1
|
Eddahmi M, La Spada G, Domingo LR, Vergoten G, Bailly C, Catto M, Bouissane L. Synthesis, Molecular Electron Density Theory Study, Molecular Docking, and Pharmacological Evaluation of New Coumarin-Sulfonamide-Nitroindazolyl-Triazole Hybrids as Monoamine Oxidase Inhibitors. Int J Mol Sci 2024; 25:6803. [PMID: 38928509 PMCID: PMC11203676 DOI: 10.3390/ijms25126803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Inhibitors of monoamine oxidases (MAOs) are of interest for the treatment of neurodegenerative disorders and other human pathologies. In this frame, the present work describes different synthetic strategies to obtain MAO inhibitors via the coupling of the aminocoumarin core with arylsulfonyl chlorides followed by copper azide-alkyne cycloaddition, leading to coumarin-sulfonamide-nitroindazolyl-triazole hybrids. The nitration position on the coumarin moiety was confirmed through nuclear magnetic resonance spectroscopy and molecular electron density theory in order to elucidate the molecular mechanism and selectivity of the electrophilic aromatic substitution reaction. The coumarin derivatives were evaluated for their inhibitory potency against monoamine oxidases and cholinesterases. Molecular docking calculations provided a rational binding mode of the best compounds in the series with MAO A and B. The work identified hybrids 14a-c as novel MAO inhibitors, with a selective action against isoform B, of potential interest to combat neurological diseases.
Collapse
Affiliation(s)
- Mohammed Eddahmi
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| | - Gabriella La Spada
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Luis R. Domingo
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, 46100 Burjassot, Valencia, Spain;
| | - Gérard Vergoten
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Christian Bailly
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, Rue du Professeur Laguesse, BP-83, F-59006 Lille, France
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy; (G.L.S.); (M.C.)
| | - Latifa Bouissane
- Molecular Chemistry, Materials and Catalysis Laboratory, Faculty of Sciences and Technologies, Sultan Moulay Slimane University, BP 523, Beni-Mellal 23000, Morocco;
| |
Collapse
|
2
|
Feng R, Li ZY, Liu YJ, Dong ZB. Selective Synthesis of Sulfonamides and Sulfenamides from Sodium Sulfinates and Amines. J Org Chem 2024; 89:1736-1747. [PMID: 38215479 DOI: 10.1021/acs.joc.3c02444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
An effective method was explored for the selective synthesis of sulfonamides and sulfenamides using sodium sulfinates and amines as starting materials. This method offers mild reaction conditions, a broad substrate scope, high efficiency, and readily accessible materials, making it suitable and an alternative strategy for the preparation of a variety of biologically or pharmaceutically active compounds.
Collapse
Affiliation(s)
- Rong Feng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhong-Yu Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yue-Jin Liu
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
3
|
Gatarz S, Griffiths OM, Esteves HA, Jiao W, Morse P, Fisher EL, Blakemore DC, Ley SV. Nitro-sulfinate Reductive Coupling to Access (Hetero)aryl Sulfonamides. J Org Chem 2024; 89:1898-1909. [PMID: 38239107 PMCID: PMC10845164 DOI: 10.1021/acs.joc.3c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
A method to assemble (hetero)aryl sulfonamides via the reductive coupling of aryl sulfinates and nitroarenes is reported. Various reducing conditions with sodium bisulfite and with or without tin(II) chloride in DMSO were developed using an ultrasound bath to improve reaction homogeneity and mixing. A range of (hetero)aryl sulfonamides bearing a selection of functional groups were prepared, and the mechanism of the transformation was investigated. These investigations have led us to propose the formation of nitrosoarene intermediates, which were established via an independent molecular coupling strategy.
Collapse
Affiliation(s)
- Sandra
E. Gatarz
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Oliver M. Griffiths
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Henrique A. Esteves
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Wenhua Jiao
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Peter Morse
- Medicine
Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Ethan L. Fisher
- Medicine
Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | | | - Steven V. Ley
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Sosunovych B, Vashchenko BV, Andriashvili VA, Grygorenko OO. Bypassing Sulfonyl Halides: Synthesis of Sulfonamides from Other Sulfur-Containing Building Blocks. CHEM REC 2024; 24:e202300258. [PMID: 37753806 DOI: 10.1002/tcr.202300258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
This review disclosed synthetic approaches to sulfonyl amides from non-sulfonyl halogenated precursors. Known methods were systematized into groups and subgroups according to the type of starting organosulfur compound. Thiols, disulfides, and sulfonamides form a group of S(II)-containing precursors, which are used in oxidative amination reactions. An important and versatile group for oxidative amination is represented with S(IV)-containing compounds, i. e., sufinates, sulfinamides, DMSO, N-sulfinyl-O-(tert-butyl)hydroxylamine, etc. A series of S(VI)-containing precursors for amination reactions (except sulfonyl halides) include sulfonic acids, sulfonyl azides, thiosulfonates, and sulfones. All approaches are represented with the most prominent examples of the resulting sulfonamides, which could be obtained in high yields mostly via short reaction sequences. Promising electrochemical methods for the preparation of sulfonamides from thiols, disulfides, sulfonamides, sulfinic acid derivatives, and dimethyl sulfoxide under mild and green conditions are also highlighted.
Collapse
Affiliation(s)
| | - Bohdan V Vashchenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
5
|
Tian H, Li R, Guo F, Chen X. An Efficient Method for the Preparation of Sulfonamides from Sodium Sulfinates and Amines. Chemistry 2022; 11:e202200097. [PMID: 36005567 PMCID: PMC9405518 DOI: 10.1002/open.202200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/18/2022] [Indexed: 11/12/2022]
Abstract
Sulfonamides have a special role on medicine due to their broad biological activities, as bacterial infections, diabetes mellitus, oedema, hypertension prevention and treatment. In addition, sulfonamides are also useful in herbicides and pesticides. Herein, we communicate an efficient strategy for the preparation of sulfonamides via NH4I‐mediated amination of sodium sulfinates. This new method provides a general and environmentally friendly access to sulfonamide compounds and tolerates a wide range of functional groups.
Collapse
Affiliation(s)
- Haiying Tian
- Department of Pharmacy, Changzhi Medical College, 046000, Changzhi, P. R. China
| | - Ruiyan Li
- Department of Pharmacy, Changzhi Medical College, 046000, Changzhi, P. R. China
| | - Fang Guo
- Department of Materials Science and Engineering, Jinzhong University, 030619, Jinzhong, P. R. China
| | - Xiuling Chen
- Department of Materials Science and Engineering, Jinzhong University, 030619, Jinzhong, P. R. China
| |
Collapse
|
6
|
Kim DS, Lee HG. Formation of the Tertiary Sulfonamide C(sp 3)-N Bond Using Alkyl Boronic Ester via Intramolecular and Intermolecular Copper-Catalyzed Oxidative Cross-Coupling. J Org Chem 2021; 86:17380-17394. [PMID: 34762422 DOI: 10.1021/acs.joc.1c01759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synthetic strategy for the formation of C(sp3)-N bonds, particularly through a copper-catalyzed oxidative cross-coupling, is rare. Herein, we report a novel synthetic approach for the preparation of tertiary sulfonamides via copper-catalyzed intra- and intermolecular oxidative C(sp3)-N cross-coupling reactions. This method allows the utilization of the readily available C(sp3)-based pinacol boronate as a substrate and the tolerance of a wide range of functional groups under mild reaction conditions. The success of this strategy relies on the unprecedented additive effects of silanol and NaIO4.
Collapse
Affiliation(s)
- Dong Sun Kim
- Department of Chemistry, College of National Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hong Geun Lee
- Department of Chemistry, College of National Science, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Tan E, Montesinos-Magraner M, García-Morales C, Mayans JG, Echavarren AM. Rhodium-catalysed ortho-alkynylation of nitroarenes. Chem Sci 2021; 12:14731-14739. [PMID: 34820088 PMCID: PMC8597868 DOI: 10.1039/d1sc04527j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
The ortho-alkynylation of nitro-(hetero)arenes takes place in the presence of a Rh(iii) catalyst to deliver a wide variety of alkynylated nitroarenes regioselectively. These interesting products could be further derivatized by selective reduction of the nitro group or palladium-catalysed couplings. Experimental and computational mechanistic studies demonstrate that the reaction proceeds via a turnover-limiting electrophilic C-H metalation ortho to the strongly electron-withdrawing nitro group.
Collapse
Affiliation(s)
- Eric Tan
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Marc Montesinos-Magraner
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
| | - Cristina García-Morales
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Joan Guillem Mayans
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili C/ Marcel·lí Domingo s/n 43007 Tarragona Spain
| |
Collapse
|
8
|
Xia J, Zhang K, Mahmood EA. Methods for the synthesis of N-aryl sulfonamides from nitroarenes: an overview. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1964500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jingjing Xia
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Kehua Zhang
- Key Laboratory of Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei, China
| | - Evan Abdolkarim Mahmood
- College of Health Sciences, University of Human Development, Sulaimaniyah, Kurdistan Region of Iraq
| |
Collapse
|
9
|
Wu H, Chen X, Sun N, Sanchez-Mendoza A. Recent developments in the synthesis of N-aryl sulfonamides. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1936060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huizhen Wu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Xuesong Chen
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Nabo Sun
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | | |
Collapse
|
10
|
Xu J, Shen C, Qin X, Wu J, Zhang P, Liu X. Oxidative Sulfonylation of Hydrazones Enabled by Synergistic Copper/Silver Catalysis. J Org Chem 2021; 86:3706-3720. [PMID: 33480254 DOI: 10.1021/acs.joc.0c02249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A copper/silver-cocatalyzed protocol for oxidative sulfonylation of hydrazones is demonstrated. A wide range of β-ketosulfones and N-acylsulfonamides are directly synthesized in moderate to good yields. Our work provides a viable method for scalable preparation of β-ketosulfone derivatives that have found wide applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xian Qin
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Jie Wu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
11
|
Liu Z, Ebadi A, Toughani M, Mert N, Vessally E. Direct sulfonamidation of (hetero)aromatic C-H bonds with sulfonyl azides: a novel and efficient route to N-(hetero)aryl sulfonamides. RSC Adv 2020; 10:37299-37313. [PMID: 35521237 PMCID: PMC9057145 DOI: 10.1039/d0ra04255b] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022] Open
Abstract
N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more. There is therefore continuing interest in the development of novel and convenient protocols for the preparation of these pharmaceutically important compounds. Recently, direct sulfonamidation of (hetero)aromatic C–H bonds with easily available sulfonyl azides has emerged as an attractive and powerful strategy to access N-(hetero)aryl sulfonamides where non-toxic nitrogen gas forms as the sole by-product. This review highlights recent advances and developments (2012–2020) in this fast growing research area with emphasis on the mechanistic features of the reactions. N-Aryl sulfonamides belong to a highly important class of organosulfur compounds which are found in a number of FDA-approved drugs such as dofetilide, dronedarone, ibutilide, sotalol, sulfadiazine, sulfamethizole, vemurafenib, and many more.![]()
Collapse
Affiliation(s)
- Zhi Liu
- School of Electrical and Automation Engineering, East China Jiaotong University Nanchang 330013 China
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University Jouybar Iran
| | - Mohsen Toughani
- Department of Fishery, Babol Branch, Islamic Azad University Babol Iran
| | - Nihat Mert
- Department of Biochemistry, Faculty of Veterinary Medicine, University of Yuzuncu Yil 65080, Van Turkey
| | | |
Collapse
|
12
|
Metal-free one-pot synthesis of N-arylsulfonamides from nitroarenes and sodium sulfinates in an aqueous medium. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
13
|
Chen K, Chen W, Han B, Chen W, Liu M, Wu H. Sequential C-S and S-N Coupling Approach to Sulfonamides. Org Lett 2020; 22:1841-1845. [PMID: 32073282 DOI: 10.1021/acs.orglett.0c00183] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A one-pot three-component reaction involving nitroarenes, (hetero)arylboronic acids, and potassium pyrosulfite leading to sulfonamides was described. A broad range of sulfonamides bearing different reactive functional groups were obtained in good to excellent yields through sequential C-S and S-N coupling that does not require metal catalysts.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wei Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Bing Han
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Miaochang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Huayue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
14
|
Hell SM, Meyer CF, Laudadio G, Misale A, Willis MC, Noël T, Trabanco AA, Gouverneur V. Silyl Radical-Mediated Activation of Sulfamoyl Chlorides Enables Direct Access to Aliphatic Sulfonamides from Alkenes. J Am Chem Soc 2019; 142:720-725. [DOI: 10.1021/jacs.9b13071] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sandrine M. Hell
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claudio F. Meyer
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Gabriele Laudadio
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Antonio Misale
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Michael C. Willis
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Timothy Noël
- Micro Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14, Helix, 5600 MB Eindhoven, The Netherlands
| | - Andrés A. Trabanco
- Discovery Chemistry, Janssen Research and Development, Jarama 75A, Toledo E-45007, Spain
| | - Véronique Gouverneur
- University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
15
|
Zhang K, Zhang Y, Liu Q, He D, Tian J, Zhou H. Metal‐Free One‐Pot Synthesis of Sulfonamides from Nitroarenes and Arylsulfonyl Chlorides in Water. ChemistrySelect 2019. [DOI: 10.1002/slct.201901742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kaili Zhang
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Yin Zhang
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Qixing Liu
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Dan He
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Juyan Tian
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| | - Haifeng Zhou
- Research Center of Green Pharmaceutical Technology and ProcessHubei Key Laboratory of Natural Products Research and DevelopmentCollege of Biological and Pharmaceutical SciencesChina Three Gorges University Yichang 443002 China
| |
Collapse
|
16
|
Liu S, Chen R, Zhang J. Copper-Catalyzed Redox Coupling of Nitroarenes with Sodium Sulfinates. Molecules 2019; 24:molecules24071407. [PMID: 30974790 PMCID: PMC6479299 DOI: 10.3390/molecules24071407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
A simple copper-catalyzed redox coupling of sodium sulfinates and nitroarenes is described. In this process, abundant and stable nitroarenes serve as both the nitrogen sources and oxidants, and sodium sulfinates act as both reactants and reductants. A variety of aromatic sulfonamides were obtained in moderate to good yields with broad substrate scope. No external additive is employed for this kind of transformation.
Collapse
Affiliation(s)
- Saiwen Liu
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| | - Ru Chen
- Yiyang Agriculture Products Quality Detect Center, Yiyang 413000, China.
| | - Jin Zhang
- College of Materials and Chemical Engineering, Hunan City University, Yiyang 413000, China.
| |
Collapse
|