1
|
Xu X, Grohganz H, Rades T. Anti-plasticizing effect of water on prilocaine and lidocaine - the role of the hydrogen bonding pattern. Phys Chem Chem Phys 2024; 26:14149-14159. [PMID: 38712380 DOI: 10.1039/d4cp00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
It is generally accepted that water, as an effective plasticizer, decreases the glass transition temperatures (Tgs) of amorphous drugs, potentially resulting in physical instabilities. However, recent studies suggest that water can also increase the Tgs of the amorphous forms of the drugs prilocaine (PRL) and lidocaine (LID), thus acting as an anti-plasticizer. To further understand the nature of the anti-plasticizing effect of water, interactions with different solvents and the resulting structural features of PRL and LID were investigated by Fourier transform infrared spectroscopy (FTIR) and quantum chemical simulations. Heavy water (deuterium oxides) was chosen as a solvent, as the deuterium and hydrogen atoms are electronically identical. It was found that substituting hydrogen with deuterium showed a minimal impact on the anti-plasticization of water on PRL. Ethanol and ethylene glycol were chosen as solvents to compare the hydrogen bonding patterns occurring between the hydroxyl groups of the solvents and PRL and LID. Comparison of the various Tgs showed a weaker anti-plasticizing potential of these two solvents on PRL and LID. The frequency shifts of the amide CO groups of PRL and LID due to the interactions with water, heavy water, ethanol, and ethylene glycol as observed in the FTIR spectra showed a correlation with the binding energies calculated by quantum chemical simulations. Overall, this study showed that the combination of weak hydrogen bonding and strong electrostatic contributions in hydrated PRL and LID could play an important role in inducing the anti-plasticizing effect of water on those drugs.
Collapse
Affiliation(s)
- Xiaoyue Xu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Vallaster B, Engelsing F, Grohganz H. Influence of water and trehalose on α- and β-relaxation of freeze-dried lysozyme formulations. Eur J Pharm Biopharm 2024; 194:1-8. [PMID: 38029940 DOI: 10.1016/j.ejpb.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
Molecular mobility in form of alpha and beta relaxations is considered crucial for characterization of amorphous lyophilizates and reflected in the transition temperatures Tgα and Tgβ. Based on an overview of applied methods to study beta relaxations, Dynamic Mechanical analysis was used to measure Tgα and Tgβ in amorphous freeze-dried samples. Lysozyme and trehalose as well as their mixtures in varying ratios were investigated. Three different residual moisture levels, ranging from roughly 0.5-7 % (w/w), were prepared via equilibration of the freeze-dried samples. Known plasticising effects of water on Tgα were confirmed, also via differential scanning calorimetry. In addition and contrary to expectations, an influence of water on the Tgβ also was observed. On the other hand, an increasing amount of trehalose lowered Tgα but increased Tgβ showing that Tgα and Tgβ are not paired. The findings were interpreted with regard to their underlying molecular mechanisms and a correlation with the known influences of water and trehalose on stability. The results provide encouraging hints for future stability studies of freeze-dried protein formulations, which are urgently needed, not least for reasons of sustainability.
Collapse
Affiliation(s)
- Bernadette Vallaster
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Florian Engelsing
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
4
|
Polymeric solid dispersion Vs co-amorphous technology: A critical comparison. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Böhmer T, Gabriel JP, Zeißler R, Richter T, Blochowicz T. Glassy dynamics in polyalcohols: intermolecular simplicity vs. intramolecular complexity. Phys Chem Chem Phys 2022; 24:18272-18280. [PMID: 35880532 DOI: 10.1039/d2cp01969h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using depolarized light scattering, we have recently shown that structural relaxation in a broad range of supercooled liquids follows, to good approximation, a generic line shape with high-frequency power law ω-1/2. We now continue this study by investigating a systematic series of polyalcohols (PAs), frequently used as model-systems in glass-science, i.a., because the width of their respective dielectric loss spectra varies strongly along the series. Our results reveal that the microscopic origin of the observed relaxation behavior varies significantly between different PAs: while short-chained PAs like glycerol rotate as more or less rigid entities and their light scattering spectra follow the generic shape, long-chained PAs like sorbitol display pronounced intramolecular dynamic contributions on the time scale of structural relaxation, leading to systematic deviations from the generic shape. Based on these findings we discuss an important limitation for observing the generic shape in a supercooled liquid: the dynamics that is probed needs to reflect the intermolecular dynamic heterogeneity, and must not be superimposed by effects of intramolecular dynamic heterogeneity.
Collapse
Affiliation(s)
- Till Böhmer
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Timo Richter
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
6
|
Santitewagun S, Thakkar R, Zeitler JA, Maniruzzaman M. Detecting Crystallinity Using Terahertz Spectroscopy in 3D Printed Amorphous Solid Dispersions. Mol Pharm 2022; 19:2380-2389. [PMID: 35670498 DOI: 10.1021/acs.molpharmaceut.2c00163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.
Collapse
Affiliation(s)
- Supawan Santitewagun
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D printing Lab (PharmE3D), The Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D printing Lab (PharmE3D), The Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Mitryukovskiy S, Vanpoucke DEP, Bai Y, Hannotte T, Lavancier M, Hourlier D, Roos G, Peretti R. On the influence of water on THz vibrational spectral features of molecular crystals. Phys Chem Chem Phys 2022; 24:6107-6125. [PMID: 35212691 DOI: 10.1039/d1cp03261e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The nanoscale structure of molecular assemblies plays a major role in many (μ)-biological mechanisms. Molecular crystals are one of the most simple of these assemblies and are widely used in a variety of applications from pharmaceuticals and agrochemicals, to nutraceuticals and cosmetics. The collective vibrations in such molecular crystals can be probed using terahertz spectroscopy, providing unique characteristic spectral fingerprints. However, the association of the spectral features to the crystal conformation, crystal phase and its environment is a difficult task. We present a combined computational-experimental study on the incorporation of water in lactose molecular crystals, and show how simulations can be used to associate spectral features in the THz region to crystal conformations and phases. Using periodic DFT simulations of lactose molecular crystals, the role of water in the observed lactose THz spectrum is clarified, presenting both direct and indirect contributions. A specific experimental setup is built to allow the controlled heating and corresponding dehydration of the sample, providing the monitoring of the crystal phase transformation dynamics. Besides the observation that lactose phases and phase transformation appear to be more complex than previously thought - including several crystal forms in a single phase and a non-negligible water content in the so-called anhydrous phase - we draw two main conclusions from this study. Firstly, THz modes are spread over more than one molecule and require periodic computation rather than a gas-phase one. Secondly, hydration water does not only play a perturbative role but also participates in the facilitation of the THz vibrations.
Collapse
Affiliation(s)
- Sergey Mitryukovskiy
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Danny E P Vanpoucke
- IMO, Hasselt University, 3590 Diepenbeek, Belgium./AMIBM, Maastricht University, 6167 Geleen, The Netherlands
| | - Yue Bai
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Théo Hannotte
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Mélanie Lavancier
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Djamila Hourlier
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| | - Goedele Roos
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Romain Peretti
- Institut d'Electronique de Microélectronique et de Nanotechnologie, Université Lille, CNRS, 59652 Villeneuve d'Ascq, France.
| |
Collapse
|
8
|
Zhong J, Nakagawa S, Kaczmarska K, Terao W, Grabowska B, Fujii Y, Koreeda A, Kohara S, Tanimoto H, Tokoro H, Ohkoshi SI, Ko JH, Duan Y, Mori T. Investigation of the vibrational density of states of sodium carboxymethyl starch glass via terahertz time-domain spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120414. [PMID: 34619511 DOI: 10.1016/j.saa.2021.120414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
We investigated the vibrational density of states of sodium carboxymethyl starch (CM-starch) by terahertz (THz) time-domain spectroscopy. The CM-starch showed a broad peak at ∼3 THz. The structure of the peak was similar to those corresponding to glucose-based polymer glasses possessing hydrogen bonds. The boson peak (BP) appeared at 1.16 THz at the lowest temperature and disappeared because of the existence of excess wing at higher temperatures. However, based on our novel BP frequency determination method using the inflection point of the extinction coefficient, the BP frequency showed almost no dependence on temperature. Further, the chain length dependence of the BP frequency of the glucose-based glasses showed that the BP frequency of the polymer glass was slightly lower than that of the monomer glass. The power law behaviour of the absorption coefficient suggested the existence of fractons, and the fractal dimension was estimated to be 2.33.
Collapse
Affiliation(s)
- Junlan Zhong
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shin Nakagawa
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Karolina Kaczmarska
- AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30 059 Krakow, Poland
| | - Wakana Terao
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Beata Grabowska
- AGH - University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30 059 Krakow, Poland
| | - Yasuhiro Fujii
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Akitoshi Koreeda
- Department of Physical Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shinji Kohara
- Quantum Beam Field, Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Hisanori Tanimoto
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Hiroko Tokoro
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jae-Hyeon Ko
- School of Nano Convergence Technology, Hallym University, 1 Hallymdaehakgil, Chuncheon, Gangwondo 24252, Republic of Korea
| | - Yu Duan
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Tatsuya Mori
- Department of Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| |
Collapse
|
9
|
Formulating a heat- and shear-labile drug in an amorphous solid dispersion: Balancing drug degradation and crystallinity. Int J Pharm X 2021; 3:100092. [PMID: 34977559 PMCID: PMC8683684 DOI: 10.1016/j.ijpx.2021.100092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/02/2022] Open
Abstract
We seek to further addresss the questions posed by Moseson et al. regarding whether any residual crystal level, size, or characteristic is acceptable in an amorphous solid dispersion (ASD) such that its stability, enhanced dissolution, and increased bioavailability are not compromised. To address this highly relevant question, we study an interesting heat- and shear-labile drug in development, LY3009120. To study the effects of residual crystallinity and degradation in ASDs, we prepared three compositionally identical formulations (57–1, 59–4, and 59–5) using the KinetiSol process under various processing conditions to obtain samples with various levels of crystallinity (2.3%, 0.9%, and 0.1%, respectively) and degradation products (0.74%, 1.97%, and 3.12%, respectively). Samples with less than 1% crystallinity were placed on stability, and we observed no measurable change in the drug's crystallinity, dissolution profile or purity in the 59–4 and 59–5 formulations over four months of storage under closed conditions at 25 °C and 60% humidity. For formulations 57–1, 59–4, and 59–5, bioavailability studies in rats reveal a 44-fold, 55-fold, and 62-fold increase in mean AUC, respectively, compared to the physical mixture. This suggests that the presence of some residual crystals after processing can be acceptable and will not change the properties of the ASD over time.
Collapse
|
10
|
Banks PA, Burgess L, Ruggiero MT. The necessity of periodic boundary conditions for the accurate calculation of crystalline terahertz spectra. Phys Chem Chem Phys 2021; 23:20038-20051. [PMID: 34518858 DOI: 10.1039/d1cp02496e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terahertz vibrational spectroscopy has emerged as a powerful spectroscopic technique, providing valuable information regarding long-range interactions - and associated collective dynamics - occurring in solids. However, the terahertz sciences are relatively nascent, and there have been significant advances over the last several decades that have profoundly influenced the interpretation and assignment of experimental terahertz spectra. Specifically, because there do not exist any functional group or material-specific terahertz transitions, it is not possible to interpret experimental spectra without additional analysis, specifically, computational simulations. Over the years simulations utilizing periodic boundary conditions have proven to be most successful for reproducing experimental terahertz dynamics, due to the ability of the calculations to accurately take long-range forces into account. On the other hand, there are numerous reports in the literature that utilize gas phase cluster geometries, to varying levels of apparent success. This perspective will provide a concise introduction into the terahertz sciences, specifically terahertz spectroscopy, followed by an evaluation of gas phase and periodic simulations for the assignment of crystalline terahertz spectra, highlighting potential pitfalls and good practice for future endeavors.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| | - Luke Burgess
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| | - Michael T Ruggiero
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA.
| |
Collapse
|
11
|
Caporaletti F, Bonn D, Woutersen S. Lifetime-Associated Two-Dimensional Infrared Spectroscopy Reveals the Hydrogen-Bond Structure of Supercooled Water in Soft Confinement. J Phys Chem Lett 2021; 12:5951-5956. [PMID: 34157231 PMCID: PMC8256423 DOI: 10.1021/acs.jpclett.1c01595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate a method to address the problem of spectral overlap in multidimensional vibrational spectroscopy and use it to investigate supercooled aqueous sorbitol solutions. The absence of crystallization in these solutions has been attributed to "soft" confinement of water in subnanometer voids in the sorbitol matrix, but the details of the hydrogen-bond structure are still largely unknown. 2D-IR spectroscopy of the OH-stretch mode is an excellent tool to investigate hydrogen bonding, but in this case it seems difficult because of the overlapping water and sorbitol contributions to the 2D-IR spectrum. Using the difference in OH-stretch lifetimes of water and sorbitol we can cleanly separate these contributions. Surprisingly, the separated 2D-IR spectra show that the hydrogen-bond disorder of soft-confined water is independent of temperature and decoupled from its orientational order. We believe the approach we use to separate overlapping 2D-IR spectra will enhance the applicability of 2D-IR spectroscopy to study multicomponent systems.
Collapse
Affiliation(s)
- Federico Caporaletti
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Sander Woutersen
- Van
’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm 2021; 602:120649. [PMID: 33915186 DOI: 10.1016/j.ijpharm.2021.120649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Co-amorphous drug delivery systems are evolving as a credible alternative to amorphous solid dispersions technology. In Co-amorphous systems (CAMs), a drug is stabilized in amorphous form using small molecular weight compounds called as co-formers. A wide variety of small molecular weight co-formers have been leveraged in the preparation of CAMs. The stability and supersaturation potential of prepared co-amorphous phases largely depend on the type of co-former employed in the CAMs. However, the rationality behind the co-former selection in co-amorphous systems is poorly understood and scarcely compiled in the literature. There are various facets to the rational selection of co-former for CAMs. In this context, the present review compiles various factors affecting the co-former selection. The factors have been broadly classified under Thermodynamic, Kinetic and Pharmacokinetic-Pharmacologically relevant parameters. In particular, the importance of Glass transition, Miscibility, Liquid-Liquid phase separation (LLPS), Crystallization inhibition has been deliberated in detail.
Collapse
Affiliation(s)
- Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Vullendula Sai Krishna Anand
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Athira R Nair
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - K S Navya Sree
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Swapnil J Dengale
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
13
|
|
14
|
Batens M, Shmool TA, Massant J, Zeitler JA, Van den Mooter G. Advancing predictions of protein stability in the solid state. Phys Chem Chem Phys 2020; 22:17247-17254. [PMID: 32685957 DOI: 10.1039/d0cp00341g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The β-relaxation associated with the sub-glass transition temperature (Tg,β) is attributed to fast, localised molecular motions which can occur below the primary glass transition temperature (Tg,α). Consistent with Tg,β being observed well-below storage temperatures, the β-relaxation associated motions have been hypothesised to influence protein stability in the solid state and could thus impact the quality of e.g. protein powders for inhalation or reconstitution and injection. Why then do distinct solid state protein formulations with similar aggregation profiles after drying and immediate reconstitution, display different profiles when reconstituted following prolonged storage? Is the value of Tg,β, associated with the β-relaxation process of the system, a reliable parameter for characterising the behaviour of proteins in the solid state? Bearing this in mind, in this work we further explore the different relaxation dynamics of glassy solid state monoclonal antibody formulations using terahertz time-domain spectroscopy and dynamical mechanical analysis. By conducting a 52 week stability study on a series of multi-component spray-dried formulations, an approach for characterising and analysing the solid state dynamics and how these relate to protein stability is outlined.
Collapse
Affiliation(s)
- Maarten Batens
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Blasi P, Casagrande S, Pedretti A, Fioretto D, Vistoli G, Corezzi S. Ketoprofen poly(lactide-co-glycolide) physical interaction studied by Brillouin spectroscopy and molecular dynamics simulations. Int J Pharm 2020; 580:119235. [DOI: 10.1016/j.ijpharm.2020.119235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022]
|
16
|
Krynski M, Mocanu F, Elliott S. Elucidation of the Nature of Structural Relaxation in Glassy d-Sorbitol. J Phys Chem B 2020; 124:1833-1838. [PMID: 32017567 DOI: 10.1021/acs.jpcb.9b11075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nature and origin of the glass transition is one of the great unsolved problems of condensed-matter science. With the rapid increase of viscosity upon cooling the liquid near the glass-transition temperature, a range of dynamical motifs are observed, revealing the sheer complexity of interactions between the amorphous units. Yet, the causal link between those motifs and the solidification process remains unclear. Here, we apply a novel approach for exploring nontrivial interactions between structural units in d-sorbitol, a canonical example of a hydrogen-bonded organic glass, by introducing a dihedral-rearrangement-indicator analysis to shed light on relaxation processes and dynamical heterogeneity, which are known for their association with the stability of a glass. We find that both α- and β-relaxation processes are governed by cooperative and heterogeneous changes in hydrogen-bond dynamics that can be described by spatial and dihedral-angle-rearrangement indicators. The methodology and findings are of general applicability to other glass-forming systems.
Collapse
Affiliation(s)
- Marcin Krynski
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K.,Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Felix Mocanu
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Stephen Elliott
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| |
Collapse
|
17
|
Gagnér VA, Lundholm I, Garcia-Bonete MJ, Rodilla H, Friedman R, Zhaunerchyk V, Bourenkov G, Schneider T, Stake J, Katona G. Clustering of atomic displacement parameters in bovine trypsin reveals a distributed lattice of atoms with shared chemical properties. Sci Rep 2019; 9:19281. [PMID: 31848402 PMCID: PMC6917748 DOI: 10.1038/s41598-019-55777-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
Low-frequency vibrations are crucial for protein structure and function, but only a few experimental techniques can shine light on them. The main challenge when addressing protein dynamics in the terahertz domain is the ubiquitous water that exhibit strong absorption. In this paper, we observe the protein atoms directly using X-ray crystallography in bovine trypsin at 100 K while irradiating the crystals with 0.5 THz radiation alternating on and off states. We observed that the anisotropy of atomic displacements increased upon terahertz irradiation. Atomic displacement similarities developed between chemically related atoms and between atoms of the catalytic machinery. This pattern likely arises from delocalized polar vibrational modes rather than delocalized elastic deformations or rigid-body displacements. The displacement correlation between these atoms were detected by a hierarchical clustering method, which can assist the analysis of other ultra-high resolution crystal structures. These experimental and analytical tools provide a detailed description of protein dynamics to complement the structural information from static diffraction experiments.
Collapse
Affiliation(s)
- Viktor Ahlberg Gagnér
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Ida Lundholm
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | - Helena Rodilla
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Ran Friedman
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | | | - Gleb Bourenkov
- European Molecular Biology Laboratory Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Thomas Schneider
- European Molecular Biology Laboratory Hamburg Outstation, EMBL c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany
| | - Jan Stake
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Gergely Katona
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
18
|
Determination of Stable Co-Amorphous Drug-Drug Ratios from the Eutectic Behavior of Crystalline Physical Mixtures. Pharmaceutics 2019; 11:pharmaceutics11120628. [PMID: 31771255 PMCID: PMC6956160 DOI: 10.3390/pharmaceutics11120628] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Co-amorphous drug–drug systems have been developed with the overall aim of improving the physical stability of two or more amorphous drugs. Co-amorphous systems often show good physical stability, and higher solubility and dissolution rates compared to their crystalline counterparts. The aim of this study is to determine if eutectic mixtures of two drugs can form stable co-amorphous systems. Three drug–drug mixtures, indomethacin–naproxen (IND−NAP), nifedipine–paracetamol (NIF−PAR), and paracetamol–celecoxib (PAR−CCX), were investigated for their eutectic and co-amorphization behavior as well as their physical stability in the co-amorphous form. The phase diagrams of the crystalline mixtures and the thermal behavior of the co-amorphous systems were analyzed by differential scanning calorimetry. The solid-state form and physical stability of the co-amorphous systems were analyzed using X-ray powder diffractometry during storage at room temperature at dry conditions. Initial eutectic screening using nifedipine (NIF), paracetamol (PAR), and celecoxib (CCX) indicated that IND−NAP, NIF−PAR, and PAR−CCX can form eutectic mixtures. Phase diagrams were then constructed using theoretical and experimental values. These systems, at different drug-to-drug ratios, were melted and cooled to form binary mixtures. Most mixtures were found to be co-amorphous systems, as they were amorphous and exhibited a single glass transition temperature. The stability study of the co-amorphous systems indicated differences in their physical stability. Comparing the phase diagrams with the physical stability of the co-amorphous mixtures, it was evident that the respective drug–drug ratio that forms the eutectic point also forms the most stable co-amorphous system. The eutectic behavior of drug–drug systems can thus be used to predict drug ratios that form the most stable co-amorphous systems.
Collapse
|
19
|
Shmool TA, Batens M, Massant J, Van den Mooter G, Zeitler JA. Tracking solid state dynamics in spray-dried protein powders at infrared and terahertz frequencies. Eur J Pharm Biopharm 2019; 144:244-251. [PMID: 31546022 DOI: 10.1016/j.ejpb.2019.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Talia A Shmool
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Maarten Batens
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Jan Massant
- Biological Formulation Development, UCB Pharma, Braine l'Alleud, Belgium
| | | | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
20
|
Observation of high-temperature macromolecular confinement in lyophilised protein formulations using terahertz spectroscopy. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100022. [PMID: 31517287 PMCID: PMC6733290 DOI: 10.1016/j.ijpx.2019.100022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Structural dynamics in lyophilised protein formulations can be probed with terahertz spectroscopy and two glass transition processes, Tg,α and Tg,β, are observed. Vibrational confinement upon thermal activation is observed resulting in no detectable changes in secondary structure but strongly reduced the molecular mobility at temperatures above Tg,α. The confinement was found to be strongly dependent on the formulation. We hypothesise that confinement is linked to conformational states with potential effects on physical and chemical stability of the biomolecule during storage.
Characterising the structural dynamics of proteins and the effects of excipients are critical for optimising the design of formulations. In this work we investigated four lyophilised formulations containing bovine serum albumin (BSA) and three formulations containing a monoclonal antibody (mAb, here mAb1), and explored the role of the excipients polysorbate 80, sucrose, trehalose, and arginine on stabilising proteins. By performing temperature variable terahertz time-domain spectroscopy (THz-TDS) experiments it is possible to study the vibrational dynamics of these formulations. The THz-TDS measurements reveal two distinct glass transition processes in all tested formulations. The lower temperature transition, Tg,β, is associated with the onset of local motion due to the secondary relaxation whilst the higher temperature transition, Tg,α, marks the onset of the α-relaxation. For some of the formulations, containing globular BSA as well as mAb1, the absorption at terahertz frequencies does not increase further at temperatures above Tg,α. Such behaviour is in contrast to our previous observations for small organic molecules as well as linear polymers where absorption is always observed to steadily increase with temperature due to the stronger absorption of terahertz radiation by more mobile dipoles. The absence of such further increase in absorption with higher temperatures therefore suggests a localised confinement of the protein/excipient matrix at high temperatures that hinders any further increase in mobility. We found that subtle changes in excipient composition had an effect on the transition temperatures Tg,α and Tg,β as well as the vibrational confinement in the solid state. Further work is required to establish the potential significance of the vibrational confinement in the solid state on formulation stability and chemical degradation as well as what role the excipients play in achieving such confinement.
Collapse
|
21
|
Terahertz Spectroscopy: An Investigation of the Structural Dynamics of Freeze-Dried Poly Lactic-co-glycolic Acid Microspheres. Pharmaceutics 2019; 11:pharmaceutics11060291. [PMID: 31226751 PMCID: PMC6631728 DOI: 10.3390/pharmaceutics11060291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 11/26/2022] Open
Abstract
Biodegradable poly lactic-co-glycolic acid (PLGA) microspheres can be used to encapsulate peptide and offer a promising drug-delivery vehicle. In this work we investigate the dynamics of PLGA microspheres prepared by freeze-drying and the molecular mobility at lower temperatures leading to the glass transition temperature, using temperature-variable terahertz time-domain spectroscopy (THz-TDS) experiments. The microspheres were prepared using a water-in-oil-in-water (w/o/w) double-emulsion technique and subsequent freeze-drying of the samples. Physical characterization was performed by morphology measurements, scanning electron microscopy, and helium pycnometry. The THz-TDS data show two distinct transition processes, Tg,β in the range of 167–219 K, associated with local motions, and Tg,α in the range of 313–330 K, associated with large-scale motions, for the microspheres examined. Using Fourier transform infrared spectroscopy measurements in the mid-infrared, we were able to characterize the interactions between a model polypeptide, exendin-4, and the PLGA copolymer. We observe a relationship between the experimentally determined Tg,β and Tg,α and free volume and microsphere dynamics.
Collapse
|
22
|
Zhang F, Wang HW, Tominaga K, Hayashi M, Sasaki T. Terahertz Fingerprints of Short-Range Correlations of Disordered Atoms in Diflunisal. J Phys Chem A 2019; 123:4555-4564. [PMID: 31038953 DOI: 10.1021/acs.jpca.9b00580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work proposes a terahertz (THz) spectroscopy approach to the investigation of one of the outstanding problems in crystallography-the structure analysis of a crystal with disorder. Form I of diflunisal, in which the two ortho sites on one phenyl ring of diflunisal show occupational disorder, was used for an illustration. THz radiation interacts with the collective vibrations of correlated disorder, thus providing a promising tool to examine the symmetry of short-range correlations of disordered atoms. Through a thorough examination of the selection rule of THz vibrations in which the disordered atoms are involved to different extents, we deduced that only four short-range correlation possibilities of disorder exist and all of them display unambiguous fingerprint peaks in the 50-170 cm-1 frequency region. We finally proposed an alternating packing model in which the correlation lengths of disorder are on the nanometer scale.
Collapse
Affiliation(s)
- Feng Zhang
- Molecular Photoscience Research Center , Kobe University , Nada, Kobe 657-0013 , Japan
| | - Houng-Wei Wang
- Center for Condensed Matter Sciences , National Taiwan University , 1 Roosevelt Rd., Sec. 4 , Taipei 10617 , Taiwan
| | - Keisuke Tominaga
- Molecular Photoscience Research Center , Kobe University , Nada, Kobe 657-0013 , Japan
| | - Michitoshi Hayashi
- Center for Condensed Matter Sciences , National Taiwan University , 1 Roosevelt Rd., Sec. 4 , Taipei 10617 , Taiwan
| | - Tetsuo Sasaki
- Research Institute of Electronics , Shizuoka University , Hamamatsu , Shizuoka 432-8011 , Japan
| |
Collapse
|
23
|
Affiliation(s)
- G. P. Johari
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
24
|
Kissi EO, Ruggiero MT, Hempel NJ, Song Z, Grohganz H, Rades T, Löbmann K. Characterising glass transition temperatures and glass dynamics in mesoporous silica-based amorphous drugs. Phys Chem Chem Phys 2019; 21:19686-19694. [DOI: 10.1039/c9cp01764j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Amorphous drug molecules bound to MPS surface are restricted in mobility, but they exhibit a primary glass transition temperature.
Collapse
Affiliation(s)
- Eric Ofosu Kissi
- Department of Pharmacy
- University of Oslo
- Oslo
- Norway
- Department of Pharmacy
| | | | | | - Zihui Song
- Department of Chemistry
- University of Vermont
- Vermont
- USA
| | - Holger Grohganz
- Department of Pharmacy
- University of Copenhagen
- Copenhagen
- Denmark
| | - Thomas Rades
- Department of Pharmacy
- University of Copenhagen
- Copenhagen
- Denmark
- Department of Pharmacy
| | | |
Collapse
|
25
|
Shmool TA, Zeitler JA. Insights into the structural dynamics of poly lactic-co-glycolic acid at terahertz frequencies. Polym Chem 2019. [DOI: 10.1039/c8py01210e] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The mechanical properties of an amorphous copolymer are directly related to the dynamic processes occurring at the molecular level.
Collapse
Affiliation(s)
- Talia A. Shmool
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge CB3 0AS
- UK
| |
Collapse
|
26
|
Karl M, Larsen PE, Rangacharya VP, Hwu ET, Rantanen J, Boisen A, Rades T. Ultrasensitive Microstring Resonators for Solid State Thermomechanical Analysis of Small and Large Molecules. J Am Chem Soc 2018; 140:17522-17531. [PMID: 30468581 DOI: 10.1021/jacs.8b09034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thermal analysis plays an important role in both industrial and fundamental research and is widely used to study thermal characteristics of a variety of materials. However, despite considerable effort using different techniques, research struggles to resolve the physicochemical nature of many thermal transitions such as amorphous relaxations or structural changes in proteins. To overcome the limitations in sensitivity of conventional techniques and to gain new insight into the thermal and mechanical properties of small- and large-molecule samples, we have developed an instrumental analysis technique using resonating low-stress silicon nitride microstrings. With a simple sample deposition method and postprocess data analysis, we are able to perform rapid thermal analysis of direct instrumental triplicate samples with only pico- to nanograms of material. Utilizing this method, we present the first measurement of amorphous alpha and beta relaxation, as well as liquid crystalline transitions and decomposition of small-molecule samples deposited onto a microstring resonator. Furthermore, sensitive measurements of the glass transition of polymers and yet unresolved thermal responses of proteins below their apparent denaturation temperature, which seem to include the true solid state glass transition of pure protein, are reported. Where applicable, thermal events detected with the setup were in good agreement with conventional techniques such as differential scanning calorimetry and dynamic mechanical analysis. The sensitive detection of even subtle thermal transitions highlights further possibilities and applications of resonating microstrings in instrumental physicochemical analysis.
Collapse
Affiliation(s)
- Maximilian Karl
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark.,Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads , 2800 Kgs. Lyngby , Denmark
| | - Peter E Larsen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads , 2800 Kgs. Lyngby , Denmark
| | - Varadarajan P Rangacharya
- Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads , 2800 Kgs. Lyngby , Denmark
| | - En Te Hwu
- Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads , 2800 Kgs. Lyngby , Denmark
| | - Jukka Rantanen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| | - Anja Boisen
- Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsteds Plads , 2800 Kgs. Lyngby , Denmark.,Danish National Research Foundation and Villum Fondens Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) , 2800 Kgs. Lyngby , Denmark
| | - Thomas Rades
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2 , 2100 Copenhagen , Denmark
| |
Collapse
|
27
|
Correlation between molecular dynamics and physical stability of two milled anhydrous sugars: Lactose and sucrose. Int J Pharm 2018; 551:184-194. [PMID: 30223078 DOI: 10.1016/j.ijpharm.2018.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/24/2022]
Abstract
The process of milling often results in amorphization and the physical stability of amorphous phase is linked with its molecular dynamics. This study focuses on a propensity of two disaccharides (lactose and sucrose) to amorphize on ball milling and the stability of the resultant amorphous phase. The amorphous content in milled sugars is estimated by Differential Scanning Calorimetry (DSC) and the stability was measured in terms of the tendency to recrystallize by Broadband Dielectric Spectroscopy (BDS). The results show that the amorphous content increases with milling time and is greater for lactose than sucrose. At the same degree of amorphization, sucrose recrystallize at temperature ∼15 °C higher than lactose, indicating higher stability. The molecular dynamics (beta relaxation process), suggest that milled sucrose is more stable with higher activation energy (∼9 kJ mol-1) than that of lactose. The moisture content of amorphous phase also impacts its molecular dynamics in terms of increase in activation energy as the moisture decrease with increasing the milling times. The study suggests a greater stability of amorphous sucrose and susceptibility of milled lactose to recrystallize, however, on extended milling when the moisture content decreases, lactose was seen to become relatively more stable.
Collapse
|
28
|
Kissi EO, Kasten G, Löbmann K, Rades T, Grohganz H. The Role of Glass Transition Temperatures in Coamorphous Drug-Amino Acid Formulations. Mol Pharm 2018; 15:4247-4256. [PMID: 30020794 DOI: 10.1021/acs.molpharmaceut.8b00650] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The improved physical stability associated with coamorphous drug-amino acid (AA) formulations may indicate a decrease in mobility of the amorphous drug molecules, compared to the neat amorphous form of the drug. Since the characteristic glass transition temperatures ( Tgα and Tgβ) represent molecular mobility in amorphous systems, we aimed to characterize Tgα and Tgβ and to determine their role in physical stability as well as their potential usefulness to determine the presence of an excess component (either drug or AA) in coamorphous systems. Indomethacin (IND)-tryptophan (TRP) and carvedilol (CAR)-TRP were used as model coamorphous systems. The analytical techniques used were X-ray powder diffractometry (XRPD) to determine the solid-state form, dynamic mechanical analysis (DMA) to probe Tgα and Tgβ, and differential scanning calorimetry (DSC) to probe thermal behavior of the coamorphous systems. Tgα analysis showed a gradual monotonous increase in Tgα values with increasing AA concentration, and this increase in the Tgα value is not the cause of the improved physical stability. The Tgβ analysis for the IND-TRP sample with 10% drug had a Tgβ of 226.8 K, and samples with 20-90% drug had similar Tgβ values around 212.5 K. For CAR-TRP, samples with 10-40% drug had similar Tgβ values around 230.5 K, and samples with 50-90% drug had similar Tgβ values around 223.3 K. The similar Tgβ values in coamorphous systems at different drug ratios indicate that they in fact are the Tgβ of the component that is in excess to an ideal drug-AA coamorphous mixture. DSC and XRPD analysis showed that for IND-TRP, IND is in excess if the drug concentration is 30% or above and will eventually recrystallize. For CAR-TRP, CAR is in excess and recrystallizes when the drug concentration is 50% or above. We have proposed a means of estimating, on the basis of Tgβ, which drug to AA ratios will lead to optimally physically stable coamorphous systems that can be considered for further development.
Collapse
Affiliation(s)
- Eric Ofosu Kissi
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen Ø , Denmark
| | - Georgia Kasten
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen Ø , Denmark
| | - Korbinian Löbmann
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen Ø , Denmark
| | - Thomas Rades
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen Ø , Denmark
| | - Holger Grohganz
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen Ø , Denmark
| |
Collapse
|
29
|
Shalaev E, Soper A, Zeitler JA, Ohtake S, Roberts CJ, Pikal MJ, Wu K, Boldyreva E. Freezing of Aqueous Solutions and Chemical Stability of Amorphous Pharmaceuticals: Water Clusters Hypothesis. J Pharm Sci 2018; 108:36-49. [PMID: 30055227 DOI: 10.1016/j.xphs.2018.07.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 11/24/2022]
Abstract
Molecular mobility has been traditionally invoked to explain physical and chemical stability of diverse pharmaceutical systems. Although the molecular mobility concept has been credited with creating a scientific basis for stabilization of amorphous pharmaceuticals and biopharmaceuticals, it has become increasingly clear that this approach represents only a partial description of the underlying fundamental principles. An additional mechanism is proposed herein to address 2 key questions: (1) the existence of unfrozen water (i.e., partial or complete freezing inhibition) in aqueous solutions at subzero temperatures and (2) the role of water in the chemical stability of amorphous pharmaceuticals. These apparently distant phenomena are linked via the concept of water clusters. In particular, freezing inhibition is associated with the confinement of water clusters in a solidified matrix of an amorphous solute, with nanoscaled water clusters being observed in aqueous glasses using wide-angle neutron scattering. The chemical instability is suggested to be directly related to the catalysis of proton transfer by water clusters, considering that proton transfer is the key elementary reaction in many chemical processes, including such common reactions as hydrolysis and deamidation.
Collapse
Affiliation(s)
- Evgenyi Shalaev
- Pharmaceutical Development, Allergan plc., Irvine, California 92612.
| | - Alan Soper
- ISIS Facility, UKRI-STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon OX11 OQX, UK
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| | - Satoshi Ohtake
- Pfizer BioTherapeutics Pharmaceutical Sciences, Chesterfield, Missouri 63198
| | | | - Michael J Pikal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut 06269
| | - Ke Wu
- Pharmaceutical Development, Allergan plc., Irvine, California 92612
| | - Elena Boldyreva
- Novosibirsk State University, Pirogova Street 2, Novosibirsk 630090, Russian Federation; Boreskov Institute of Catalysis SB RAS, Novosibirsk 630090, Russian Federation
| |
Collapse
|
30
|
Ruggiero MT, Zhang W, Bond AD, Mittleman DM, Zeitler JA. Uncovering the Connection Between Low-Frequency Dynamics and Phase Transformation Phenomena in Molecular Solids. PHYSICAL REVIEW LETTERS 2018; 120:196002. [PMID: 29799217 DOI: 10.1103/physrevlett.120.196002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 06/08/2023]
Abstract
The low-frequency motions of molecules in the condensed phase have been shown to be vital to a large number of physical properties and processes. However, in the case of disordered systems, it is often difficult to elucidate the atomic-level details surrounding these phenomena. In this work, we have performed an extensive experimental and computational study on the molecular solid camphor, which exhibits a rich and complex structure-dynamics relationship, and undergoes an order-disorder transition near ambient conditions. The combination of x-ray diffraction, variable temperature and pressure terahertz time-domain spectroscopy, ab initio molecular dynamics, and periodic density functional theory calculations enables a complete picture of the phase transition to be obtained, inclusive of mechanistic, structural, and thermodynamic phenomena. Additionally, the low-frequency vibrations of a disordered solid are characterized for the first time with atomic-level precision, uncovering a clear link between such motions and the phase transformation. Overall, this combination of methods allows for significant details to be obtained for disordered solids and the associated transformations, providing a framework that can be directly applied for a wide range of similar systems.
Collapse
Affiliation(s)
- Michael T Ruggiero
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Present Address: Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, USA
| | - Wei Zhang
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Andrew D Bond
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel M Mittleman
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
31
|
Kissi EO, Grohganz H, Löbmann K, Ruggiero MT, Zeitler JA, Rades T. Glass-Transition Temperature of the β-Relaxation as the Major Predictive Parameter for Recrystallization of Neat Amorphous Drugs. J Phys Chem B 2018; 122:2803-2808. [DOI: 10.1021/acs.jpcb.7b10105] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eric Ofosu Kissi
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Holger Grohganz
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Korbinian Löbmann
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Michael T. Ruggiero
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Thomas Rades
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
32
|
Li Q, Zaczek AJ, Korter TM, Zeitler JA, Ruggiero MT. Methyl-rotation dynamics in metal–organic frameworks probed with terahertz spectroscopy. Chem Commun (Camb) 2018; 54:5776-5779. [DOI: 10.1039/c8cc02650e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In ZIF-8 and its cobalt analogue ZIF-67, the imidazolate methyl-groups, which point directly into the void space, have been shown to freely rotate – even down to cryogenic temperatures.
Collapse
Affiliation(s)
- Qi Li
- Department of Chemical Engineering and Biotechnology, University of Cambridge
- Philippa Fawcett Drive
- Cambridge
- UK
| | - Adam J. Zaczek
- Department of Chemistry, Syracuse University
- 1-014 Center for Science and Technology
- Syracuse
- USA
| | - Timothy M. Korter
- Department of Chemistry, Syracuse University
- 1-014 Center for Science and Technology
- Syracuse
- USA
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge
- Philippa Fawcett Drive
- Cambridge
- UK
| | - Michael T. Ruggiero
- Department of Chemical Engineering and Biotechnology, University of Cambridge
- Philippa Fawcett Drive
- Cambridge
- UK
- Department of Chemistry
| |
Collapse
|
33
|
Ruggiero MT, Kölbel J, Li Q, Zeitler JA. Predicting the structures and associated phase transition mechanisms in disordered crystals via a combination of experimental and theoretical methods. Faraday Discuss 2018; 211:425-439. [DOI: 10.1039/c8fd00042e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Experimental terahertz time-domain spectroscopy and theoretical solid-state ab initio density functional theory and molecular dynamics simulations are used to elucidate the structures, dynamics, and phase transformation processes of molecular crystals undergoing a solid-state order–disorder transition.
Collapse
Affiliation(s)
- Michael T. Ruggiero
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Johanna Kölbel
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - Qi Li
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| | - J. Axel Zeitler
- Department of Chemical Engineering and Biotechnology
- University of Cambridge
- Cambridge
- UK
| |
Collapse
|
34
|
Mensink MA, Šibík J, Frijlink HW, van der Voort Maarschalk K, Hinrichs WLJ, Zeitler JA. Thermal Gradient Mid- and Far-Infrared Spectroscopy as Tools for Characterization of Protein Carbohydrate Lyophilizates. Mol Pharm 2017; 14:3550-3557. [PMID: 28874050 PMCID: PMC5627341 DOI: 10.1021/acs.molpharmaceut.7b00568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Protein
drugs play an important role in modern day medicine. Typically,
these proteins are formulated as liquids requiring cold chain processing.
To circumvent the cold chain and achieve better storage stability,
these proteins can be dried in the presence of carbohydrates. We demonstrate
that thermal gradient mid- and far-infrared spectroscopy (FTIR and
THz-TDS, respectively) can provide useful information about solid-state
protein carbohydrate formulations regarding mobility and intermolecular
interactions. A model protein (BSA) was lyophilized in the presence
of three carbohydrates with different size and protein stabilizing
capacity. A gradual increase in mobility was observed with increasing
temperature in formulations containing protein and/or larger carbohydrates
(oligo- or polysaccharides), lacking a clear onset of fast mobility
as was observed for smaller molecules. Furthermore, both techniques
are able to identify the glass transition temperatures (Tg) of the samples. FTIR provides additional information
as it can independently monitor changes in protein and carbohydrate
bands at the Tg. Lastly, THz-TDS confirms
previous findings that protein–carbohydrate interactions decrease
with increasing molecular weight of the carbohydrate, which results
in decreased protein stabilization.
Collapse
Affiliation(s)
- M A Mensink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Janssen Vaccines and Prevention , Archimedesweg 4, 2333 CN Leiden, The Netherlands
| | - J Šibík
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom.,F. Hoffmann-La Roche A.G. , Basel 4070, Switzerland
| | - H W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - K van der Voort Maarschalk
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.,Process Technology, Corbion Purac , P.O. Box 21, 4200 AA Gorinchem, The Netherlands
| | - W L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - J A Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge , Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|