016.09.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 11/29/2022]
Abstract
The development and applications of biosensors in the food industry has had a rapid grown due to their sensitivity, specificity and simplicity of use with respect to classical analytical methods. In this study, glucose and ethanol amperometric biosensors integrated with a wireless telemetry system were developed and used for the monitoring of top and bottom fermentations in beer wort samples. The collected data were in good agreement with those obtained by reference methods. The simplicity of construction, the low cost and the short time of analysis, combined with easy interpretation of the results, suggest that these devices could be a valuable alternative to conventional methods for monitoring fermentation processes in the food industry.
Collapse
Affiliation(s)
- Donatella Farina
- Porto Conte Ricerche Srl, S.P. 55 Porto Conte/Capo Caccia, Tramariglio-Alghero (SS) 07041, Italy.
| | - Manuel Zinellu
- Primo Principio C.O.O.P., Tramariglio-Alghero (SS) 07041, Italy.
| | - Mauro Fanari
- Porto Conte Ricerche Srl, S.P. 55 Porto Conte/Capo Caccia, Tramariglio-Alghero (SS) 07041, Italy.
| | - Maria Cristina Porcu
- Istituto di Chimica Biomolecolare (I.C.B.), C.N.R., Traversa La Crucca, 3 Regione Baldinca, 07100 Li Punti, Sassari, Italy.
| | - Sergio Scognamillo
- Porto Conte Ricerche Srl, S.P. 55 Porto Conte/Capo Caccia, Tramariglio-Alghero (SS) 07041, Italy.
| | | | - Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Sassari, V.le San Pietro 43/B, 07100 Sassari, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Sassari, V.le San Pietro 43/B, 07100 Sassari, Italy.
| | - Luca Pretti
- Porto Conte Ricerche Srl, S.P. 55 Porto Conte/Capo Caccia, Tramariglio-Alghero (SS) 07041, Italy.
| |
Collapse
|
14
|
Rocchitta G, Spanu A, Babudieri S, Latte G, Madeddu G, Galleri G, Nuvoli S, Bagella P, Demartis MI, Fiore V, Manetti R, Serra PA. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. SENSORS 2016; 16:s16060780. [PMID: 27249001 PMCID: PMC4934206 DOI: 10.3390/s16060780] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/24/2016] [Indexed: 12/22/2022]
Abstract
Enzyme-based chemical biosensors are based on biological recognition. In order to operate, the enzymes must be available to catalyze a specific biochemical reaction and be stable under the normal operating conditions of the biosensor. Design of biosensors is based on knowledge about the target analyte, as well as the complexity of the matrix in which the analyte has to be quantified. This article reviews the problems resulting from the interaction of enzyme-based amperometric biosensors with complex biological matrices containing the target analyte(s). One of the most challenging disadvantages of amperometric enzyme-based biosensor detection is signal reduction from fouling agents and interference from chemicals present in the sample matrix. This article, therefore, investigates the principles of functioning of enzymatic biosensors, their analytical performance over time and the strategies used to optimize their performance. Moreover, the composition of biological fluids as a function of their interaction with biosensing will be presented.
Collapse
Affiliation(s)
- Gaia Rocchitta
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Angela Spanu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Sergio Babudieri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Giordano Madeddu
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Grazia Galleri
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Susanna Nuvoli
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Paola Bagella
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Maria Ilaria Demartis
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Vito Fiore
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Roberto Manetti
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| | - Pier Andrea Serra
- Department of Clinical and Experimental Medicine, Medical School, University of Sassari, Viale S. Pietro 43/b, Sassari 07100, Italy.
| |
Collapse
|