1
|
Wang C, Zhang X, Li Q, Hou Y, Sun M, Sun J, Lou Z, Han X, Li Y. A review of carbohydrate polymer-synthesized nanoparticles in cancer immunotherapy: Past, present and future perspectives. Int J Biol Macromol 2025; 286:138195. [PMID: 39645110 DOI: 10.1016/j.ijbiomac.2024.138195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Cancer continues to be a leading factor in mortality and tackling it has been made difficult by the development of immune escape. Furthermore, alternative treatments like surgery, chemotherapy, and radiation have been unsuccessful in eradicating cancer. Despite being effective, they have not succeeded in providing a full cancer treatment and exhibit several negative effects. The field of immunotherapy has been improved by utilizing cancer vaccines, immune checkpoint inhibitors (ICIs), and adoptive cell transfer to enhance immune responses to tumors. Nevertheless, cancer cells need to adapt and become immune to immune reactions, leading to the need for innovative treatment methods. Carbohydrate polymers and their nanoparticles have been beneficial in improving cancer immunotherapy by being customizable to specifically target the immune system. These nanoparticles can change the tumor microenvironment and accelerate immunotherapy by affecting immune cells such as T cells and dendritic cells. Incorporating both chemotherapy and phototherapy into nanoparticles can improve immunotherapy. Furthermore, besides controlling immune reactions, carbohydrate polymer nanoparticles can also be used for theranostic purposes, where they are used to image tumor cells and activate the immune system to eradicate cancer.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Xueyao Zhang
- Department of Cardiology, First Hospital of China Medical University, Shenyang, China
| | - Qiaobei Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China
| | - Yuxin Hou
- Department of Ultrasonic Diagnosis, The Benxi Hospital of China Medical University, Benxi, China
| | - Minglu Sun
- Department of Ultrasonic Diagnosis, The Cancer Hospital of China Medical University, Shenyang, China
| | - Jun Sun
- Department of Intervention, the Fourth Hospital of China Medical University, Shenyang, China
| | - Zhe Lou
- Department of Cardiovascular Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| | - Xu Han
- Department of Traditional Chinese medicine, The First Hospital of China Medical University, Shenyang, China.
| | - Yinyan Li
- Department of Ultrasonic Diagnosis, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Wang H, You Q, Kang B, Jing H, Shi Z, Krizkova S, Heger Z, Adam V, Chen X, Li N. Pulling the Rug Out from Under: Biomechanical Microenvironment Remodeling for Induction of Hepatic Stellate Cell Quiescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406590. [PMID: 39410721 DOI: 10.1002/adma.202406590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/08/2024] [Revised: 08/24/2024] [Indexed: 12/06/2024]
Abstract
Hepatic fibrosis progresses concomitantly with a variety of biomechanical alternations, especially increased liver stiffness. These biomechanical alterations have long been considered as pathological consequences. Recently, growing evidence proposes that these alternations result in the fibrotic biomechanical microenvironment, which drives the activation of hepatic stellate cells (HSCs). Here, an inorganic ascorbic acid-oxidase (AAO) mimicking nanozyme loaded with liquiritigenin (LQ) is developed to trigger remodeling of the fibrotic biomechanical microenvironment. The AAO mimicking nanozyme is able to consume intracellular ascorbic acid, thereby impeding collagen I deposition by reducing its availability. Simultaneously, LQ inhibits the transcription of lysyl oxidase like 2 (LOXL2), thus impeding collagen I crosslinking. Through its synergistic activities, the prepared nanosystem efficiently restores the fibrotic biomechanical microenvironment to a near-normal physiological condition, promoting the quiescence of HSCs and regression of fibrosis. This strategy of remodeling the fibrotic biomechanical microenvironment, akin to "pulling the rug out from under", effectively treats hepatic fibrosis in mice, thereby highlighting the importance of tissue biomechanics and providing a potential approach to improve hepatic fibrosis treatment.
Collapse
Affiliation(s)
- Haobo Wang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Bei Kang
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Huaqing Jing
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Shi
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, CZ-61300, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, CZ-61300, Czech Republic
- Center of Advanced Innovation Technologies, Faculty of Materials Science and Technology, VSB - Technical University of Ostrava, Ostrava, CZ-708 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, CZ-61300, Czech Republic
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Luoshan MD, Yang Y, Dou ZL, Zhang FY, Yan HY, Zhou L, Wang QQ. Highly controlled synthesis of symmetrically branched tripod and pentapod nanocrystals with enhanced photocatalytic performance. J Colloid Interface Sci 2024; 669:1022-1030. [PMID: 38729809 DOI: 10.1016/j.jcis.2024.04.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/25/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024]
Abstract
Anisotropic nanostructures with tunable optical properties induced by controllable size and symmetry have attracted much attention in many applications. Herein, we report a controlled synthesis of symmetrically branched AuCu alloyed nanocrystals. By varying Au:Cu atom ratio in precursor, Y-shaped tripods with three-fold symmetry and star-shaped pentapods with five-fold symmetry are synthesized, respectively. The growth mechanism of AuCu tripods from icosahedral seeds and AuCu pentapods from decahedral seeds is revealed. Aiming to excellent photocatalytic performance, CdS nanocrystals are controlled grown onto the sharp tips of AuCu tripods and pentapods. In addition, a carrier-selective blocking layer of Ag2S is introduced between AuCu and CdS, for achieving effective charge separation in AuCu-Ag2S-CdS nanohybrids. Through evaluating the photocatalytic performance by hydrogen generation experiments, the AuCu-Ag2S-CdS tripod nanocrystals exhibit an optimized hydrogen evolution rate of 2182 μmol·g-1·h-1. These findings will contribute greatly to the understanding of complex nanoparticle growth mechanism and provide a strategy for the design of anisotropic nanoalloys for widely photocatalytic applications.
Collapse
Affiliation(s)
- Meng-Dai Luoshan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yang Yang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China; School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhen-Long Dou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China
| | - Feng-Yuan Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Hang-Yu Yan
- School of Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, PR China.
| | - Qu-Quan Wang
- Department of Physics, College of Science, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
4
|
Abu Serea ES, Berganza LB, Lanceros-Méndez S, Reguera J. Cu 2+-Assisted Synthesis of Ultrasharp and Sub-10 nm Gold Nanostars. Applications in Catalysis, Sensing, and Photothermia. ACS APPLIED NANO MATERIALS 2024; 7:19416-19426. [PMID: 39206353 PMCID: PMC11348798 DOI: 10.1021/acsanm.4c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/09/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Gold nanostars have shown enormous potential as the main enablers of advanced applications ranging from biomedicine to sensing or catalysis. Their unique anisotropic structure featuring sharp spikes that grow from a central core offers enhanced optical capabilities and spectral tunability. Although several synthesis methods yield NSs of different morphologies and sizes up to several hundred nanometers, obtaining small NSs, while maintaining their plasmonic properties in the near-infrared, has proven challenging and elusive. Here, we show that Cu2+ addition during NS synthesis in polyvinylpyrrolidone/dimethylformamide generates more crystallographic defects and promotes the directional growth, giving rise to NSs with a larger number of much sharper spikes. They are also formed at smaller volumes, enabling the generation of ultrasmall nanostars, with a volume as small as 421 nm3 (i.e., 9.2 nm of volume-equivalent diameter), while maintaining a plasmon resonance in the near-infrared. To this end, we systematically evaluate the influence of synthesis parameters on the nanostar size and optical characteristics and demonstrate their properties for applications in catalysis, surface-enhanced Raman spectroscopy sensing, and hyperthermia. The ultrasmall nanostars show excellent attributes in all of them, leveraging their small size to enhance properties related to a higher surface-to-volume ratio or colloidal diffusivity.
Collapse
Affiliation(s)
- Esraa Samy Abu Serea
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Leixuri B Berganza
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48009 Bilbao, Spain
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa 48940, Spain
- Department Condensed Matter Physics, University of Valladolid, Bioforge, Pso. de Belén 19, 47011 Valladolid, Spain
| |
Collapse
|
5
|
Huang L, Mao X, Liu B, Fan Z, Li J, Fan C, Tian Y, Luo S, Liu M. Programming Intracellular Clustering of Spiky Nanoparticles via Liposome Encapsulation. ACS NANO 2024; 18:8051-8061. [PMID: 38445976 DOI: 10.1021/acsnano.3c11152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 03/07/2024]
Abstract
The intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments. We explored the enhancement of the photothermal therapy performance for SNPs as a proof of concept. The photothermal conversion efficiency of lipo-SNPs clusters significantly increased 15 times compared to that of single lipo-SNPs. Upon accumulation in lysosomes with a 2.4-fold increase in clustering, lipo-SNPs resulted in an increase in cell-killing efficiency to 45% from 12% at 24 μg/mL. These findings indicated that liposome encapsulation provides a promising approach to programing nanoparticle clustering at the target site, which facilitates advances in the development of smart nanomedicine with programmable enhancement in LSPR.
Collapse
Affiliation(s)
- Lulu Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bingyi Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiying Fan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Jie Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
7
|
Jiang W, Low BQL, Long R, Low J, Loh H, Tang KY, Chai CHT, Zhu H, Zhu H, Li Z, Loh XJ, Xiong Y, Ye E. Active Site Engineering on Plasmonic Nanostructures for Efficient Photocatalysis. ACS NANO 2023; 17:4193-4229. [PMID: 36802513 DOI: 10.1021/acsnano.2c12314] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
Plasmonic nanostructures have shown immense potential in photocatalysis because of their distinct photochemical properties associated with tunable photoresponses and strong light-matter interactions. The introduction of highly active sites is essential to fully exploit the potential of plasmonic nanostructures in photocatalysis, considering the inferior intrinsic activities of typical plasmonic metals. This review focuses on active site-engineered plasmonic nanostructures with enhanced photocatalytic performance, wherein the active sites are classified into four types (i.e., metallic sites, defect sites, ligand-grafted sites, and interface sites). The synergy between active sites and plasmonic nanostructures in photocatalysis is discussed in detail after briefly introducing the material synthesis and characterization methods. Active sites can promote the coupling of solar energy harvested by plasmonic metal to catalytic reactions in the form of local electromagnetic fields, hot carriers, and photothermal heating. Moreover, efficient energy coupling potentially regulates the reaction pathway by facilitating the excited state formation of reactants, changing the status of active sites, and creating additional active sites using photoexcited plasmonic metals. Afterward, the application of active site-engineered plasmonic nanostructures in emerging photocatalytic reactions is summarized. Finally, a summary and perspective of the existing challenges and future opportunities are presented. This review aims to deliver some insights into plasmonic photocatalysis from the perspective of active sites, expediting the discovery of high-performance plasmonic photocatalysts.
Collapse
Affiliation(s)
- Wenbin Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Beverly Qian Ling Low
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Ran Long
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingxiang Low
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyi Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Casandra Hui Teng Chai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Hui Zhu
- Department of Chemistry, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| | - Yujie Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore
| |
Collapse
|
8
|
Chemical functionalized noble metal nanocrystals for electrocatalysis. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/18/2023]
|
9
|
Ba J, Huang Z, Yang W. 3-Aminopropyltriethoxysilane-directed formation of Au popcorns for colorimetric and SERS dual detection of cysteine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
10
|
Zhao C, Deng H, Chen X. Harnessing immune response using reactive oxygen Species-Generating/Eliminating inorganic biomaterials for disease treatment. Adv Drug Deliv Rev 2022; 188:114456. [PMID: 35843505 DOI: 10.1016/j.addr.2022.114456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022]
Abstract
With the increasing understanding of various biological functions mediated by reactive oxygen species (ROS) in the immune system, a number of studies have been designed to develop ROS-generating/eliminating strategies to selectively modulate immunogenicity for disease treatment. These strategies potentially exploit ROS-modulating inorganic biomaterials to harness host immunity to maximize the therapeutic potency by eliciting a favorable immune response. Inorganic biomaterial-guided in vivo ROS scavenging can exhibit several effects to: i) reduce the secretion of pro-inflammatory factors, ii) induce the phenotypic transition of macrophages from inflammatory M1 to immunosuppressive M2 phase, iii) minimize the recruitment and infiltration of immune cells. and/or iv) suppress the activation of nuclear factor kappa-B (NF-κB) pathway. Inversely, ROS-generating inorganic biomaterials have been found to be capable of: i) inducing immunogenic cell death (ICD), ii) reprograming tumor-associated macrophages from M2 to M1 phenotypes, iii) activating inflammasomes to stimulate tumor immunogenicity, and/or iv) recruiting phagocytes for antimicrobial therapy. This review provides a systematic and up-to-date overview on the progress related to ROS-nanotechnology mediated immunomodulation. We highlight how the ROS-generating/eliminating inorganic biomaterials can converge with immunomodulation and ultimately elicit an effective immune response against inflammation, autoimmune diseases, and/or cancers. We expect that contents presented in this review will be beneficial for the future advancements of ROS-based nanotechnology and its potential applications in this evolving field.
Collapse
Affiliation(s)
- Caiyan Zhao
- Engineering Research Center of Molecular & Neuroimaging, Ministry of Education School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China
| | - Hongzhang Deng
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore 119074, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
11
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
12
|
Bi C, Song Y, Zhao H, Liu G. Shape controlled synthesis of concave octahedral Au@AuAg nanoparticles to improve their surface-enhanced Raman scattering performance. RSC Adv 2022; 12:19571-19578. [PMID: 35865565 PMCID: PMC9258681 DOI: 10.1039/d2ra02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/26/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
In this work, a seed mediated strategy has been proposed to design and fabricate uniform octahedral shaped gold@gold-silver nanoparticles (Au@AuAg NPs) with unique concave structure and an AuAg alloy shell. The morphology and Au/Ag ratio of the Au@AuAg nanostructures can be delicately controlled by varying the concentration of reagents, namely the Au nanorod (NR) seeds, HAuCl4 and AgNO3 precursor. Besides, the investigation of the growth mechanism revealed that the morphology of the product also can be controlled by tuning the growth time. Furthermore, uniformly arranged assemblies of concave octahedral Au@AuAg NPs were prepared through a solvent evaporation self-assembly strategy and employed as surface-enhanced Raman scattering (SERS) substrates, effectively applied to the analysis of R6G for the examination of SERS performance. Satisfyingly, owing to the synergistic effect between the Au and Ag elements and concave structure, concave octahedral Au@AuAg NPs exhibit significantly higher SERS enhancement compared with traditional octahedral Au NPs, which have an enhancement factor of ∼1.3 × 107 and a detection limit as low as 10−10 M. Meanwhile, the SERS substrate reveals an excellent uniformity and reproducibility of the SERS performance. This work opens a new avenue toward bimetallic NPs with concave structure, which have broad application prospects in optics, SERS detection and other fields. In this work, a seed mediated strategy has been proposed to design and fabricate uniform octahedral shaped gold@gold-silver nanoparticles (Au@AuAg NPs) with unique concave structure and an AuAg alloy shell.![]()
Collapse
Affiliation(s)
- Cuixia Bi
- School of Physics and Physical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Yahui Song
- Academy of Advanced Interdisciplinary Studies, Qilu University of Technology Jinan 250000 P. R. China
| | - Hongyan Zhao
- School of Physics and Physical Engineering, Qufu Normal University Qufu 273165 P. R. China
| | - Guangqiang Liu
- School of Physics and Physical Engineering, Qufu Normal University Qufu 273165 P. R. China
| |
Collapse
|
13
|
Hu J, Fang C, Jiang X, Zhang D, Cui Z. Ultrathin and Porous 2D PtPdCu Nanoalloys as High-Performance Multifunctional Electrocatalysts for Various Alcohol Oxidation Reactions. Inorg Chem 2022; 61:9352-9363. [PMID: 35674700 DOI: 10.1021/acs.inorgchem.2c01257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
We precisely synthesized two-dimensional (2D) PtPdCu nanostructures with the morphology varying from porous circular nanodisks (CNDs) and triangular nanoplates (TNPs) to triangular nanoboomerangs (TNBs) by tuning the molar ratios of metal precursors. The PtPdCu trimetallic nanoalloys exhibit superior electrocatalytic performances to alcohol oxidation reactions due to their unique structural features and the synergistic effect. Impressively, PtPdCu TNBs exhibit a high mass activity of 3.42 mgPt+Pd-1 and 1.06 A·mgPt-1 for ethanol and methanol oxidation compared to PtPd, PtCu, and pure Pt, which is 3.93 and 4.07 times that of commercial Pt/C catalysts, respectively. Moreover, 2D PtPdCu TNPs and PtPdCu CNDs also show a highly improved electrocatalytic activity. Furthermore, as all-in-one electrocatalysts, PtPdCu nanoalloys display excellent electrocatalytic activity and stability toward the oxidation of other alcohol molecules, such as isopropyl alcohol, glycerol, and ethylene glycol. The enhanced mechanism was well proposed to be the abundant active sites and upshifted d-band center based on density functional theory calculations.
Collapse
Affiliation(s)
- Jinwu Hu
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Caihong Fang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Xiaomin Jiang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Deliang Zhang
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| | - Zhiqing Cui
- College of Chemistry and Materials Science, the Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
14
|
Poerwoprajitno AR, Cheong S, Gloag L, Gooding JJ, Tilley RD. Synthetic Strategies to Enhance the Electrocatalytic Properties of Branched Metal Nanoparticles. Acc Chem Res 2022; 55:1693-1702. [PMID: 35616935 DOI: 10.1021/acs.accounts.2c00140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
ConspectusBranched metal nanoparticles have unique catalytic properties because of their high surface area with multiple branches arranged in an open 3D structure that can interact with reacting species and tailorable branch surfaces that can maximize the exposure of desired catalytically active crystal facets. These exceptional properties have led to the exploration of the roles of branch structural features ranging from the number and dimensions of branches at the larger scales to the atomic-scale arrangement of atoms on precise crystal facets. The fundamental significance of how larger-scale branch structural features and atomic-scale surface faceting influence and control the catalytic properties has been at the forefront of the design of branched nanoparticles for catalysis. Current synthetic advances have enabled the formation of branched nanoparticles with an unprecedented degree of control over structural features down to the atomic scale, which have unlocked opportunities to make improved nanoparticle catalysts. These catalysts have high surface areas with controlled size and surface facets for achieving exceedingly high activity and stability. The synthetic advancement has recently led to the use of branched nanoparticles as ideal substrates that can be decorated with a second active metal in the form of islands and single atoms. These decorated branched nanoparticles have new and highly effective catalytic active sites where both branch metal and decorating metal play essential roles during catalysis.In the opening half of this Account, we critically assess the important structural features of branched nanoparticles that control catalytic properties. We first discuss the role of branch dimensions and the number of branches that can improve the surface area but can also trap gas bubbles. We then investigate the atomic-scale structural features of exposed surface facets, which are critical for enhancing catalytic activity and stability. Well-defined branched nanoparticles have led to a fundamental understanding of how the branch structural features influence the catalytic activity and stability, which we highlight for the oxygen evolution reaction (OER) and biomass oxidation. In discussing recent breakthroughs for branched nanoparticles, we explore the opportunities created by decorated branched nanoparticles and the unique bifunctional active sites that are exposed on the branched nanoparticle surfaces. This class of catalysts is of rapidly growing importance for reactions including the hydrogen evolution reaction (HER) and methanol oxidation reaction (MOR), where two exposed metals are required for efficient catalysis. In the second half of this Account, we explore recent advances in the synthesis of branched nanoparticles and highlight the cubic-core hexagonal-branch growth mechanism that has achieved excellent control of all of the important structural features, including branch dimensions, number of branches, and surface facets. We discuss the slow precursor reduction as an effective strategy for decorating metal islands with controlled loadings on the branched nanoparticle surfaces and the spread of these metal islands to form single-atom active sites. We envisage that the key synthetic and structural advances identified in this Account will guide the development of the next-generation electrocatalysts.
Collapse
Affiliation(s)
| | | | - Lucy Gloag
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - J. Justin Gooding
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D. Tilley
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
16
|
Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing. Int J Pharm 2022; 615:121489. [DOI: 10.1016/j.ijpharm.2022.121489] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/08/2021] [Revised: 12/27/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
|
17
|
Qiu E, Chen X, Yang DP, Regulacio MD, Ramos RMC, Luo Z, Wu YL, Lin M, Li Z, Loh XJ, Ye E. Fabricating Dual-Functional Plasmonic-Magnetic Au@MgFe 2O 4 Nanohybrids for Photothermal Therapy and Magnetic Resonance Imaging. ACS OMEGA 2022; 7:2031-2040. [PMID: 35071891 PMCID: PMC8771950 DOI: 10.1021/acsomega.1c05486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/01/2023]
Abstract
Bifunctional nanohybrids possessing both plasmonic and magnetic functionalities are of great interest for biomedical applications owing to their capability for simultaneous therapy and diagnostics. Herein, we fabricate a core-shell structured plasmonic-magnetic nanocomposite system that can serve as a dual-functional agent due to its combined photothermal therapeutic and magnetic resonance imaging (MRI) functions. The photothermal activity of the hybrid is attributed to its plasmonic Au core, which is capable of absorbing near-infrared (NIR) light and converting it into heat. Meanwhile, the magnetic MgFe2O4 shell exerts its ability to act as a MRI contrast agent. Our in vivo studies using tumor-bearing mice demonstrated the nanohybrids' excellent photothermal and MRI properties. As a photothermal therapeutic agent, the nanohybrids were able to dramatically shrink solid tumors in mice through NIR-induced hyperthermia. As T 2-weighted MRI contrast agents, the nanohybrids were found capable of substantially reducing the MRI signal intensity of the tumor region at 10 min postinjection. With their dual plasmonic-magnetic functionality, these Au@MgFe2O4 nanohybrids hold great promise not only in the biomedical field but also in the areas of catalysis and optical sensing.
Collapse
Affiliation(s)
- Enhui Qiu
- The
Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaofang Chen
- The
Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Da-Peng Yang
- The
Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
- Key
Laboratory of Chemical Materials and Green Nanotechnology, College
of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Michelle D. Regulacio
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
| | - Rufus Mart Ceasar
R. Ramos
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
- Natural
Sciences Research Institute (NSRI), University
of the Philippines Diliman, Quezon City 1101 Philippines
| | - Zheng Luo
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research and State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Yun-Long Wu
- Fujian
Provincial Key Laboratory of Innovative Drug Target Research and State
Key Laboratory of Cellular Stress Biology, School of Pharmaceutical
Sciences, Xiamen University, Xiamen, Fujian 361102, P. R. China
| | - Ming Lin
- Institute
of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, no. 8-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute
of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, no. 8-03, Singapore 138634, Singapore
| | - Xian Jun Loh
- Institute
of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, no. 8-03, Singapore 138634, Singapore
| | - Enyi Ye
- Institute
of Materials Research and Engineering, 2 Fusionopolis Way, Innovis, no. 8-03, Singapore 138634, Singapore
| |
Collapse
|
18
|
Tee SY, Ye E, Teng CP, Tanaka Y, Tang KY, Win KY, Han MY. Advances in photothermal nanomaterials for biomedical, environmental and energy applications. NANOSCALE 2021; 13:14268-14286. [PMID: 34473186 DOI: 10.1039/d1nr04197e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Materials that exhibit photothermal effect have attracted enormous research interests due to their ability to strongly absorb light and effectively transform it into heat for a wide range of applications in biomedical, environmental and energy related fields. The past decade has witnessed significant advances in the preparation of a variety of photothermal materials, mainly due to the emergence of many nano-enabled new materials, such as plasmonic metals, stoichiometric/non-stoichiometric semiconductors, and the newly emerging MXenes. These photothermal nanomaterials can be hybridized with other constituents to form functional hybrids or composites for achieving enhanced photothermal performance. In this review, we present the fundamental insight of inorganic photothermal materials, including their photothermal conversion mechanisms/properties as well as their potential applications in various fields. Emphasis is placed on strategic approaches for improving their light harvesting and photothermal conversion capabilities through engineering their nanostructured size, shape, composition, bandgap and so on. Lastly, the underlying challenges and perspectives for future development of photothermal nanomaterials are proposed.
Collapse
Affiliation(s)
- Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Yuki Tanaka
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | | | - Khin Yin Win
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
| | - Ming-Yong Han
- Institute of Materials Research and Engineering (IMRE), 138634, Singapore.
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
19
|
Xu B, Qian H, Zhang L, Lin S. Branched Aggregates with Tunable Morphology via Hierarchical Self‐Assembly of Azobenzene‐Derived Molecular Double Brushes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ling Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
20
|
Hans EADR, Regulacio MD. Dual Plasmonic Au-Cu 2-x S Nanocomposites: Design Strategies and Photothermal Properties. Chemistry 2021; 27:11030-11040. [PMID: 34015149 DOI: 10.1002/chem.202101392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2021] [Indexed: 12/12/2022]
Abstract
Coupling two different materials to create a hybrid nanostructured system is a powerful strategy for achieving synergistically enhanced properties and advanced functionalities. In the case of Au and Cu2-x S, their combination on the nanoscale results in dual plasmonic Au-Cu2-x S nanocomposites that exhibit intense photon absorption in both the visible and the near-infrared spectral ranges. Their strong light-absorbing properties translate to superior photothermal transduction efficiency, making them attractive in photothermal-based applications. There are several nanostructure configurations that are possible for the Au-Cu2-x S system, and the successful fabrication of a particular architecture often requires a carefully planned synthetic strategy. In this Minireview, the different synthetic approaches that can be employed to produce rationally designed Au-Cu2-x S nanocomposites are presented, with a focus on the experimental protocols that can lead to heterodimer, core-shell, reverse core-shell, and yolk-shell configurations. The photothermal behavior of these materials is also discussed, providing a glimpse of their potential use as photothermally active agents in therapeutic and theranostic applications.
Collapse
Affiliation(s)
- Earl Adrian D R Hans
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| | - Michelle D Regulacio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City, 1101, Philippines
| |
Collapse
|
21
|
Xu B, Qian H, Zhang L, Lin S. Branched Aggregates with Tunable Morphology via Hierarchical Self-Assembly of Azobenzene-Derived Molecular Double Brushes. Angew Chem Int Ed Engl 2021; 60:17707-17713. [PMID: 34075671 DOI: 10.1002/anie.202106321] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2021] [Indexed: 11/10/2022]
Abstract
Hierarchical self-assembly is one of the most effective approaches to fabricate nature-inspired materials with subtle nanostructures. We report a distinct hierarchical self-assembly process of molecular double brushes (MDBs) with each graft site carrying a poly(azobenzene-acrylate) (PAzo) chain and a poly(ethylene oxide) (PEO) chain. Asymmetric tapered worm (ATW) nanostructures with chain-end reactivity assembling from the azobenzene-derived MDBs serve as primary subunits to prepare branched supermicelles by increasing water content (Cw ) in THF/water. Various natural Antedon-shaped multiarm worm-like aggregates (MWAs) can be created via the particle-particle connection of ATWs. Intriguingly, the azobenzene moieties undergo trans-cis isomerization upon UV irradiation and further promote a morphology evolution of MWAs. Multiscale supermicelles comprised of starfish shapes with differing central body and arm morphologies (e.g., compare to the biological specimens Luidia ciliaris and Crossaster papposus) were prepared by manipulating irradiation time.
Collapse
Affiliation(s)
- Binbin Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongyu Qian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Li Z, Wang J, Shen R, Chen N, Qin X, Wang W, Yuan Q. Topological Radiated Dendrites Featuring Persistent Bactericidal Activity for Daily Personal Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100562. [PMID: 33969623 DOI: 10.1002/smll.202100562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/28/2021] [Revised: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Many substances in nature show radiated topological structure and possess excellent bio-adhesion ability. Herein, regulating the topological structure of Zn2 GeO4 :Mn persistent phosphors is achieved with a molecular coordination method. The morphology of the Zn2 GeO4 :Mn phosphors is well-tuned from nanorods to radiated dendrites by changing the coordination capability of the surface ligand. Due to the structural matching and multivalent interactions, Zn2 GeO4 :Mn radiated dendrites show strong adhesion affinity toward organisms. Moreover, the porous radiated structure offers Zn2 GeO4 :Mn with a large surface area for photocatalysis. Efficient bacterial adhesion and good long persistent photocatalysis activity are observed in the Zn2 GeO4 :Mn radiated dendrites, which endows Zn2 GeO4 :Mn with persistent antibacterial activity even in the dark. Further, the Zn2 GeO4 :Mn spike flowers loaded fabrics exhibit potent persistent antibacterial properties. Mask and towel fabricated with the antibacterial fabrics can inhibit bacterial growth effectively and no bacteria are observed to pass through the antibacterial mask, suggesting that antibacterial mask can guarantee our health and can be utilized repeatedly. The developed Zn2 GeO4 :Mn dendrites possess ideal ability in long-term bacterial inhibition, making them valuable in the fields of medical protection and food packaging.
Collapse
Affiliation(s)
- Zhiheng Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Na Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Xinyuan Qin
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Wenjie Wang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
23
|
Wang L, Duan C, Miao X, Liu J, Qu Y, Gao J, Wang B, Yin Z. Free‐Standing and High‐Sensitive Electrodes with Hierarchical Nanostructures of Bimetallic Hydroxides M(OH)
x
/Cu(OH)
2
/CF (M=Ni, Co, Fe and Zn) for Glucose Detection. ChemistrySelect 2021. [DOI: 10.1002/slct.202100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Lili Wang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Cunpeng Duan
- School of Environmental Science and Engineering Tiangong University Tianjin 300387 China
| | - Xueli Miao
- School of Environmental Science and Engineering Tiangong University Tianjin 300387 China
| | - Jianping Liu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Yuning Qu
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Jian Gao
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Bing Wang
- State Key Laboratory of Separation Membranes and Membrane Processes School of Chemistry and Chemical Engineering Tiangong University Tianjin 300387 China
| | - Zhen Yin
- College of Chemical Engineering and Materials Science Tianjin University of Science and Technology 29 13th Avenue, TEDA Tianjin 300457 P. R. China
| |
Collapse
|
24
|
Heng JZX, Tang KY, Regulacio MD, Lin M, Loh XJ, Li Z, Ye E. Solar-Powered Photodegradation of Pollutant Dyes Using Silver-Embedded Porous TiO 2 Nanofibers. NANOMATERIALS 2021; 11:nano11040856. [PMID: 33801664 PMCID: PMC8066685 DOI: 10.3390/nano11040856] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
Titanium dioxide (TiO2) nanomaterials have been ubiquitously investigated as a photocatalyst for organic contaminant treatment in wastewater due to their exemplary semiconductor properties. However, their huge band gap remains a barrier for visible light absorption, limiting their utility in practical applications. The incorporation of noble metals in the TiO2 scaffold would help mitigate the problem via plasmonic resonance enhancements. Silver (Ag) is the chosen noble metal as it is relatively cheap and has great plasmonic effects. In this study, the use of electrospun Ag-embedded TiO2 nanofibers as a photocatalyst is shown to be effective in decomposing rhodamine B and methyl orange dyes under a solar simulator in 3 h, which is more efficacious as opposed to pristine TiO2 nanofibers. This showcases the potential of a simple and economic wastewater treatment system for the removal of organic pollutants.
Collapse
Affiliation(s)
- Jerry Zhi Xiong Heng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
| | - Karen Yuanting Tang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
| | - Michelle D. Regulacio
- Institute of Chemistry, University of the Philippines Diliman, Quezon City 1101, Philippines;
| | - Ming Lin
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore; (J.Z.X.H.); (K.Y.T.)
- Correspondence: (M.L.); (X.J.L.); (Z.L.); (E.Y.)
| |
Collapse
|
25
|
Ramos RCR, Regulacio MD. Controllable Synthesis of Bimetallic Nanostructures Using Biogenic Reagents: A Green Perspective. ACS OMEGA 2021; 6:7212-7228. [PMID: 33778236 PMCID: PMC7992060 DOI: 10.1021/acsomega.1c00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/06/2021] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Bimetallic nanostructures are emerging as a significant class of metal nanomaterials due to their exceptional properties that are useful in various areas of science and technology. When used for catalysis and sensing applications, bimetallic nanostructures have been noted to exhibit better performance relative to their monometallic counterparts owing to synergistic effects. Furthermore, their dual metal composition and configuration can be modulated to achieve optimal activity for the desired functions. However, as with other nanostructured metals, bimetallic nanostructures are usually prepared through wet chemical routes that involve the use of harsh reducing agents and hazardous stabilizing agents. In response to intensifying concerns over the toxicity of chemicals used in nanomaterial synthesis, the scientific community has increasingly turned its attention toward environmentally and biologically compatible reagents that can enable green and sustainable nanofabrication processes. This article aims to provide an evaluation of the green synthetic methods of constructing bimetallic nanostructures, with emphasis on the use of biogenic resources (e.g., plant extracts, DNA, proteins) as safe and practical reagents. Special attention is devoted to biogenic synthetic protocols that demonstrate controllable nanoscale features, such as size, composition, morphology, and configuration. The potential use of these biogenically prepared bimetallic nanostructures as catalysts and sensors is also discussed. It is hoped that this article will serve as a valuable reference on bimetallic nanostructures and will help fuel new ideas for the development of more eco-friendly strategies for the controllable synthesis of various types of nanostructured bimetallic systems.
Collapse
Affiliation(s)
- Rufus
Mart Ceasar R. Ramos
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
| | - Michelle D. Regulacio
- Natural
Sciences Research Institute, University
of the Philippines Diliman, Quezon City 1101, Philippines
- Institute
of Chemistry, University of the Philippines
Diliman, Quezon
City 1101, Philippines
| |
Collapse
|
26
|
The influence of modifying nanoflower and nanostar type Pd coatings on low temperature hydrogen permeability through Pd-containing membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
27
|
AbuTalib NH, LaGrow AP, Besenhard MO, Bondarchuk O, Sergides A, Famiani S, Ferreira LP, Cruz MM, Gavriilidis A, Thanh NTK. Shape controlled iron oxide nanoparticles: inducing branching and controlling particle crystallinity. CrystEngComm 2021. [DOI: 10.1039/d0ce01291b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Branched or multiply branched iron oxide nanoparticles are synthesized, the crystal domains rearrange forming single crystalline structures, that is crucial for efficient magnetic hyperthermia.
Collapse
Affiliation(s)
- Nur Hanisah AbuTalib
- Biophysics Group
- Department of Physics and Astronomy
- University College London
- London
- UK and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Alec P. LaGrow
- International Iberian Nanotechnology Laboratory
- Braga
- Portugal
| | | | | | - Andreas Sergides
- Biophysics Group
- Department of Physics and Astronomy
- University College London
- London
- UK and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Simone Famiani
- Biophysics Group
- Department of Physics and Astronomy
- University College London
- London
- UK and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Liliana P. Ferreira
- Physics Department
- University of Coimbra
- 3004-516 Coimbra
- Portugal
- BioISI-Biosystems and Integrative Sciences Institute
| | - M. Margarida Cruz
- BioISI-Biosystems and Integrative Sciences Institute
- Faculdade de Ciências
- Universidade de Lisboa
- 1749-016 Lisboa
- Portugal
| | | | - Nguyen Thi Kim Thanh
- Biophysics Group
- Department of Physics and Astronomy
- University College London
- London
- UK and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| |
Collapse
|
28
|
Li S, Probst J, Howes PD, deMello AJ. Long-armed hexapod nanocrystals of cesium lead bromide. NANOSCALE 2020; 12:14808-14817. [PMID: 32633307 DOI: 10.1039/d0nr02985h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
Colloidal lead halide perovskite nanocrystals (LHP NCs) assume a variety of morphologies (e.g. cubes, sheets, and wires). Their labile structural and surface characters allow them to undergo post-synthetic evolution of shape and crystallographic characters. Such transformations can be advantageous or deleterious, and it is therefore vital to both understand and exert control over these processes. In this study, we report novel long-armed hexapod structures of cesium lead bromide nanocrystals. These branched structures evolve from quantum-confined CsPbBr3 nanosheets to Cs4PbBr6 hexapods over a period of 24 hours. Time-resolved optical and structural characterization reveals a post-synthesis mechanism of phase transformation, oriented attachment and branch elongation. More generally, the study reveals important processes associated with LHP NC aging and demonstrates the utility of slow reaction kinetics in obtaining complex morphologies.
Collapse
Affiliation(s)
- Shangkun Li
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Julie Probst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
29
|
Wang W, Wang P, Chen L, Zhao M, Hung CT, Yu C, Al-Khalaf AA, Hozzein WN, Zhang F, Li X, Zhao D. Engine-Trailer-Structured Nanotrucks for Efficient Nano-Bio Interactions and Bioimaging-Guided Drug Delivery. Chem 2020. [DOI: 10.1016/j.chempr.2020.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
|
30
|
Zhu S, Wang X, Li S, Liu L, Li L. Near-Infrared-Light-Assisted in Situ Reduction of Antimicrobial Peptide-Protected Gold Nanoclusters for Stepwise Killing of Bacteria and Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11063-11071. [PMID: 32027113 DOI: 10.1021/acsami.0c00310] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Biomolecule-protected gold nanostructures show good performance in biomedical applications. However, precise control over gold nanocluster (AuNC) preparation with biomolecules remains challenging. Here, we develop a simple near-infrared (NIR)-light-assisted method for in situ reduction of antimicrobial peptide (AMP)-protected AuNCs. Take advantage of the high photothermal conversion efficiency of the conjugated polymer (CP) upon NIR light irradiation, we promote the rapid reduction of AuNCs by the AMP on the surface of the CP. The fluorescent properties of the AuNCs were improved owing to the formation of a unique Au(0)NC@Au(I)AMP core-shell nanostructure. This nanostructure is attributed to the rapid reduction of Au(0) and collision and fusion of Au(0) at high temperatures. Integrating antibacterial AMPs, fluorescent AuNCs, and photothermal CPs, the composites facilitated different killing mechanisms for both bacteria and cancer cells. This material system provides an all-in-one strategy for the stepwise killing of cancer cells and bacterial infection.
Collapse
Affiliation(s)
- Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films, Department of Chemistry, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
31
|
Abstract
This review highlights the use of biogenic resources (i.e., plant extracts, microorganisms, and biomolecules) as green reagents for the production of technologically promising branched metal nanomaterials.
Collapse
Affiliation(s)
- Michelle D. Regulacio
- Institute of Chemistry
- University of the Philippines Diliman
- Quezon City 1101
- Philippines
| | - Da-Peng Yang
- College of Chemical Engineering and Materials Science
- Quanzhou Normal University
- Quanzhou 362000
- PR China
| | - Enyi Ye
- Institute of Materials Research and Engineering
- Agency for Science, Technology and Research (A*STAR)
- Singapore
| |
Collapse
|
32
|
Hu X, Li F, Xia F, Guo X, Wang N, Liang L, Yang B, Fan K, Yan X, Ling D. Biodegradation-Mediated Enzymatic Activity-Tunable Molybdenum Oxide Nanourchins for Tumor-Specific Cascade Catalytic Therapy. J Am Chem Soc 2019; 142:1636-1644. [DOI: 10.1021/jacs.9b13586] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xi Hu
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | | | | | | | | | | | | | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Academy of Medical Sciences, Zhengzhou University, 40 N. Daxue Road, Zhengzhou 450052, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Academy of Medical Sciences, Zhengzhou University, 40 N. Daxue Road, Zhengzhou 450052, China
| | - Daishun Ling
- Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations. Chem Rev 2019; 120:986-1041. [PMID: 31725267 DOI: 10.1021/acs.chemrev.9b00187] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Affiliation(s)
- Alexandra Gellé
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Tony Jin
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Luis de la Garza
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Gareth D. Price
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Lucas V. Besteiro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Centre Énergie Matériaux et Télécommunications, Institut National de la Recherche Scientifique, 1650 Boul. Lionel Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Audrey Moores
- Centre for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec H3A 0C5, Canada
| |
Collapse
|
34
|
Ghosh S, Bysakh S, Basu RN. Bimetallic Pd 96Fe 4 nanodendrites embedded in graphitic carbon nanosheets as highly efficient anode electrocatalysts. NANOSCALE ADVANCES 2019; 1:3929-3940. [PMID: 36132105 PMCID: PMC9417808 DOI: 10.1039/c9na00317g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/21/2019] [Accepted: 08/16/2019] [Indexed: 05/26/2023]
Abstract
A facile route to anchor a nanoalloy catalyst on graphitic carbon nanosheets (GCNs) has been developed for preparing high-performance electrode materials for application in direct alcohol fuel cells (DAFCs). Uniformly dispersed bimetallic Pd-Fe nanoparticles (NPs) with tunable composition have been immobilized on GCNs derived from mesocarbon microbeads (MCMBs) by a one-pot radiolytic reduction method. The Pd-Fe/GCN hybrid shows promising electrocatalytic activity for the methanol, ethanol, ethylene glycol, tri-ethylene glycol and glycerol oxidation reactions in alkaline medium. The as-prepared flower-shape Pd96Fe4/GCN nanohybrids have high mass activity for the ethanol oxidation reaction (EOR), which is ∼36 times (11 A per mg Pd) higher than that of their monometallic counterparts. Moreover, the onset oxidation potential for the EOR on the Pd96Fe4/GCN nanohybrids negatively shifts ca. 780 mV compared to that on commercial Pd/C electrocatalysts, suggesting fast kinetics and superior electrocatalytic activity. Additionally, chronoamperometry measurements display good long-term cycling stability of the Pd96Fe4/GCN nanohybrids for the EOR and also demonstrate only ∼7% loss in forward current density after 1000 cycles. The superior catalytic activity and stability may have originated from the modified electronic structure of the Pd-Fe nanoalloys and excellent physicochemical properties of the graphitic nanosheets. The present synthetic route using GCNs as the supporting material will contribute to further design of multimetallic nanoarchitectures with controlled composition and desired functions for fuel cell applications.
Collapse
Affiliation(s)
- Srabanti Ghosh
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Sandip Bysakh
- Materials Characterization Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| | - Rajendra Nath Basu
- Fuel Cell and Battery Division, CSIR - Central Glass and Ceramic Research Institute 196, Raja S. C. Mullick Road Kolkata-700032 India
| |
Collapse
|
35
|
Zhao T, Chen L, Wang P, Li B, Lin R, Abdulkareem Al-Khalaf A, Hozzein WN, Zhang F, Li X, Zhao D. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat Commun 2019; 10:4387. [PMID: 31558724 PMCID: PMC6763480 DOI: 10.1038/s41467-019-12378-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Despite the importance of nanoparticle's multipods topology in multivalent-interactions enhanced nano-bio interactions, the precise manipulation of multipods surface topological structures is still a great challenge. Herein, the surface-kinetics mediated multi-site nucleation strategy is demonstrated for the fabrication of mesoporous multipods with precisely tunable surface topological structures. Tribulus-like tetra-pods Fe3O4@SiO2@RF&PMOs (RF = resorcinol-formaldehyde resin, PMO = periodic mesoporous organosilica) nanocomposites have successfully been fabricated with a centering core@shell Fe3O4@SiO2@RF nanoparticle, and four surrounding PMO nanocubes as pods. By manipulating the number of nucleation sites through mediating surface kinetics, a series of multipods mesoporous nanocomposites with precisely controllable surface topological structures are formed, including Janus with only one pod, nearly plane distributed dual-pods and tri-pods, three-dimensional tetrahedral structured tetra-pods, etc. The multipods topology endows the mesoporous nanocomposites enhanced bacteria adhesion ability. Particularly, the tribulus-like tetra-pods mesoporous nanoparticles show ~100% bacteria segregation and long-term inhibition over 90% after antibiotic loading.
Collapse
Affiliation(s)
- Tiancong Zhao
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Liang Chen
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Peiyuan Wang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Benhao Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Runfeng Lin
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | | | - Wael N Hozzein
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Fan Zhang
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China
| | - Xiaomin Li
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China.
| | - Dongyuan Zhao
- Department of Chemistry and Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai, 200433, PR China.
| |
Collapse
|
36
|
Velázquez-Salazar JJ, Bazán-Díaz L, Zhang Q, Mendoza-Cruz R, Montaño-Priede L, Guisbiers G, Large N, Link S, José-Yacamán M. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. ACS NANO 2019; 13:10113-10128. [PMID: 31419107 DOI: 10.1021/acsnano.9b03084] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Growth of anisotropic nanostructures enables the manipulation of optical properties across the electromagnetic spectrum by fine morphological tuning of the nanoparticles. Among them, stellated metallic nanostructures present enhanced properties owing to their complex shape, and hence, the control over the final morphology becomes of great importance. Herein, a seed-mediated method for the high-yield production of goldrich-copper concave branched nanostructures and their structural and optical characterization is reported. The synthesis protocol enabled excellent control and tunability of the final morphology, from concave pentagonal nanoparticles to five-fold branched nanoparticles, named "nanostars". The anisotropic shape was achieved via kinetic control over the synthesis conditions by selective passivation of facets using a capping agent and assisted by the presence of copper chloride ions, both having a crucial impact over the final structure. Optical extinction measurements of nanostars in solution indicated a broad spectral response, hiding the properties of the individual nanostars. Hence, single-particle scattering measurements of individual concave pentagonal nanoparticles and concave nanostars were performed to determine the origin of the multiple plasmon bands by correlation with their morphological features, following their growth evolution. Finite-difference time-domain calculations delivered insights into the geometry-dependent plasmonic properties of concave nanostars and their packed aggregates. Our results uncover the intrinsic scattering properties of individual nanostars and the origin of the broad spectral response, which is mostly due to z-direction packed aggregates.
Collapse
Affiliation(s)
| | | | | | | | | | - Grégory Guisbiers
- Department of Physics & Astronomy , The University of Arkansas at Little Rock , 2801 South University Avenue , Little Rock , Arkansas 72204 , United States
| | | | | | | |
Collapse
|
37
|
Chang YX, Zhang NN, Xing YC, Zhang Q, Oh A, Gao HM, Zhu Y, Baik H, Kim B, Yang Y, Chang WS, Sun T, Zhang J, Lu ZY, Lee K, Link S, Liu K. Gold Nanotetrapods with Unique Topological Structure and Ultranarrow Plasmonic Band as Multifunctional Therapeutic Agents. J Phys Chem Lett 2019; 10:4505-4510. [PMID: 31310141 DOI: 10.1021/acs.jpclett.9b01589] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/10/2023]
Abstract
Owing to their excellent surface plasmonic properties, Au nanobranches have drawn increasing attention in various bioapplications, such as contrast agents for photoacoustic imaging, nanomedicines for photothermal therapy, and carriers for drug delivery. The monodispersity and plasmonic bandwidth of Au nanobranches are of great importance for the efficacy of those bioapplications. However, it is still a challenge to accurately synthesize size- and shape-controlled Au nanobranches. Here we report a facile seed-mediated growth method to synthesize monodisperse Au nanotetrapods (NTPs) with tunable and ultranarrow plasmonic bands. The NTPs have a novel D2d symmetry with four arms elongated in four ⟨110⟩ directions. The growth mechanism of NTPs relies on the delicate kinetic control of deposition and diffusion rates of adatoms. Upon laser irradiation, the PEGylated NTPs possess remarkable photothermal conversion efficiencies and photoacoustic imaging properties. The NTPs can be applied as a multifunctional theranostic agent for both photoacoustic imaging and image-guided photothermal therapy.
Collapse
Affiliation(s)
- Yi-Xin Chang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Yu-Chen Xing
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | | | - Aram Oh
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | - Hui-Min Gao
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Yun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Hionsuck Baik
- Korea Basic Science Institute (KBSI) , Seoul 02841 , Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Wei-Shun Chang
- Department of Chemistry and Biochemistry , University of Massachusetts Dartmouth , 285 Old Westport Road , North Dartmouth , Massachusetts 02747 , United States
| | - Tianmeng Sun
- The First Bethune Hospital and Institute of Immunology , Jilin University , Changchun 130021 , China
| | - Junhu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , China
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences , Korea University , Seoul 02841 , Republic of Korea
| | | | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , China
- State Key Laboratory of Applied Optics , Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences , Changchun 130012 , China
| |
Collapse
|
38
|
Fan G, Sun P, Zhao J, Han D, Niu L, Cui G. Alleviating concentration polarization: a micro three-electrode interdigitated glucose sensor based on nanoporous gold from a mild process. RSC Adv 2019; 9:10465-10472. [PMID: 35515279 PMCID: PMC9062563 DOI: 10.1039/c8ra10459j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 11/21/2022] Open
Abstract
Precisely detecting the concentration of glucose in the human body is an attractive way to prevent or diagnose diabetes. Compared with the traditional enzyme-based electrochemical glucose sensors, the non-enzymatic ones have gradually come to people's attention recently. By integrating three electrodes into one device, glucose sensors can achieve superior performance and are convenient to carry. Herein, a non-enzymatic three-electrode interdigitated glucose sensor (TEIDGS) based on nanoporous gold is designed and fabricated. To our best knowledge, it is the first time that interdigitated electrodes are combined in a single non-enzymatic glucose sensor device. Due to the advantage of the interdigitated structure and the smart design of the three-electrode circuit board, the TEIDGS can effectively reduce concentration polarization and achieve a high detective sensitivity for glucose of 1217 μA mM-1 cm-2 and 343 μA mM-1 cm-2 in the ranges of 0.001-0.590 mM and 0.59-7.00 mM, respectively. Moreover, a low detection limit of 390 nM can be reached. In addition, this TEIDGS possesses excellent selectivity for glucose among other interferents. Strikingly, after three weeks of operation, it can still retain a high detection performance. This work will certainly provide an efficient structure and proper catalytic material choice for future non-enzymatic glucose sensors.
Collapse
Affiliation(s)
- Guokang Fan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510275 China
| | - Peng Sun
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510275 China
| | - Jie Zhao
- School of Mechanical and Automotive Engineering, South China University of Technology Guangzhou 510640 China
| | - Dongxue Han
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 PR China
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun 130022 Jilin PR China
| | - Li Niu
- Center for Advanced Analytical Science, c/o School of Chemistry and Chemical Engineering, Guangzhou University Guangzhou 510006 PR China
- State Key Laboratory of Electroanalytical Chemistry, c/o Engineering Laboratory for Modern Analytical Techniques, Changchun Institute of Applied Chemistry, Chinese Academy of Science Changchun 130022 Jilin PR China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University Guangzhou 510275 China
- Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
39
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019; 58:2710-2714. [DOI: 10.1002/anie.201812677] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/05/2018] [Revised: 12/05/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
40
|
Xu D, Lv H, Jin H, Liu Y, Ma Y, Han M, Bao J, Liu B. Crystalline Facet-Directed Generation Engineering of Ultrathin Platinum Nanodendrites. J Phys Chem Lett 2019; 10:663-671. [PMID: 30682888 DOI: 10.1021/acs.jpclett.8b03861] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
In this work, we successfully prepare two-dimensional ultrathin single-crystalline platinum nanodendrites (PtNDs) with precisely controlled generation (size) through a surfactant-directed solution-phase synthesis. The amphiphilic surfactant of C22H45-N+(CH3)2CH2COOH (Br-) acts as the structure-directing template and facet-capping agent simultaneously to kinetically engineer in-the-plane epitaxial growth of Pt nanocrystals along selectively exposed {111} facets into ultrathin PtNDs. A novel formation mechanism defined as crystalline facet-directed step-by-step in-the-plane epitaxial growth, similar to the synthesis of organic dendrimers, is proposed on the basis of the nanostructure and crystalline evolution of PtNDs. The generation growth process is readily extended to precisely engineer the generation of PtNDs (from 0 to 25) and can also be utilized to grow other noble metal NDs (e.g., PdNDs and AuNDs) and core-shell Pt-Pd NDs. Because of the structural advantages, ultrathin PtNDs exhibit enhanced electrocatalytic performance toward hydrogen evolution reaction.
Collapse
Affiliation(s)
- Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Hao Lv
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Haibao Jin
- Department of Chemistry , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ying Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Yanhang Ma
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Min Han
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| | - Ben Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing , Jiangsu 210023 , China
| |
Collapse
|
41
|
Nguyen TD, Song MS, Ly NH, Lee SY, Joo S. Nanostars on Nanopipette Tips: A Raman Probe for Quantifying Oxygen Levels in Hypoxic Single Cells and Tumours. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Affiliation(s)
- Thanh Danh Nguyen
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - Min Seok Song
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Nguyễn Hoàng Ly
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| | - So Yeong Lee
- Laboratory of Veterinary PharmacologyCollege of Veterinary MedicineSeoul National University Seoul Korea
| | - Sang‐Woo Joo
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil University Seoul Korea
| |
Collapse
|
42
|
Smith JD, Bunch CM, Li Y, Koczkur KM, Skrabalak SE. Surface versus solution chemistry: manipulating nanoparticle shape and composition through metal-thiolate interactions. NANOSCALE 2019; 11:512-519. [PMID: 30543237 DOI: 10.1039/c8nr07233g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2023]
Abstract
Nanostructures with well-defined crystallite sizes, shapes, and compositions are finding use in areas such as energy, security, and even medicine. Seeded growth is a promising strategy to achieve shape-controlled nanostructures, where specific structural features are often directed by the underlying symmetry of the seeds. Here, thiophenol derivatives capable of different metal-thiolate interactions were introduced into the synthesis of Au/Pd nanostructures by seed-mediated co-reduction. Our systematic analysis reveals that the symmetry and composition of the bimetallic nanoparticles (NPs) can be tuned as a function of additive binding strength and concentration, with symmetry reduction observed in some cases. Furthermore, additives with both thiol and amine functionalities facilitate random branching on the octahedral seed. Significantly, this synthetic versatility arises because the thiophenol derivatives modify both the surface capping of the growing nanostructures and the local ligand environment of the metal precursors, highlighting how the dual roles of synthesis components can be exploited to achieve high quality bimetallic nanostructures.
Collapse
Affiliation(s)
- Joshua D Smith
- Indiana University, Department of Chemistry, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
43
|
Bian K, Zhang X, Yang M, Luo L, Li L, He Y, Cong C, Li X, Zhu R, Gao D. Dual-template cascade synthesis of highly multi-branched Au nanoshells with ultrastrong NIR absorption and efficient photothermal therapeutic intervention. J Mater Chem B 2019; 7:598-610. [DOI: 10.1039/c8tb02753f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/24/2023]
Abstract
A universal dual-template cascade strategy for the synthesis of multi-branched gold nanoshells with ultrastrong NIR absorption for tumor photothermal therapy.
Collapse
|
44
|
Aditya T, Jana J, Panda S, Pal A, Pal T. Benzophenone assisted UV-activated synthesis of unique Pd-nanodendrite embedded reduced graphene oxide nanocomposite: a catalyst for C–C coupling reaction and fuel cell. RSC Adv 2019; 9:21329-21343. [PMID: 35521347 PMCID: PMC9066186 DOI: 10.1039/c9ra02431j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/31/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
In this work we report the use of benzophenone (BP) for the synthesis of a palladium (Pd) embedded on reduced graphene oxide (rGO) nanocomposite (Pd/rGO) using a simple aqueous solution and UV irradiation. The simple and facile evolution of thermodynamically unstable branched Pd(0) nanodendrites was achieved by BP photoactivation, circumventing the growth of more stable nanomorphologies. The synthesis of Pd(0)-embedded rGO nanosheets (PRGO-nd) was made possible by the simultaneous reduction of both the GO scaffold and PdCl2 by introducing BP into the photoactivation reaction. The nanocomposites obtained in the absence of BP were common triangular and twinned Pd(0) structures which were also implanted on the rGO scaffold (PRGO-nt). The disparity in morphologies presumably occurs due to the difference in the kinetics of the reduction of Pd2+ to Pd0 in the presence and absence of the BP photoinitiator. It was observed that the PRGO-nd was composed of dense arrays of multiple Pd branches around nucleation site which exhibited (111) facet, whereas PRGO-nt showed a mixture of (100) and (111) facets. On comparing the catalytic efficiencies of the as-synthesized nanocatalysts, we observed a superiority in efficiency of the thermodynamically unstable PRGO-nd nanocomposite. This is due to the evolved active facets of the dendritic Pd(0) morphology with its higher surface area, as testified by Brunauer–Emmett–Teller (BET) analysis. Since both PRGO-nd and PRGO-nt contain particles of similar size, the dents and grooves in the structure are the cause of the increase in the effective surface area in the case of nanodendrites. The unique dendritic morphology of the PRGO-nd nanostructures makes them a promising material for superior catalysis, due to their high surface area, and the high density of surface atoms at their edges, corners, and stepped regions. We investigated the efficiency of the as-prepared PRGO-nd catalyst in the Suzuki–Miyaura coupling reaction and showed its proficiency in a 2 h reaction at 60 °C using 2 mol% catalyst containing 0.06 mol% active Pd. Moreover, the electrochemical efficiency for the catalytic hydrogen evolution reaction (HER) was demonstrated, in which PRGO-nd provided a decreased overpotential of 68 mV for a current density of 10 mA cm−2, a small Tafel slope of 57 mV dec−1 and commendable stability during chronoamperometric testing for 5 h. Benzophenone photoinitiator aided synthesis of Pd-nanodendrite embedded rGO nanocatalyst possessing superior potential in C–C coupling reaction and fuel cell application.![]()
Collapse
Affiliation(s)
- Teresa Aditya
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Jayasmita Jana
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Sonali Panda
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Anjali Pal
- Department of Civil Engineering
- Indian Institute of Technology
- Kharagpur-721302
- India
| | - Tarasankar Pal
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur-721302
- India
| |
Collapse
|
45
|
Chen H, Fan G, Zhao J, Qiu M, Sun P, Fu Y, Han D, Cui G. A portable micro glucose sensor based on copper-based nanocomposite structure. NEW J CHEM 2019. [DOI: 10.1039/c9nj00888h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
A sensor device based on a copper-based nanocomposite structure is achieved and presents excellent sensing performance for glucose.
Collapse
Affiliation(s)
- Huang Chen
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Guokang Fan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Jie Zhao
- School of Mechanical and Automotive Engineering
- South China University of Technology
- Guangzhou
- China
| | - Meijia Qiu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Peng Sun
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| | - Yifeng Fu
- Electronics Materials and Systems Laboratory
- Department of Microtechnology and Nanoscience
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Dongxue Han
- Center for Advanced Analytical Science
- c/o School of Chemistry and Chemical Engineering
- Guangzhou University
- Guangzhou
- P. R. China
| | - Guofeng Cui
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
- The Key Lab of Low-Carbon Chemistry and Energy Conservation of Guangdong Province
- School of Chemistry
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
46
|
Narendra Kumar AV, Yin S, Wang Z, Qian X, Yang D, Xu Y, Li X, Wang H, Wang L. Direct fabrication of bimetallic AuPt nanobrick spherical nanoarchitectonics for the oxygen reduction reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj01983a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Bimetallic AuPt nanobrick spherical nanoarchitectonics synthesized via a one-step method show excellent ORR performance.
Collapse
Affiliation(s)
- Alam Venugopal Narendra Kumar
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Xiaoqian Qian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Dandan Yang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou
- Zhejiang 310014
| |
Collapse
|
47
|
Ou Z, Song X, Huang W, Jiang X, Qu S, Wang Q, Braun PV, Moore JS, Li X, Chen Q. Colloidal Metal-Organic Framework Hexapods Prepared from Postsynthesis Etching with Enhanced Catalytic Activity and Rollable Packing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40990-40995. [PMID: 30398328 DOI: 10.1021/acsami.8b17477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/08/2023]
Abstract
Recent studies on the effect of particle shapes have led to extensive applications of anisotropic colloids as complex materials building blocks. Although much research has been devoted to colloids of convex polyhedral shapes, branched colloids remain largely underexplored because of limited synthesis strategies. Here we achieved the preparation of metal-organic framework (MOF) colloids in a hexapod shape, not directly from growth but from postsynthesis etching of truncated rhombic dodecahedron (TRD) parent particles. To understand the branch development, we used in situ optical microscopy to track the local surface curvature evolution of the colloids as well as facet-dependent etching rate. The hexapods show unique properties, such as improved catalytic activity in a model Knoevenagel reaction likely due to enhanced access to active sites, and the assembly into open structures which can be easily integrated with a self-rolled-up nanomembrane structure. Both the postsynthesis etching and the hexapod colloids demonstrated here show a new route of engineering micrometer-sized building blocks with exotic shapes and intrinsic functionalities originated from the molecular structure of materials.
Collapse
|
48
|
Parapat RY, Yudatama FA, Musadi MR, Schwarze M, Schomäcker R. Antioxidant as Structure Directing Agent in Nanocatalyst Preparation. Case Study: Catalytic Activity of Supported Pt Nanocatalyst in Levulinic Acid Hydrogenation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Affiliation(s)
- Riny Y. Parapat
- Institut für Chemie, Technische Chemie, Technische Universität-Berlin, Straße des 17-Juni 124, Berlin, 10623, Germany
- Department of Chemical Engineering, National Institute of Technology (ITENAS), PHH Mustopha 23, Bandung, 40124, Indonesia
| | - Firman A. Yudatama
- Department of Chemical Engineering, National Institute of Technology (ITENAS), PHH Mustopha 23, Bandung, 40124, Indonesia
| | - Maya R. Musadi
- Department of Chemical Engineering, National Institute of Technology (ITENAS), PHH Mustopha 23, Bandung, 40124, Indonesia
| | - Michael Schwarze
- Institut für Chemie, Technische Chemie, Technische Universität-Berlin, Straße des 17-Juni 124, Berlin, 10623, Germany
| | - Reinhard Schomäcker
- Institut für Chemie, Technische Chemie, Technische Universität-Berlin, Straße des 17-Juni 124, Berlin, 10623, Germany
| |
Collapse
|
49
|
Morphological Growth and Theoretical Understanding of Gold and Other Noble Metal Nanoplates. Chemistry 2018; 24:15589-15595. [DOI: 10.1002/chem.201802372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/11/2018] [Revised: 06/20/2018] [Indexed: 11/07/2022]
|
50
|
Wang F, Li X, Li W, Bai H, Gao Y, Ma J, Liu W, Xi G. Dextran coated Fe3O4 nanoparticles as a near-infrared laser-driven photothermal agent for efficient ablation of cancer cells in vitro and in vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:46-56. [DOI: 10.1016/j.msec.2018.04.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/07/2017] [Revised: 02/05/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022]
|