1
|
He J, Bai M, Xiao X, Qiu S, Chen W, Li J, Yu Y, Tian W. Intramolecular Cation-π Interactions Organize Bowl-Shaped, Luminescent Molecular Containers. Angew Chem Int Ed Engl 2024; 63:e202402697. [PMID: 38433608 DOI: 10.1002/anie.202402697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Molecules with nonplanar architectures are highly desirable due to their unique topological structures and functions. We report here the synthesis of two molecular containers (1 ⋅ 3Br- and 1 ⋅ 3Cl-), which utilize intramolecular cation-π interactions to enforce macrocylic arrangements and exhibit high binding affinity and luminescent properties. Remarkably, the geometry of the cation-π interaction can be flexibly tailored to achieve a precise ring arrangement, irrespective of the angle of the noncovalent bonds. Additionally, the C-H⋅⋅⋅Br- hydrogen bonds within the container are also conducive to stabilizing the bowl-shaped conformation. These bowl-shaped conformations were confirmed both in solution through NMR spectroscopy and in the solid state by X-ray studies. 1 ⋅ 3Br- shows high binding affinity and selectivity: F->Cl-, through C-H⋅⋅⋅X- (X=F, Cl) hydrogen bonds. Additionally, these containers exhibited blue fluorescence in solution and yellow room-temperature phosphorescence (RTP) in the solid state. Our findings illustrate the utility of cation-π interactions in designing functional molecules.
Collapse
Affiliation(s)
- Jia He
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Minggui Bai
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Xuedong Xiao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Wenzhuo Chen
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Jiaqi Li
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University., Xi'an, 710072, Shaanxi, P. R. China
| |
Collapse
|
2
|
Maglic JB, Lavendomme R. MoloVol: an easy-to-use program for analyzing cavities, volumes and surface areas of chemical structures. J Appl Crystallogr 2022; 55:1033-1044. [PMID: 35974729 PMCID: PMC9348874 DOI: 10.1107/s1600576722004988] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
Cavities are a ubiquitous feature of chemical structures encountered in various fields ranging from supramolecular chemistry to molecular biology. They are involved in the encapsulation, transport and transformation of guest molecules, thus necessitating a precise and accessible tool for estimating and visualizing their size and shape. MoloVol, a free user-parametrizable open-source software, developed for calculating a range of geometric features for both unit-cell and isolated structures, is presented here. MoloVol utilizes up to two spherical probes to define cavities, surfaces and volumes. The program was optimized by combining an octree data structure with voxel-partitioned space, allowing for even high-resolution protein structure calculations on reasonable timescales. MoloVol comes with a user-friendly graphic interface along with a command-line interface for high-throughput calculations. It was written in C++ and is available on Windows, macOS and Linux distributions.
Collapse
Affiliation(s)
- Jasmin B. Maglic
- Center for Geometrical Engineering of Cellular Systems, Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Zhu J, Zhang D, Ronson TK, Wang W, Xu L, Yang H, Nitschke JR. A Cavity-Tailored Metal-Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angew Chem Int Ed Engl 2021; 60:11789-11792. [PMID: 33768657 PMCID: PMC8251750 DOI: 10.1002/anie.202102095] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 01/24/2023]
Abstract
Here we report the subcomponent self-assembly of a truxene-faced Zn4 L4 tetrahedron, which is capable of binding the smallest hydrocarbons in solution. By deliberately incorporating inward-facing ethyl groups on the truxene faces, the resulting partially-filled cage cavity was tailored to encapsulate methane, ethane, and ethene via van der Waals interactions at atmospheric pressure in acetonitrile, and also in the amorphous solid state. Interestingly, gas capture showed divergent selectivities in solution and the amorphous solid state. The selective binding may prove useful in designing new processes for the purification of methane and ethane as feedstocks for chemical synthesis.
Collapse
Affiliation(s)
- Jun‐Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Wenjing Wang
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University3663 N. Zhongshan RoadShanghai200062P. R. China
| | | |
Collapse
|
4
|
Zhu J, Zhang D, Ronson TK, Wang W, Xu L, Yang H, Nitschke JR. A Cavity‐Tailored Metal‐Organic Cage Entraps Gases Selectively in Solution and the Amorphous Solid State. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jun‐Long Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Dawei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Tanya K. Ronson
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou 350002 China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University 3663 N. Zhongshan Road Shanghai 200062 P. R. China
| | - Jonathan R. Nitschke
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
5
|
Lavendomme R, Desroches F, Moerkerke S, Topić F, Wouters J, Rissanen K, Luhmer M, Jabin I. Selective recognition of small hydrogen bond acceptors by a calix[6]arene-based molecular container. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1679374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Roy Lavendomme
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Florent Desroches
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Steven Moerkerke
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
| | - Filip Topić
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Johan Wouters
- Département de Chimie, Université de Namur (UNamur), Namur, Belgium
| | - Kari Rissanen
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Michel Luhmer
- Laboratoire de Résonance Magnétique Nucléaire Haute Résolution, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre deBruxelles (ULB), Brussels, Belgium
| |
Collapse
|
6
|
Dwarkanath N, Palchowdhury S, Balasubramanian S. Unraveling the Sorption Mechanism of CO 2 in a Molecular Crystal without Intrinsic Porosity. J Phys Chem B 2019; 123:7471-7481. [PMID: 31368698 DOI: 10.1021/acs.jpcb.9b05999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The facile uptake of CO2 gas in a nonporous molecular crystal constituted by long molecules with carbazole and ethynylphenyl moieties was reported in experiments recently. Herein, the mechanism of gas uptake by this crystal is elucidated using atomistic molecular simulations. The uptake of CO2 is shown to be facilitated by (i) the capacity of the crystal to expand in volume because of weak intermolecular interactions, (ii) the parallel orientation of the long molecules in the crystal, and (iii) the ability of the molecule to marginally bend, yet not lose crystallinity because of the anchoring of the terminal carbazole groups. The retention of crystallinity upon sorption and desorption cycles is also demonstrated. At high enough pressures, near-neighbor CO2 molecules sorbed in the crystal are found to be oriented parallel to each other.
Collapse
Affiliation(s)
- Nimish Dwarkanath
- Chemistry and Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - Sourav Palchowdhury
- Chemistry and Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| | - S Balasubramanian
- Chemistry and Physics of Materials Unit , Jawaharlal Nehru Centre for Advanced Scientific Research , Bangalore 560 064 , India
| |
Collapse
|
7
|
Bazzoni M, Zanichelli V, Casimiro L, Massera C, Credi A, Secchi A, Silvi S, Arduini A. New Geometries for Calix[6]arene-Based Rotaxanes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900211] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Margherita Bazzoni
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Valeria Zanichelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Lorenzo Casimiro
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Italy
| | - Chiara Massera
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Alberto Credi
- Center for Light Activated Nanostructures (CLAN) and Dipartimento di Scienze e Tecnologie Agro-alimentari; Università di Bologna; 40127 Bologna Italy
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF) - CNR Area della Ricerca di Bologna; Via P. Gobetti 101 40129 Bologna Italy
| | - Andrea Secchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| | - Serena Silvi
- Dipartimento di Chimica “G. Ciamician”; Università di Bologna; Via Selmi 2 40126 Italy
| | - Arturo Arduini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale; Università di Parma; Parco Area delle Scienze 17/A 43124 Parma Italy
| |
Collapse
|